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Abstract

Conditional independence structures describe independencies
of one set of variables from another set of variables con-
ditioned upon a third set of variables. These structures are
invaluable means for compact representations of knowledge
because independencies can be exploited for useful factoriza-
tions. Conditional independence structures appear in differ-
ent disguise in various areas of knowledge representation, be
it the conditional independence of sets of random variables
in probabilistic graphical models such as Bayesian networks
or as conditional functions related to belief revision, or as in-
dependencies induced by (embedded) multivalued dependen-
cies in data bases. This paper investigates conditional inde-
pendencies for Boolean functions using Fourier analysis. We
define three notions of independence based on the notion of
influence of a variable on a function and draw connections to
multivalued dependencies.

1 Introduction
Conditional independence (CI) structures (Studený 1993;
Studeny 2005; Wang 2010; Dawid 2001) describe indepen-
dencies of one set of variables from another set of variables
conditioned upon a third set of variables. They are invalu-
able means for compact representations of knowledge as in-
dependencies can be exploited for useful factorizations.

Conditional independence structures appear in different
disguise in the area of knowledge representation (Studený
1993): In statistics and probabilistic graphical modelling CIs
occur as independencies of conditional probabilities for sets
of random variables. Here they are used to represent full
joint distributions compactly with up to exponential sav-
ings by Bayesian Networks or more specifically by causal
networks (Pearl 2009); CIs were investigated from an epis-
temological perspective with conditional functions (Spohn
1994); CIs appear implicitly as independencies induced by
multivalued dependencies in databases (Fagin 1977), where
the factorizations resulting from multivalued dependencies
are used to define and design normalized DBs (= databases);
and last but not least, under the term (ir)relevance, CIs
also play a role for rational belief revision (Parikh 1999;
Özçep 2016), where one is interested in eliminating at most
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those sentences from a knowledge base that are relevant for
the possibly inconsistent trigger information.

In its most abstract form, CIs can be investigated axiomat-
ically by stating closure rules on triples (A⊥⊥B|C) as ini-
tially done in the graphoid framework (Pearl and Paz 1985).
Such an axiomatization is useful for the comparison of dif-
ferent classes of CIs by comparing the axioms modelled by
each class. As for the models of such triples, various math-
ematical structures have been exploited in order to capture
the essence of CIs, be it separoids (Dawid 2001), imsets
(Studeny 2005), cain algebras (Wang 2010), or—as an effi-
cient data structure for processing Boolean functions—sum-
product networks (Poon and Domingos 2012).

The focus of this paper is on CIs for Boolean functions.
Treating Boolean functions as the limits of full joint distri-
butions over Boolean random variables, we develop a first
notion of conditional independence based on probabilistic
(conditional) independence: Random variables (RVs) be-
come propositional variables, the full joint distribution on
RVs X1, . . . , Xn becomes an n-ary Boolean function f :
{0, 1}n −→ {0, 1}, and the marginal of a probability distri-
bution becomes the forgetting operator of a Boolean func-
tion.

As a first result of this paper, we show that the induced
notion of conditional independence corresponds exactly to
embedded multivalued dependencies from database theory
when treating the assignments making the Boolean function
true as a table. A useful consequence of this theorem is that
insights, techniques, and results from one area (probabilistic
graphical models) can be transferred easily to another area
(databases), and vice versa.

Many interesting results regarding Boolean functions
were achieved with the framework of Fourier analysis
(O’Donnell 2014) and were applied to various areas of com-
puter science such as property testing, circuit analysis, social
choice, machine learning, cryptography etc. Fourier analy-
sis rests on a unique canonical representation of functions
as a multilinear polynomial where the monomials are parity
functions. A fundamental measure used in Fourier analysis
is the notion of the influence of a variable on the outcome
of a function. We use (adapted versions of) influence to de-
scribe intuitive measures for the dependence between two
(sets of) variables. These measures induce, as special cases,
three notions of independence.
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As a result of our Fourier analysis we present decompo-
sition theorems that shed light onto the different dimensions
of the influence measures and their inter-relations. With the
last result of the Fourier analysis for influences we give the
closing bracket for the narrative that was opened with proba-
bilistic conditional independencies and embedded multival-
ued dependencies: We show that multivalued dependencies
(of some sufficiently general form) can be decomposed into
summands that are described by our influence-based depen-
dency measures.

