
Automatic Adaptation to Sensor Replacements

Yuan Shi
Information Sciences Institute

University of Southern California
yuanshi@usc.edu

T. K. Satish Kumar
Information Sciences Institute

University of Southern California
tkskwork@gmail.com

Craig A. Knoblock
Information Sciences Institute

University of Southern California
knoblock@isi.edu

Abstract
Many software systems run on long-lifespan platforms that
operate in diverse and dynamic environments. If these soft-
ware systems could automatically adapt to hardware changes,
it would significantly reduce the maintenance cost and enable
rapid upgrade. In this paper, we study the problem of how to
automatically adapt to sensor changes, as an important step
towards building such long-lived, survivable software sys-
tems. We address the adaptation scenarios where a set of sen-
sors are replaced by new sensors. Our approach reconstructs
sensor values of replaced sensors by preserving distributions
of sensor values before and after the sensor change, thereby
not warranting a change in higher-layer software. Compared
to existing work, our approach has the following advantages:
a) exploiting new sensors without requiring an overlapping
period of time between new sensors and old ones; b) provid-
ing an estimation of adaptation quality; and c) scaling to a
large number of sensors. Experiments on weather data and
Unmanned Undersea Vehicle (UUV) data demonstrate that
our approach can automatically adapt to sensor changes with
higher accuracy compared to baseline methods.

Introduction
An increasing number of applications require long-term au-
tonomy of software systems and their capability to operate in
dynamic environments. Maintaining the quality, durability
and performance of these software systems is very challeng-
ing and labor-intensive. Failure to effectively or promptly
adapt to hardware and resource changes can result in tech-
nically inferior and potentially vulnerable systems (Hughes
et al. 2016). If software systems could automatically adapt
to these changes, the time and effort required for mainte-
nance would be significantly reduced. As an important step
towards building long-lasting survivable software systems,
we study the problem of how to automatically adapt to sen-
sor changes in which a set of sensors are replaced by new
sensors. Solutions to this problem can have a broader impact
given that an increasing number of sensors are deployed in
real-world applications (Dereszynski and Dietterich 2011;
Gubbi et al. 2013).

Sensor changes often occur in real-world systems due to
replacement of failed sensors, sensor upgrade, energy op-
timization, etc. (Tong et al. 2011; Lai et al. 2012; Hughes

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2016). Throughout this paper, we refer to sensors that
are replaced by new sensors as replaced sensors. When sen-
sor change occurs, sensor values from new sensors may
not match those from replaced sensors. For example, mis-
calibration could exist between replaced sensors and new
sensors even when they measure the same types of signals.
Furthermore, new sensors may measure additional types of
signals that do not exist before the sensor change. To auto-
matically adapt to sensor changes, we would like to recon-
struct sensor values of replaced sensors using the remain-
ing sensors and new sensors. Such reconstruction is pos-
sible based on the observation that sensor values are of-
ten correlated in real-world systems (Elnahrawy and Nath
2004). Taking weather sensors as an example, tempera-
ture, dew point and humidity are highly correlated and
each sensor value can be efficiently reconstructed from the
other two (Alduchov and Eskridge 1996). Existing litera-
ture on sensor changes mainly focuses on change detection,
but rarely addresses how to adapt to these changes (Bas-
seville, Nikiforov, and others 1993; Gustafsson and Gustafs-
son 2000; Brodsky and Darkhovsky 2013; Aminikhanghahi
and Cook 2016). Typically, human experts are required to
examine and respond to detected changes.

One approach to learning such a reconstruction function
is to simply ignore new sensors, and reconstruct replaced
sensors using the remaining ones. Assuming that we have
access to sufficient historical sensor values of these sensors,
such a reconstruction function can be learned straightfor-
wardly via classical regression methods (Friedman, Hastie,
and Tibshirani 2001). However, new sensors may contain
complementary information over the remaining sensors,
which may help us better reconstruct replaced sensors. As
an extreme example, if new sensors are exactly the same as
replaced sensors, using their sensor values definitely aids re-
construction.