An extended version of this paper with proofs is provided
under the URL https://tinyurl.com/yah9mkyc.

2 Preliminaries
Let [n] = {1, 2, . . . , n− 1, n} be the set of all natural num-
bers (different from zero) up to n ∈ N \ {0}. Similarly, we
define [Xn] = {X1, . . . , Xn} to be the set of propositional
variables Xi up to index n from a fixed family of proposi-
tional variables (Xi)i∈N\{0}. We are going to deal mainly
with Boolean functions with finite arity operating on tuples
over the 2-element domain of Boolean values B = {0, 1},
where, intuitively 0 stands for the truth value FALSE and
1 for the truth value TRUE. Due to this intuition we call
the tuples x for which f(x) = 1 verifiers or models of
f , and the tuples y such that f(y) = 0 falsifiers or anti-
models of f . Tuples of Boolean values will be denoted by
x, y, z and indexed variants. xi for i ∈ [n] and n-tuple x
is the element in the i-th position of x. The arity/length of
the tuples will be clear from the context. The n-ary Boolean
functions are of the form f : Bn −→ B, for some n ∈ N.
When referring to the positions of an n-ary Boolean func-
tion we usually use the variables X1, . . . , Xn. We are going
to use the following unary functions f : B −→ B: nega-
tion or “not” function defined by ¬(x) = 1 − x; the unary
1-function or “always true” function defined by 1(x) = 1,
and the 0-function or “always false” function defined by
0(x) = 0. The binary Boolean functions f : B × B −→ B
that we consider are: conjunction alias “and” function de-
fined by ∧(x, y) = x ∧ y = x · y; disjunction alias “or”
function defined by ∨(x, y) = x ∨ y = ¬(∧(¬x,¬y)) =
x+ y−x · y; implication alias “if-then” function defined by
→ (x, y) = x→ y = ¬(x) ∨ y; inverse implication defined
by← (x, y) =→ (y, x); biimplication alias “if-and only-if”
function defined by ↔ (x, y) = ∧(→ (x, y),→ (y, x)) =
and the xor function alias “exclusive or” function defined by
x ⊕ y =↔ (x,¬(y)). As “and”,“or” and “xor” functions
are associative we define these for arbitrary arities so that it
makes sense to use them with running indices. For example,
for a sequence of Boolean values (x1, . . . , xn) the expres-
sion

∨
1≤i≤n x

i can be read as (. . . ((x1∨x2)∨x3)∨ . . . xn.
Let x be an n-tuple of Boolean values, i ∈ [n] and b ∈ B.

Then x[xi/b] is an i-variant and is defined to be the same as
x except for the position i which is set to b. This can be ex-
tended to variants on a whole set of positions in an intuitive
way. Formally: For a set of positionsA = {i1, . . . , ik} ⊆ [n]
with cardinality k and y a k-tuple y = (y1, . . . , yk) of
Boolean values and an n-ary tuple x, x[A/y] denotes an A
variant of x: x[A/y] = x[xi1/y1, . . . , xik/yk].

For J ⊆ [n] we use fJ�z or even shorter f�z as a short-
hand for the function resulting from f by fixing the non-J
positions to the values of the vector z.

Let A = {i1, . . . , ik} ⊆ [n] be a set of positions with car-
dinality k, and B the set of all other positions, B = [n] \A;
further let f be an n-ary Boolean function. Then the A-
marginal fmA (“m” for marginal) is the n-ary function de-
fined by fmA (x1, . . . , xn) =

∨
y∈Bn−k f(x[B/y]), i.e., fmA is

built by considering all position variants of the input vector
x on positions different from those in A and then cumulat-
ing the result w.r.t. disjunction. The naming convention cho-
sen here is drawn from the notion of a max-marginal known
in probability theory. As the A-marginal depends actually
only on the values at the A-positions one can consider it
also as a k-ary function: In this case we will talk about the
A-projection of f and denote it by fpA. If the arity does not
matter or is clear from the context, then we do not distin-
guish them, i.e., drop the superscript.

Even more loosely (but conveniently), we will use the
notation f(X1, . . . , Xn), with propositional variables Xi,
in order to denote an n-ary Boolean function and, e.g.,
f(X1, X3) to denote its {1, 3}-marginal. In this case we also
talk about the {X1, X3}-marginal.

An immediately verifiable lemma (due to the monotonic-
ity of disjunction) says that the less one projects out the
stronger the function (in a logical sense):
Lemma 1. For all A,B ⊆ [n]: If A ⊆ B, then for all x ∈
Bn: fmB (x) ≤ fmA (x).

3 Conditional Independence and Marginals
This section is devoted to developing a notion of indepen-
dence on Boolean functions motivated from the notion of
conditional independence as used in probability theory. The
main step towards this is the definition of a notion corre-
sponding to (not exactly being) conditional probabilities.
Definition 1. Let A,B ⊆ [Xn]. The A,B-conditional of an
n-ary function f is defined as the n-ary Boolean function
fA|B (also written as f(A|B)) defined for all x ∈ Bn by
fA|B(x) = fB(x)→ fA∪B(x).

Note the analogy to the conditional probability P (A|B)
which stands for the probability that A is the case given
that B is known and which is defined for P (B) 6= 0 by
P (A|B) = P (A,B)/P (B). Because in the Boolean case
the normalization factor P (B) is always 0 or 1, one has to
account only for the the case that P (B) = 0. And this is
handled above via implication→.

With the notion of a conditional of a Boolean function we
can define conditional independence.
Definition 2. For an n-ary Boolean function f and sets
of propositional variables A,B,C ⊆ [Xn] we say that A
is independent of B conditioned on C w.r.t. f , for short
A⊥⊥B|C(f), iff for all x ∈ Bn:

¬(fC(x)) ∨ ¬(fA|C(x)) ∨ ¬(fB|C(x))∨
(fA|B∪C(x)↔ fA|C(x)) = 1(x)

If C = ∅, then A is said to be (un-conditionally) indepen-
dent of B w.r.t. f , for short: A⊥⊥B(f).
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This corresponds one-to-one to conditional independence
in probability theory (Neopolitan 2003, p. 30). This notion
of independence has an alternative representation which is
the content of the following observation:
Observation 1. For an n-ary Boolean function f and sets
of propositional variablesA,B,C ⊆ [Xn]A is independent
ofB conditioned onC iff the following holds for all x ∈ Bn:

¬(fC(x)) ∨ (fA∪B|C(x) ↔ (fA|C(x) ∧ fB|C(x)))

= 1(x) (1)

As the notion of conditional independence developed here
is an adaptation of conditional independence from probabil-
ity theory, one might ask oneself whether it captures really
logical dependencies between propositional variables. As
Example 1 below shows, the notion of (un-)conditional inde-
pendence according to Definition 2 captures indeed the usual
logical dependencies between two variables. And this is no
coincidence: The condition expressed in Equation (1) corre-
sponds exactly to the notion of logical independence defined
for sets of columns in the table (relation) of a relational data
base (Fagin 1977): If X1, . . . , Xn are the columns in a ta-
ble/relation R, then for A ⊆ [Xn] of cardinality k the k-
ary relation RA is the set of k-tuples x such that there is
some n − k tuple y such that (x, y) ∈ R. Then for sets
A,B,C ⊆ [Xn] one says that A is independent of B condi-
tioned on C iff: For all |A|-ary tuples x, |B|-ary tuples y and
|C|-ary tuples z: If (x, z) ∈ RA∪C and (y, z) ∈ RB∪C , then
(x, y, z) ∈ RA∪B∪C . This is denoted A⊥⊥B|C(R). (Note
the twist in terminology: an embedded multivalued depen-
dency induces a conditional independency.)

The strengthening of embedded multivalued dependen-
cies are called multivalued dependencies: For these one ad-
ditionally has the constraint that A ∪ B ∪ C = [Xn] =
the whole set of positions. The usual notation in this case is
C � A and C � B, or shorter C � A|B.