Learning a reconstruction function that exploits new sen-
sors poses unique challenges, since there is no overlap-
ping period of time between the replaced and new sen-
sors. Classical regression methods cannot be directly ap-
plied. To address this challenge, we propose an approach
called ASC (Adaptation to Sensor Changes) that learns a
reconstruction function to preserve sensor value distribu-
tions before and after the sensor change. We further im-
prove ASC in two aspects motivated by real-world appli-

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

68

cations. First, we develop a procedure to deal with a large
number of sensors by selecting a subset of important sen-
sors. This procedure can significantly reduce the overfitting
to noisy values as well as the overall computational cost. It
enables our approach to continuously exploit new sensors
in an open environment. Second, we propose a method to
dynamically estimate the adaptation quality, which enables
higher-layer software components to determine whether or
not to accept an adaptation. For empirical study, we evalu-
ate ASC on sensor data from weather and UUV domains. In
most of the evaluation cases, ASC outperforms other base-
line approaches, achieving an average improvement of 5.7%.

Approach
We study the general setting of sensor change in the con-
text of a compound sensor. Imagine we have a compound
sensor consisting of multiple individual sensors. For exam-
ple, a compound sensor can be a weather station containing
several weather sensors measuring temperature, dew point,
wind speed, etc. An instant of time at which some sensors
are replaced by new sensors is called a sensor change point.1
We consider two general scenarios:
• Individual sensor change, where only a subset of sensors

in the compound sensor is replaced;
• Compound sensor change, where the entire compound

sensor is replaced. This happens in practice when sensor
replacement is conducted in the compound level.
For individual sensor change, since there is no overlap-

ping period of time between replaced sensors and new sen-
sors, the remaining sensors are the key to link the two. In
the following, we call them as reference sensors. Intuitively,
if reference sensors are correlated with both replaced sen-
sors and new sensors, they can be helpful for reconstructing
replaced sensors from new sensors. For compound sensor
change, however, there are no reference sensors from the
compound sensor because all sensors are replaced. In this
scenario, adaptation to new sensors is very challenging or
even impossible. To enable reasonable adaptation, we as-
sume that we have access to some reference sensors out-
side the compound sensor. For example, in the context of
weather stations, we can use sensors in other stations as ref-
erence sensors. With the notion of reference sensors, the two
scenarios can be viewed in a unified way: reference sensors
always work properly, and replaced sensors are replaced by
new sensors at the change point. Fig. 1 visualizes this unified
view and the corresponding notations (explained below).

Notations. Suppose we are given K individual sensors,
among which K ′ sensors are reference sensors. We assume
that
• All sensors generate sensor values at fixed time intervals,

and sensor values are temporally aligned;
• Sensor values start at time 1. At time S + 1, K − K ′

sensors are replaced by P new sensors. We have sensor
values until time S + T ;
1This paper only addresses a single change point. Extension to

multiple change points is straightforward.

Time
1 2 3 S S+1 S+2 S+T

1
2

K’
K’+1

K

…

…

…… ……

…… ……

P new sensors

Sensor

Reference
sensors

Changed sensors

Change point

Figure 1: Sensor change setting and notations.

• There is only a single change point, and it is already given
(detecting the change point is not the focus of this paper).

Let x1,x2, · · · ,xS be sensor values before the sensor
change, where xs ∈ RK represents sensor values at time
s ∈ {1, 2, · · · , S}, and xs,k represents the corresponding
sensor value from sensor k ∈ {1, 2, · · · ,K}. Additionally,
let us assume that at time S + 1, sensors K ′ + 1, · · · ,K
are replaced by P new sensors. Let z1, z2, · · · , zT denote
sensor values after the sensor change, where zt ∈ RK′+P

represents sensor values at time S + t (t ∈ {1, 2, · · · , T}).
Note that we use s to index x and t to index z. Based on
this setting, {xs,k} and {zt,k} (k ∈ {1, 2, · · · ,K ′}) rep-
resent sensor values of reference sensors, and {zt,k} (k ∈
{K ′ + 1,K ′ + 2, · · · ,K ′ + P}) represent sensor values of
the P new sensors. Fig. 1 illustrates the above notations.

Assumptions and Intuition. Our approach reconstructs
sensor values of replaced sensors from time S + 1 to S + T
based on reference sensors and new sensors. The underlying
assumptions are:

• Sensor values from reference sensors are correlated with
those from replaced sensors;

• Sensor values from reference sensors are correlated with
those from new sensors.

Such assumptions typically hold in real-world systems be-
cause sensor values of different sensors are often corre-
lated (Elnahrawy and Nath 2004).