For n-ary Boolean functions there are two natural sets as-
sociated with it that can play the role of an n-ary relation:
The set f−1(1) of its models (also called the onset) and the
set f−1(0) of non-models, which is exactly the set of models
of its negation (sometimes called the offset). Considering the
former, one sees immediately that conditional independence
as defined by (1) is nothing else than embedded multivalued
dependency for f−1(1) treated as an n-ary relation.
Proposition 1. For Boolean functions f conditional in-
dependence, where marginals are defined as maximum-
marginals, and conditional independence induced by em-
bedded multivalued dependencies, where the models of f are
considered as a DB-relation, are the same.

This result is in so far remarkable, as in general condi-
tional independence induced by embedded multivalued de-
pendency over a database does not lead to the same CI
triples as probabilistic conditional independence (see (Stu-
dený 1993)). But considering only propositional logic and
max-marginals eliminates the difference.
Example 1. The simplest nontrivial case of independence
in this setting is for binary Boolean functions f . Consider
A = {X1}, B = {X2} and C = ∅. For illustration pur-
poses we show that for f = X1 ∧X2, X1 is independent of

X2: fA = X1, fB = X2, hence if fA(x1, x2) = x1 = 1 and
fB(x1, x2) = x2 = 1, then also f(x1, x2) = x1 ∧ x2. On
the other hand, e.g., for f = X1 → X2, X1 and X2 are not
independent. Because fA(x) = fB(x) = 1(x) for all x, but
for x = (1, 0) f(x) = 0. Similar calculations show that the
binary Boolean functions f that fulfill the (unconditional)
independence constraint A⊥⊥B(f) are all 16 functions ex-
cept the following six ones:

1. X1 → X2 (subsumption), 2. X2 → X1 (supersump-
tion), 3. ¬X1 → X2 (covering), 4. X1 → ¬X2 (disjoint-
ness), 5. X1 ↔ X2 (equivalence), 6. X1 ↔ ¬X2 (com-
plement). The functions that do not satisfy the conditional
independence property are the ones that describe the usual
dependencies (given with their usual names in brackets) one
encounters, say, in the area of semantic integration. The
remaining functions are the ones with independent posi-
tions: 1 (constant 1 function), 0 (constant 0 function), the
unary functions X1, ¬X1, X2, ¬X2 and the binary func-
tions X1 ∧X2, ¬X1 ∧X2, X1 ∧ ¬X2, ¬X1 ∧ ¬X2.

4 Fourier Analysis of Boolean Functions
We are going to investigate independency of variables in
a Boolean function using Fourier analysis. In this section
we provide the necessary terminology, based mainly on
(O’Donnell 2014).

For the following Fourier analytic discussions we are go-
ing to follow the convention (see (O’Donnell 2014)) of rep-
resenting Boolean functions as functions f : Bn

± −→ B±
where both, the domain and the range, are (cartesian prod-
ucts) of the two-element set B± = {1,−1} ⊆ R. The trans-
lation between this and the previous representation is han-
dled by χ : B −→ B± mapping 0 ∈ B to 1 ∈ B± and
1 ∈ B to −1 ∈ B±: χ(0) = 1, χ(1) = −1. The definitions
of the Boolean operators change accordingly. For example,
the negation operator now becomes ¬(x) = −x (where− is
the minus sign from the field of real numbers R.)

Position i ∈ [n] in a Boolean function f is said to be
pivotal for f iff flipping the bit in i-position changes the
value of f , formally, iff f(x) 6= f(x⊕i). Here we use x⊕i to
denote the tuple identical to x except that the bit at position i
is changed to its complement. The influence Infi of position
i on f is given as the relative frequency of those n-bit tuples
x ∈ Bn

± which are pivotal for f :

Infi(f) = Prx∼Bn
±

(f(x) 6= f(x⊕i))

= Ex∼Bn
±

(1f(x) 6=f(x⊕i))

=
1

2n
·#{x ∈ Bn

± | f(x) 6= f(x⊕i)}

Here and below we follow (O’Donnell 2014) in defining the
relevant notions using the terminology of probability the-
ory. x ∼ Bn

± means that x is chosen from the uniform dis-
tribution over Bn

±, Pr(·) denotes the corresponding prob-
ability distribution and E(·) the expectation value. 1P (·)
is the characteristic function of a predicate P for elements
x ∈ Bn

±. The influence measure can be described analyti-
cally with the notion of a (partial) derivative using Fourier
analysis. The ith discrete derivative operator Di maps any
(n-ary) Boolean function f to the n-ary Boolean function
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Di(f) : Bn
± −→ {−1, 1} defined for all x ∈ Bn

± by
Dif(x) = f(x[xi/1])−f(x[xi/−1])

2 . The square of the deriva-
tive is the indicator function for the property of i being piv-
otal for f . Hence the influence can also be written as

Infi(f) = Prx∼Bn
±

(f(x) 6= f(x⊕i))

= Ex∼Bn
±
Dif(x)2

Influences can be calculated conveniently using the fact that
every Boolean function has a so-called unique Fourier ex-
pansion. The expansion is based on the fact that the par-
ity functions xS : Bn

± −→ B± defined by xS =
∏

i∈S xi
(and setting x∅ = 1) for S ⊆ [n] make up an orthonor-
mal basis in the vector space of all Boolean functions of
an arbitrary but fixed arity. The scalar product of two func-
tions f, g is defined as 〈f, g〉 = Ex∼Bn

±
(f(x) · g(x)) =

1
2n ·

∑
x∈B± f(x) · g(x). The Fourier expansion of f is

f(x) =
∑

S⊆[n] f̂(S)xS where f̂(S) ∈ R denotes the
Fourier coefficients. The set of Fourier coefficients is also
called the Fourier spectrum. A Fourier expansion for func-
tions f : Bn −→ R over the domain Bn can derived by
extending the definition of the χ-function to arbitrary sets
S ⊆ S: χS(x) =Πi∈Sχ(xi) = −1

∑
i∈S Xi .

f(x) =
∑
S⊆[n]

f̂(S)χS (2)

In fact, if f : Bn
± −→ B± is a function having domain

Bn
± and range B±, where its Fourier expansion is given

by the polynomial p(x), then the Fourier expansion q(x)
of f represented over B is given as q(x) = 1

2 −
1
2p(1 −

2x1, . . . , 1−2xn). In the other direction it holds that p(x) =
1 − 2p( 1−x1

2 , . . . , 1+xn

2 ). In particular, the Fourier coeffi-
cients of f w.r.t. these two domains are related by

f̂B(S) =

{
1
2 (1− f̂B±(S)) if S = ∅
− 1

2 f̂
B±(S) else

(3)

Plancherels Theorem states that the scalar product of
two functions f and g is the sum of pointwise multiplica-
tion of the Fourier coefficients of f and g, i.e., 〈f, g〉 =∑

x∈B± f̂(x) · ĝ(x). It’s special case is Parseval’s theorem

stating that 〈f, f〉 =
∑

x∈B± f̂(x)2. Using the simple struc-
ture of the Fourier spectrum of the derivatives, Equation (2)
and Parseval’s theorem, the following representation of the
influence can be derived:

Infi(f) =
∑

S⊆[n],i∈S

f̂(x)2 (4)

The convolution f ∗ g of two functions f, g : Bn
± −→ R

is defined by f ∗ g(x) =
∑

y∼Bn
±
f(y) · g(y · x) where y · x

denotes bitwise multiplication of the bits in y and x. In case
f, g are probability distributions, the convolution describes
the probability for the sum of the random variables corre-
sponding to f and g. The Fourier coefficients of a convolu-
tion are calculated as the product of the Fourier coeefficients
of the components: f̂ ∗ g(S) = f̂ · ĝ. Dually, the Fourier
coefficients of the product of two functions f, g is the con-
volution of the Fourier coefficients of the components:

f̂ · g(S) = f̂ ∗ ĝ(S) (5)

5 Influence-Based Dependencies
The (in)dependency notions described in the first section
lead to crisp criterions according to which two sets of
propositional variables are dependent—conditioned on other
propositional variables. In this section we are going to de-
scribe a measure that quantifies the dependency between sets
of variables using a notion similar to that of influence known
in the area of Boolean analysis. This influence-based notion
of (in)dependency is quite different from the (in)dependence
notions mentioned above, even so that the limit case of de-
pendency measure = 0, i.e., no influence at all, does not co-
incide with the notion of conditional independence induced
by embedded multivalued dependency.