Our approach is based on the following intuition. New
sensors may contain complementary information over ref-
erence sensors, useful for reconstructing replaced sensors.
Fig. 2 illustrates this intuition, where the reference sensor,
replaced sensor, and the new sensor are temperature, hu-
midity and dew point, respectively. The left plot shows two
selected samples from historical data. We can see that for
the same temperature value, humidity can take different val-
ues. The middle plot shows that if we attempt to reconstruct
humidity from temperature alone, via the g function, then
the reconstructed humidity values become exactly the same,
since the temperature information alone is insufficient for

69

humidity

temperature

g(temperature) f(temperature, dew point)historical data

68

72

77

68 68

Figure 2: Illustration of the intuition behind our approach.

the reconstruction. The right plot shows that by incorporat-
ing dew point as a new signal, the reconstructed humidity
values are distributed similar to those in the left plot. This
is expected because dew point contains complementary in-
formation over temperature for reconstructing humidity. The
above intuition leads to the key idea of our approach: to learn
a reconstruction function that preserves the sensor value dis-
tributions before and after the sensor change.

Formulation. In the following, we refer to sensor values
before the sensor change as the source domain, and sensor
values after the sensor change as the target domain. Similar
notions are used in domain adaptation and transfer learn-
ing communities (Pan and Yang 2010). Specifically, we aim
to learn a reconstruction function fΘ(z) that maps sensor
values after the sensor change to values before the sensor
change, where Θ denotes the parameters of the function.
Note that the output of fΘ(z) is a matrix when there are
more than one replaced sensors. In our implementation, we
use the form

fΘ(z) = Θ
T
h(z) (1)

where h() is a nonlinear feature mapping, e.g., quadratic
features or nonlinear features derived from neural networks.

We are interested in fΘ(z) such that distributions are sim-
ilar across domains after the reconstruction. This motivates
us to seek fΘ(z) such that the two sets of samples {xs} and
{[zt,1:K′ ; fΘ(zt)]} (i.e., reconstructed samples in the target
domain)2 are “mixed” as much as possible. When this hap-
pens, each source-domain sample xs becomes close to its
k-nearest neighbors in the target domain, and vice versa.
Therefore we propose the following objective function to
minimize the cross-domain k-nearest neighbor distances

min
Θ

S∑
s=1

∑
t∈Nk

T (s)

D(xs, [zt,1:K′ ; fΘ(zt)])

+
T∑

t=1

∑
s∈Nk

S (t)

D([zt,1:K′ ; fΘ(zt)],xs) + λ‖Θ‖22 (2)

where D(·, ·) is the distance function defined in the space
x ∈ RK .N k

T (s) denotes the set of indices corresponding to

2We use the notation 1 : K′ to denote a set of indices from 1 to
K′.

xs’s k-nearest neighbors in the target domain, andN k
S (t) de-

notes the set of indices corresponding to [zt,1:K′ ; fΘ(zt)]’s
k-nearest neighbors in the source domain. Here, nearest
neighbors are determined based on the distance function D.
‖Θ‖22 is the regularization term on Θ with λ ≥ 0 as the
regularization parameter.

For simplicity, we set D to be the squared Euclidean dis-
tance3

D(xs, [zt,1:K′ ; fΘ(zt)]) = ‖xs,1:K′ − zt,1:K′‖22
+ ‖xs,K′+1:K − fΘ(zt)‖22 (3)

Letting v2st = ‖xs,1:K′ − zt,1:K′‖22, we can write (2) as

min
Θ

S∑
s=1

∑
t∈Nk

T (s)

(
v2st + ‖xs,K′+1:K − fΘ(zt)‖22

)
(4)

+
T∑

t=1

∑
s∈Nk

S (t)

(
v2st + ‖xs,K′+1:K − fΘ(zt)‖22

)
+ λ‖Θ‖22

In Eq. (4), N k
T (s) and N k

S (t) are dependent on Θ, mak-
ing Eq. (4) non-smooth and non-convex in Θ. Hence we de-
velop an optimization algorithm that alternates between the
following two steps until convergence to a local minimum
of Eq. (4):
1. Fix Θ, update N k

T (s) and N k
S (t) based on nearest neigh-

bor search across domains;
2. FixN k

T (s) andN k
S (t), optimize Θ. When fΘ(zt) is linear

in Θ, Θ can be solved analytically.
For tuning the regularization parameter λ, we use a spe-

cial leave-one-out cross-validation strategy. We synthesize
a set of sensor change scenarios by treating each sensor in
the source domain as the replaced sensor, and using a biased
version4 of that sensor as the new sensor. We then select the
optimal λ such that the average reconstruction error on these
synthesized scenarios is minimized.