We consider in this section two influence-based notions
of dependency. For the second notion we are able to give an
analytical expression using the notion of influence Infi of a
variable on a function f .

Our first notion of dependence uses the notion of influence
of position j on i w.r.t. Boolean function f as given in the
following definition.
Definition 3. For an n-ary Boolean function f and positions
i, j ∈ [n] the influence of j on i of type I , for short InfIj,i(f),
is the relative frequency of those x for which i is not pivotal,
but becomes pivotal with flipped j:

InfIj,i(f) = Prx∼Bn
±

(f(x) = f(x⊕i) and

f(x⊕j) 6= f(x⊕j,⊕i))

Here we used the notation x⊕j,⊕i denoting the outcome
of first flipping the value at position j and then flipping the
value at position i in x. As long as i 6= j, this is the same as
flipping both in parallel.

This notion of the influence of a position j on a position i
induces a notion of independence that is different from em-
bedded multivalued independence. This new notion of inde-
pendence is defined to hold between i and j iff the type-I-
influence of j on i is zero.
Definition 4. Position i (variable Xi) is type-I-influence-
independent of position j (variable Xj) (for i 6= j) w.r.t.
n-ary Boolean function f iff InfIj,i(f) = 0.
Remark 1. Here and in the following we are going to con-
sider mainly the special case of (unconditioned) indepen-
dence of a variable from another variable.

Using a different notion of derivative than the one intro-
duced in the preliminary section, we can give a description
of InfI

j,i(f) based on Fourier coefficients. The new notion
of a derivative, denoted dif , for functions f : Bn

± −→ B±
is the exact adaptation of the derivative notion for functions
f : Bn −→ B over the Galois field as used, e.g., in (Vich-
niac 1990), and is defined as dif(x) = f(x) · f(x⊕i). The
indicator function for an i-induced flip f can be defined with
this new notion of derivative as follows: θi(x) = 1−dif(x)

2 .
Then the opposite condition, i.e. that i is not pivotal for f on
x, is expressed by 1− θi(x) = 1+dif(x)

2 = 1+f(x)·f(x⊕i)
2 . A

generalization to two variables describes the derivative w.r.t.
both positions i, j: dijf(x) = f(x) · f(x⊕i,⊕j). An indica-
tor function θij indicating whether a flip in both positions
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i, j leads to a flip in the f -value is accordingly given as
θij(x) =

1−dij(x)
2 .

Theorem 1. For any n-ary Boolean function f : Bn
± −→

B± and positions i 6= j ∈ [n] it holds: i is type-I-influence-
independent of j w.r.t. f iff for all x:

f�1,1(x)f�−1,1(x) = f�1,−1(x)f�−1,−1(x))

The expression found in Theorem 1 shows that the in-
duced notion of independence is much weaker than the no-
tion of embedded multivalued dependence: Consider the
special case of [Xn] \ {Xi, Xj} � Xi|Xj . In this case
one requires that if f�1,1(x) = −1 = f�−1,1(x), then also
f�−1,−1(x) = −1 = f�1,−1(x), which is much stronger than
to say f�1,1(x)f�−1,1(x) = f�1,−1(x)f�−1,−1(x)).

The following example illustrates the simple case of bi-
nary Boolean functions f(X1, X2) and lists all functions
with X1 being independent of X2 of type-I.
Example 2. The set of binary functions f such that its po-
sitions 1, 2 are type I influence-independent are the follow-
ing ones: X1, X2, ¬X1, ¬X2, 1,−1,X1 ∧ X2,¬X1 ∧ X2,
X1 ∧ ¬X2, ¬X1 ∧ ¬X2, X1 ↔ X2, X1 ⊕X2.