Ability to Exploit Many Sensors
As an increasing number of sensors are deployed in real-
world systems, it is crucial for ASC to be able to exploit
many sensors. This also enables our approach to be deployed
in an open environment where new sensors continuously
emerge. Dealing with a large number of sensors is challeng-
ing in two aspects:
• Noisy sensors are likely to be involved and can degrade

adaptation performance. For example, if some reference
sensors produce highly noisy values, the nearest neighbor
distances can suffer from the noise. Also, noisy values in
reference or new sensors can cause the optimization algo-
rithm to get stuck in poor local minima;

• Large number of sensors leads to a large parameter space
of Θ, which significantly increases the computational
cost.
3In our implementation, each dimension is normalized into the

same scale.
4The biased version is created by offsetting each sensor value

by the same bias.

70

In addressing these issues, we develop a two-step procedure
to select a subset of useful sensors:

1. Selecting a subset of reference sensors: for each reference
sensor, compute the average correlation between its sen-
sor values and those from each replaced sensor, then se-
lect Nref reference sensors with largest average correla-
tion scores;

2. Selecting a subset of new sensors: for each new sensor,
compute the average correlation between its sensor val-
ues and those from each replaced sensor as well as each
selected reference sensor in Step 1, then select Nnew new
sensors with largest average correlation scores.

Here, Nref and Nnew are set by the user in specific applica-
tions. We denote this improved approach as ASCSEL.

Estimating Adaptation Quality
To build survivable software, estimating the quality of adap-
tation is also important since it enables higher-layer software
components to determine whether or not to accept a pro-
posed adaptation. Towards this end, we develop a method
to estimate an error interval for the gap between the recon-
structed sensor value and the ground truth.

We would like to obtain such an error interval for each
reconstructed sensor value and for each sample in the target
domain. Given a reconstructed sample in the target domain
[zt,1:K′ ; fΘ(zt)], we estimate its error interval for a given re-
constructed sensor value from similar samples in the source
domain:

1. Find its κ nearest neighbors in the source domain accord-
ing to distances defined in Eq. (3);

2. Compute the standard deviation σ on the given recon-
structed sensor value among the κ neighbors found in Step
1;

3. Set the estimated error interval to be [−ασ, ασ], where
α > 0 is a scaling factor. An ideal α makes the error
interval as tight as possible. α can be tuned on source-
domain samples by optimizing the “excess error” notion
defined below.
Excess Error of the Error Interval. To quantify the

tightness of the estimated error interval, we use the notion
of excess error. It is defined as the gap between the ground-
truth value and the closest endpoint of the error interval,
when the interval contains the ground-truth value. If the in-
terval does not contain the ground-truth value, we consider
the interval invalid. In practice, we can tolerate a small fail-
ure rate of the estimated error interval by setting a recall
parameter (e.g., 90%). We can then find the smallest α to
achieve the given recall and compute the corresponding ex-
cess error. Clearly, we favor a smaller excess error as it re-
sults in a tighter error interval.

Related Work
Most existing work on sensor changes focuses on detecting
changes (Basseville, Nikiforov, and others 1993; Gustafs-
son and Gustafsson 2000; Brodsky and Darkhovsky 2013;
Aminikhanghahi and Cook 2016; Pimentel et al. 2014;

Zhang, Meratnia, and Havinga 2010). These methods rarely
address the issue of adaptation, and often rely on human
experts to examine and respond to detected changes. Our
work, on the other hand, is motivated by the notion of sur-
vivable software and aims at automatic adaptation to sensor
changes. Although some of the existing detection methods
(Dereszynski and Dietterich 2012; Dietterich et al. 2012;
Dereszynski and Dietterich 2011) can be used to infer re-
constructed sensor values, they are not capable of exploiting
new sensors. (Shi and Knoblock 2017) also addresses sensor
adaptation but focuses on exploiting previously unseen sen-
sors to improve the underlying learning task. In contrast, our
work focuses on adaptation to sensor changes, and it is ca-
pable of exploiting a large number of sensors and estimating
the quality of adaptation.

Our approach can be viewed as a special case of hetero-
geneous domain adaptation (Pan and Yang 2010) if we treat
sensor values of replaced sensors as labels and sensor val-
ues of reference/new sensors as features. However, exist-
ing adaptation approaches are not directly applicable to our
problem setting.

Empirical Study
We evaluate ASC on sensor data from the weather and UUV
domains. We compare ASC to three baseline methods:

• Replace: non-adaptation method that substitutes each re-
placed sensor with a new sensor that has closest mean and
variance in sensor values.

• Refer: adaptation method that reconstructs sensor values
of replaced sensors using reference sensors, without ex-
ploiting any new sensor.

• Refer-Z: adaptation method that works in three steps:

1. Learn a regression model on the target domain to re-
construct new sensors from reference sensors;

2. Use the learned regression model to reconstruct new
sensors on the source domain;

3. Learn a reconstruction function on the source domain
to reconstruct replaced sensors from reference sensors
and reconstructed new sensors.

This method can work well if new sensors and reference
sensors are strongly correlated, which may not hold in
real-world applications.

Reconstruction error of each method is measured by
RMSE (Root Mean Square Error) between reconstructed
sensor values and the ground truth.

Results on Weather Data
The weather data are collected from Weather Underground5

which contains a large number of personal weather stations.
In our experiments, we use 30 weather stations from 10 ge-
ographical clusters. We then generate random triplets across
clusters. We generate each triplet in the following way: 1)
randomly select two clusters; 2) randomly select two sta-
tions from the first cluster (denoted as stations A1 and A2),

5https://www.wunderground.com/

71

and one station from the second cluster (denoted as station
B). We use A1 as the compound sensor, A2 as the new sen-
sors, and B as the reference sensors. We generate 100 ran-
dom triplets, and report averaged results.

Each station consists of six sensors including temperature
(◦F), humidity (%), dew point (◦F), wind speed (mph), wind
gust (mph), and pressure (Pa). Sensor values are collected
every 5 minutes and are temporally aligned. Sensor values
from A1 and A2 are more correlated than those between
A1(A2) and B. We use two years of data, with data in 2016
as the source domain and data in 2017 as the target domain.

Individual sensor changes. We treat each sensor in A1
as the replaced sensor, the remaining sensors in A1 plus
all sensors in B as reference sensors, and all sensors in
A2 as new sensors. Table 1 reports reconstruction errors
on each replaced sensor, with Imp. (%) showing how much
ASC improves over the best baseline method. We can see
that ASC achieves an average improvement of 6.4% over
baselines. Only on humidity, ASC performs worse than
Refer-Z but the performance degrade is negligible. This
shows the high robustness of ASC. In general, ASC shows
more significant improvement on sensors whose sensor val-
ues exhibit large variances (e.g., wind gust and pressure).
Replace always performs worse than Refer, revealing that
directly using new sensors can cause significant differences
in sensor values. Refer-Z improves over Refer on 4 cases by
leveraging new sensors. ASC further improves over Refer-
Z because it better exploits information from new sensors.

Table 1: Reconstruction errors (RMSE) on weather data for
individual sensor changes.

Sensor Replace Refer Refer-Z ASC Imp.(%)
temperature 3.94 0.61 0.59 0.57 4.1

humidity 5.73 0.72 0.71 0.72 -1.7
dew point 3.89 0.70 0.68 0.67 2.8

wind speed 8.24 5.20 5.21 5.11 1.7
wind gust 10.81 6.65 6.65 6.31 5.0
pressure 7.82 3.39 2.48 1.83 26.2

Compound sensor changes. We treat all sensors in A1
as the replaced sensors, all sensors in B as reference sen-
sors, and all sensors in A2 as new sensors. Table 2 reports
reconstruction errors on each replaced sensor separately.
ASC outperforms baselines in most cases, achieving an av-
erage improvement of 5.7%. On wind speed, ASC performs
slightly worse than Refer. Compared to Table 1, ASC pro-
duces larger reconstruction errors mainly because reference
sensors have lower correlations with replaced sensors.