The expression 1
4−

1
4E(f(x)f(x⊕i)f(x⊕j)f(x⊕j⊕i) de-

rived in the proof of the Theorem 1 (see extended version)
can be further broken down to the Fourier coefficients of f
using the convolution of functions and Equation (5):

InfI
j,i(f) =

1

4
(1−

∑
S⊆[n]

[f̂ ∗ f̂(()⊕i)](S) ·

[ ̂f(()⊕j) ∗ ̂f(()⊕i⊕j)](S))

(In the above formula we used f(()⊕i) to denote the com-
position of f and the i-flip function ()⊕i.)

Whereas the first notion of influence-based dependence
measures the possible j-induced flips of f that hold inde-
pendently of whether xi = +1 or xi = −1, the second
related notion considers the number of f -flips which are not
induced by i alone but by flipping both i and j.
Definition 5. For an n-ary Boolean function f and posi-
tions i, j ∈ [n] the influence of j on i, of type II , for short
InfIIj,i(f), is the relative frequency of those x for which i is
not pivotal for f , but flipping both i, j leads to a change of
the f -value:

InfII
j,i(f) = Prx∼Bn

±
(f(x) = f(x⊕i) and f(x) 6= f(x⊕j,⊕i))

We give an analytic description of the type-II-influence
via the Fourier spectrum. The condition used in the defini-
tion of the influence of type II holds if there is no flip in-
duced by i and there is an {i, j}-induced flip. Using indica-
tors for derivatives di and dij leads to the indicator function
ζ(x) = 1+di(f)

2 · 1−f(x)·f(x
⊕i,⊕j)

2 . These considerations with
some algebraic calculations results in the following repre-
sentation of influence of type II via Fourier coefficients:

Theorem 2. If i 6= j, then InfIIj,i(f) =
∑

S⊆[n]
i/∈S,j∈S

f̂(S)2.

A simple corollary is the following connection between
the influence Infj(f) of j on the function f and the influence
InfII

j,i(f) of j on i w.r.t. f of type II: Infj(f) =InfII
j,i(f)+∑

S⊆[n],i∈S,j∈S f̂(S)2.

6 Relation to (Embedded) MVDs
Independence of type II describes in essence that part of the
common influence of {i, j} on j that does not rest on the
influence of i on f alone. This notion of common influence
is known as coalition influence. In general, the coalition in-
fluence of a set of positions J ⊆ [n] on an n-ary Boolean
function f (O’Donnell 2014, p.274) is defined as the proba-
bility of finding an assignment z over non-J positions such
that flipping one of the J-positions is pivotal for f with fixed
z. Formally: InfJ(f) = Pr

z∼B[n]\J
±

(fJ�z is not constant). A
refinement of this notion is that of coalition influence to-
wards b ∈ B± which describes the probability that flips in
J lead to f becoming evaluated to b, formally: InfbJ(f) =
Pr

z∼B[n]\J
±

(fJ�zcan be made b) − Pr[f = b]. Coalition in-
fluence does not permit a neat analytical representation that
holds for all Boolean functions f . But coalition influence is
related to multivalued dependency as shown below.

The independence of position A from position B (with
C = ∅) induced by multivalued dependency (Sect. 3) reads
within the words of influential coalition as follows. Using
the abbreviation J = [n] \ {A,B} we get:

∀a, b,∈ B± : Inf−1J (f�a) = 0 or Inf−1J (f�b) = 0 or

Inf−1J (f�a) = 1 = Inf−1J (f�b)

As the coalition influence is combinatorial, this rephras-
ing of logical independence does not lead immediately to a
characterization via the squares of the Fourier coefficients
f̂(S)2. In fact, considering the Fourier expansions for the
binary Boolean functions f reveals that a potential charac-
terization cannot rest only on the squares of the Fourier coef-
ficients, i.e., the signs of the Fourier coefficients are relevant
for the decision whether independence holds.