Dealing with many sensors. For each triplet, we use A1
as the compound sensor, and simulate reference sensors and
new sensors from the remaining 29 stations. Specifically,
sensors from 15 randomly selected stations are used as ref-
erence sensors, and sensors from the other 14 stations are
used as new sensors. This makes the total number of sensors
exceed 200.6 Table 3 reports the results for individual sensor

6Some stations have additional types of sensors, e.g., precipita-
tion. Experiments on significantly larger number of sensors remain
as future work.

Table 2: Reconstruction errors (RMSE) on weather data for
compound sensor changes.

Sensor Replace Refer Refer-Z ASC Imp.(%)
temperature 3.94 0.73 0.71 0.68 4.2

humidity 5.73 0.87 0.88 0.87 0
dew point 3.89 0.75 0.74 0.72 2.6

wind speed 8.24 6.07 6.11 6.13 -1.8
wind gust 10.81 7.24 7.08 6.83 3.5
pressure 7.82 3.82 2.83 2.26 20.1

Table 3: Individual sensor changes on weather data with
many sensors.

replaced sensor Reconstruction Error Excess Error
ASC ASCSEL ASC ASCSEL

temperature (◦F) 0.47 0.38 0.34 0.22
humidity (%) 0.53 0.47 0.42 0.31

dew point (◦F) 0.47 0.44 0.37 0.25
wind speed (mph) 5.04 4.83 4.36 3.71
wind gust (mph) 6.28 5.61 4.75 3.96

pressure (Pa) 3.17 1.68 2.68 1.04

changes, where ASCSEL uses Nref = Nnew = 10. In terms
of reconstruction errors, ASCSEL improves over ASC in all
cases. Note that ASCSEL outperforms ASC in Table 1, which
reveals that a large pool of reference and new sensors ac-
tually help. In contrast, ASC performs worse than itself in
Table 1 due to overfitting. This demonstrates the efficacy of
our sensor selection procedure when the number of sensors
is large. In terms of excess errors, ASCSEL achieves smaller
values than ASC, consistent with the fact that ASCSEL learns
better reconstruction functions. The excess errors on wind
speed and wind gust are relatively large, because these sen-
sor values exhibit large variances and are difficult to recon-
struct. We observe similar trends in the scenario of com-
pound sensor changes.

Results on UUV Data
We gather UUV data by letting a UUV travel from a start-
ing point to an end point in a simulated environment. The
UUV contains propeller RPM sensor, waterspeed sensor and
a compound sensor called Doppler Velocity Log (DVL) sen-
sor. The DVL sensor consists of seven individual sensors
including surge, heave, sway, pitch, roll, depth, and heading.
Each sensor produces a sensor value every second. We simu-
late 20 trips7 and collect all sensor values. The concatenated
sensor values in 10 trips are used as the source domain, and
the remaining are used as the target domain. We examine
reconstruction errors on surge (m/s), heave (m/s) and sway
(m/s) whose sensor values are crucial for higher-layer soft-
ware. To simulate new sensors, we use a biased version for
the surge, heave and sway sensors. The biased version off-
sets the original sensor values by a sensor-specific bias. We
set the bias to 3σ, where σ is the standard deviation of the
original sensor values.

7The trajectory of the UUV varies each time due to different
starting/end points and water current.

72

Individual sensor changes. We treat each of the surge,
heave and sway sensors as the replaced sensor, and the re-
maining sensors as reference sensors. Table 4 compares re-
construction errors of different methods, where ASC im-
proves over the best baseline by an average of 8.8%. The
improvement on sway is less than that on surge and heave
because the correlations between sway and reference sensors
are smaller. Refer and Refer-Z always outperform Replace,
consistent with our observations on weather data.

Table 4: Reconstruction errors (RMSE) on UUV data for
individual sensor changes.

Sensor Replace Refer Refer-Z ASC Imp.(%)
surge 2.47 0.66 0.58 0.47 18.9
heave 0.13 0.020 0.020 0.019 6.5
sway 2.31 0.74 0.72 0.71 1.1

Compound sensor changes. We treat all sensors in the
DVL compound sensor as the replaced sensors, and the pro-
peller RPM and waterspeed sensor as reference sensors. Ta-
ble 5 reports the results. ASC performs better than Refer and
Refer-Z on surge and heave, but performs negligibly worse
on sway. Compared to Table 4, the improvement decreases
for each sensor because fewer reference sensors are used.

Table 5: Reconstruction errors (RMSE) on UUV data for
compound sensor changes.