A simple formula on the Fourier coefficients that charac-
terizes the independence of A = {X1} and B = {X2} for
the special case of Boolean binary functions is given in the
following observation.
Observation 2. A = {X1} and B = {X2} are inde-
pendent w.r.t. f : B2 → B (resp. f : B2

± → B±) iff
f̂(∅) · f̂({X1, X2}) = f̂({X1}) · f̂({X2})
(resp. (f̂(∅)− 1) · f̂({X1, X2}) = f̂({X1}) · f̂({X2})).

Ordinary MVDs can be broken down to the sum of influ-
ences as developed in the preceding sections. We get a de-
composition of the probability that a Boolean vector x falsi-
fies the MVD conditions into four summands: the influence
of j on f , the influence of i on f , the dependence of i of j of
type I, and an additional term E( 1+f(x)f(x⊕i)f(x⊕j)

2 ). This
term defined below describes the probability that there is an
i-flip if f(x⊕j) = −1 or no flip if f(x⊕j) = 1.
Definition 6. For an n-ary Boolean function f and posi-
tions i, j ∈ [n], the influence of j on i of type III , for short
InfIIIj,i(f), is the relative frequency of those x for which i is
pivotal for f and flipping j gives f -value -1 or i is not piv-
otal and flipping j gives f -value 1.

InfIII
j,i(f) = Prx∼Bn

±
(f(x⊕j) = −1 & f(x) 6= f(x⊕i)or

f(x⊕j) = 1 & f(x) = f(x⊕i))
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The following theorem formalizes the decomposition.

Theorem 3. The probability X of an x falsifying the MVD
[Xn] \ {Xi, Xj} � Xi | Xj is described by X =
1
4 ( 1

2 Infi(f) + 1
2 Infj(f) + 1

2 InfIj,i + InfIIIj,i − 1).

7 Related Work
We gave criteria for identifying independencies between
variables of a Boolean function within Fourier coefficients.
Fourier expansions are flat structures: They consider a fixed
basis of parity functions. Sum-product networks introduced
in (Poon and Domingos 2012) describe a deep architecture
for Boolean functions in which conditional independencies
are implemented directly as structural constraints.

The approaches of (Dawid 2001; Wang 2010; Studeny
2005) are mathematical theories meant to capture the
essence of CI structures. With our approach we did not add
another structure but considered the well-established Fourier
expansion of Boolean functions and the notion of influence
as a means for analyzing independence.

Influence plays a pivotal role in the measures of depen-
dence and the induced notions of independence. The notion
of coalition influence as used in Sect. 5 and Sect. 6 is rele-
vant for many different properties of Boolean functions but
is not easily describable analytically. The considerations on
coalition influences of (Ben-Or and Linial 1985) and (Fil-
mus 2016) may help in finding an analytical expression.

The notions of influence used here bears some resem-
blance to the notion of influence in causal networks (Pearl
2009) and, in particular, to instrumental variables as used in
linear causal networks (Brito and Pearl 2002).

Conditional independencies can be used for the decompo-
sition of different data structures. In (Parikh 1999) decom-
positions of propositional knowledge bases using so-called
splittings are considered. The notion of irrelevance induced
by finest splitting bears strong similarities to CIs.

8 Conclusion and Outlook
The Fourier analysis framework is an invaluable means for
the analysis of Boolean functions. In this paper, we relied on
this framework in order to identify criteria on conditional in-
dependencies using the notion of flips and influences of vari-
ables. As far as we know, the results of this paper are the first
to draw connections between influence and independence, in
particular independence induced by multivalued dependen-
cies. So, with this paper we provide the foundation for fur-
ther interesting investigations of CIs with Fourier analysis.

One open problem for future investigations is a full char-
acterization of (embedded) multivalued dependencies with
Fourier coefficients. The simple Fourier characterization of
binary functions having independent arguments given in
Section 6 works because one does not have to account for
∨-marginals in this sample case. The combinatorics of coali-
tion influences can be tamed by constraining the class of
Boolean functions. A possible strategy is to consider func-
tions defined not on the whole Boolean cube but on some
subset, e.g., a Boolean slice, i.e., a subset of Fn where all
vectors have the same weight (Filmus 2016).
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