Sensor Replace Refer Refer-Z ASC Imp.(%)
surge 2.47 0.71 0.67 0.62 6.0
heave 0.094 0.026 0.026 0.024 3.4
sway 2.31 0.78 0.75 0.75 -0.5

Conclusion
We addressed the novel problem of automatically adapting
to sensor changes in the course of building long-lived, sur-
vivable software. We presented a machine learning approach
capable of exploiting new sensors, scaling to many sensors
as well as estimating the adaptation quality. Supported by
our empirical study in two important practical domains, i.e.,
the weather and UUV domains, the proposed approach out-
performs baseline methods that do not effectively leverage
new sensors. As future work, we would like to incorporate
our approach into survivable software systems that rely on a
large number of different kinds of sensors.

Acknowledgements
This material is based upon work supported by the United
States Air Force and the Defense Advanced Research
Projects Agency (DARPA) under Contract No. FA8750-16-
C-0045. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the United
States Air Force and DARPA.

References
Alduchov, O. A., and Eskridge, R. E. 1996. Improved magnus form
approximation of saturation vapor pressure. Journal of Applied
Meteorology 35(4):601–609.
Aminikhanghahi, S., and Cook, D. J. 2016. A survey of methods
for time series change point detection. Knowledge and Information
Systems 1–29.
Basseville, M.; Nikiforov, I. V.; et al. 1993. Detection of abrupt
changes: theory and application, volume 104. Prentice Hall En-
glewood Cliffs.
Brodsky, E., and Darkhovsky, B. S. 2013. Nonparametric meth-
ods in change point problems, volume 243. Springer Science &
Business Media.
Dereszynski, E. W., and Dietterich, T. G. 2011. Spatiotemporal
models for data-anomaly detection in dynamic environmental mon-
itoring campaigns. ACM Transactions on Sensor Networks (TOSN)
8(1):3.
Dereszynski, E. W., and Dietterich, T. G. 2012. Probabilistic mod-
els for anomaly detection in remote sensor data streams. arXiv
preprint arXiv:1206.5250.
Dietterich, T. G.; Dereszynski, E. W.; Hutchinson, R. A.; and Shel-
don, D. R. 2012. Machine learning for computational sustainabil-
ity. In IGCC, 1.
Elnahrawy, E., and Nath, B. 2004. Context-aware sensors. In Eu-
ropean Workshop on Wireless Sensor Networks, 77–93. Springer.
Friedman, J.; Hastie, T.; and Tibshirani, R. 2001. The elements of
statistical learning, volume 1. Springer series in statistics Springer,
Berlin.
Gubbi, J.; Buyya, R.; Marusic, S.; and Palaniswami, M. 2013. In-
ternet of things (iot): A vision, architectural elements, and future
directions. Future generation computer systems 29(7):1645–1660.
Gustafsson, F., and Gustafsson, F. 2000. Adaptive filtering and
change detection, volume 1. Citeseer.
Hughes, J.; Sparks, C.; Stoughton, A.; Parikh, R.; Reuther, A.; and
Jagannathan, S. 2016. Building resource adaptive software sys-
tems (brass): Objectives and system evaluation. ACM SIGSOFT
Software Engineering Notes 41(1):1–2.
Lai, T. T.-T.; Chen, W.-J.; Li, K.-H.; Huang, P.; and Chu, H.-H.
2012. Triopusnet: Automating wireless sensor network deployment
and replacement in pipeline monitoring. In Proceedings of the 11th
international conference on Information Processing in Sensor Net-
works, 61–72. ACM.
Pan, S. J., and Yang, Q. 2010. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22(10):1345–
1359.
Pimentel, M. A.; Clifton, D. A.; Clifton, L.; and Tarassenko, L.
2014. A review of novelty detection. Signal Processing 99:215–
249.
Shi, Y., and Knoblock, C. 2017. Learning with previously unseen
features. IJCAI.
Tong, B.; Wang, G.; Zhang, W.; and Wang, C. 2011. Node reclama-
tion and replacement for long-lived sensor networks. IEEE Trans-
actions on Parallel and Distributed Systems 22(9):1550–1563.
Zhang, Y.; Meratnia, N.; and Havinga, P. 2010. Outlier detection
techniques for wireless sensor networks: A survey. IEEE Commu-
nications Surveys & Tutorials 12(2):159–170.

73

