
Learning Behavioral Memory Representations from Observation

Josiah Wong, Avelino J. Gonzalez
Department of Computer Science, Univ. of Central Florida — Orlando, FL, USA

{josiah.w.ucf@knights.ucf.edu, gonzalez@ucf.edu}

Abstract

Learning from Observation (LfO) is highly useful for mod-
eling behaviors through nonintrusive observation of some ac-
tor’s performance. However, an actor’s performance is often
influenced by unobservable internal influences, such as emo-
tions, agendas, and memory of past events. Therefore, new
techniques are needed to infer the structure of these influences
and their effect on an actor’s decisions. In this paper, we pro-
pose a novel approach called Memory Composition Learning
(MCL) for capturing one internal influence: memory of past
events. We hypothesize that memory influences on a behavior
can be modeled through parameterized memory features that
can be learned from observation of traces of an actor’s behav-
ior; these memory features can then be presented as additional
input to a performance modeling application. We demonstrate
the efficacy of our approach in a simulated vacuum cleaner
domain and show that hidden memory influences can be de-
tected, modeled, and then used to improve machine learning
performance.

Learning from Observation (LfO) is how we learn from oth-
ers on a daily basis. We often learn how to perform a task
or exhibit a behavior simply by observing someone else do-
ing it. The same is true for computer systems that learn how
to perform complex tasks, such as steering a car (Pomerleau
1989) or playing air hockey (Bentivegna and Atkeson 2001).
LfO is an advantageous machine learning paradigm because
LfO transfers the burden of converting raw observations into
machine readable procedural knowledge from the developer
to the learning system itself (Floyd 2013); this allows LfO
to learn the nuances of human behavior that are implicit or
difficult to articulate (Sidani and Gonzalez 2000).

However, the biggest limitation of LfO is that it is cur-
rently impossible for an external observer to directly see
what a person is thinking as they act. A person’s behavior
may be affected by various internal influences, such as emo-
tions, goals, and memory of past events. The importance of
these influences necessitates the development of techniques
in LfO that can approximate such influences. Fortunately,
certain internal influences can be inferred by analyzing pat-
terns in observed behavior that coincide with likely stimu-
lants of internal processing.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we specifically address the problem of mod-
eling how an observed entity appears to use memory of past
events in their decisions. It is difficult to determine specifi-
cally what an actor chooses to remember from the past, but
it is feasible in some cases to capture aspects of memory
that are highly correlated with certain decisions by the ac-
tor. By making this information from memory available to a
machine learning algorithm, it becomes possible to leverage
influences from memory in modeling observed actions.

In this paper, we introduce a new technique, Memory
Composition Learning (MCL), a Case-Based Reasoning
(CBR) approach that learns a set of memory features that
capture the aspects of memory that are most influential in an
observed behavior. We demonstrate in a simulated vacuum
cleaner domain that these learned memory features improve
machine learning performance in tasks that involve memory
and that the memory features reveal the influences of mem-
ory that affect the observed behaviors in this domain.

This paper is organized as follows. First, we provide back-
ground on LfO and how memory plays a crucial role in the
learning task. Next, we describe our MCL technique and
how it learns the appropriate memory features that describe
memory influences on observed behavior. Then, we present
the results of our approach in a simulated vacuum cleaner
domain, followed by related work and conclusions.

Learning from Observation
Learning from Observation (LfO) is defined by (Fernlund et
al. 2006) as:

The agent shall adopt the behavior of the observed
entity solely from interpretation of data collected by
means of observation.

Here, the observed behavior need not be optimal for achiev-
ing the desired task, and so the observed actor need not nec-
essarily be an “expert”. This is advantageous for modeling
human-like behaviors that are not by-the-book and which re-
flect inherent human sub-optimality (Fernlund et al. 2006).

LfO is a subfield of machine learning that learns correct
behavior from traces or records of behavior to emulate. It is
most similar to standard supervised learning, except:

1. Each decision in the LfO task cannot be handled in-
dependently of all prior decisions because decisions
are temporally-based. Decisions cannot be assumed

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

86

to be identically and independently distributed (i.i.d.)
(Ontañón, Montaña, and Gonzalez 2011).

2. The objective of LfO is to capture the probability distribu-
tion of a stochastic process, not to minimize the prediction
error (Ontañón, Montaña, and Gonzalez 2014).

There are three levels of behaviors that can be learned by
LfO, described in (Ontañón, Montaña, and Gonzalez 2014):

1. Strict Imitation: This behavior is strictly a function of
time. A learning agent is expected to learn to perform the
observed behavior exactly.

2. Reactive Behavior: This behavior depends solely on the
current environmental perception at a given point in time.
The learning agent is expected to generalize its learned
behavior to novel situations not observed during training.

3. Memory-based Behavior: This behavior depends on the
current perception and on memory of all past events. De-
cisions cannot be made independent of prior decisions.

Standard supervised learning algorithms are unable to learn
the general class of Level 3 memory-based behaviors
(Ontañón, Montaña, and Gonzalez 2014) because it is nec-
essary to map entire runs up to a given point to the appro-
priate action instead of just mapping the current perception
to the right action. In other words, memory-based behaviors
do not conform to the Markov assumption, which states that
all information that is needed for a decision exists within the
current state. However, it is possible to an extent to capture
the influences of memory in an auxiliary feature set that can
be added into the current state, largely restoring the Markov
assumption for machine learning algorithms that depend on
it. We discuss our technique for doing this next.

Approach
Memory Composition Learning (MCL) is our novel ap-
proach for modeling the memory influences that affect an
observed actor’s decisions. It does this by learning memory
features (MFs) that capture salient aspects of memory that
are highly correlated with an actor’s decisions. First, we de-
scribe the MFs that are learned by MCL. Next, we describe
the overall MCL algorithm. Then, we describe in more detail
each stage in our MCL approach.

Memory Features
Perception aliasing is the phenomenon where a single per-
ception can correspond to two different situations; because
of this, an entity can appear to have many different responses
to the same perception (Faltersack et al. 2011). To compen-
sate for the insufficiency of a single perception to account for
differences in behavior, it becomes necessary to delve back
into memory of the past to find the true causes for an actor’s
decisions. Such causes may be a specific value of a feature
at a fixed time before the present moment or they may be a
function of how much time has passed since the last obser-
vation of a given value of a feature. We can capture these
aspects of memory with memory features (MFs).

MFs are parameterized features that store some past value
of a feature (even an action) or a temporal relation between

a past observed value and the present. There are two types
of MFs that can be learned by MCL:

• Value-back MF: At a given time step t, store the value α of
a feature f at time t−k for some constant k. We represent
this MF as f(k)V and its value at time t as f(k)Vt = α.

• Time-back MF: At a given time step t, store the number
of time steps β before t when a value v for a feature f
was last observed. We represent this MF as f(v)T and its
value at time t as f(v)Tt = β, where β > 0. (β 6= 0 so that
the memory of the past and its effects are distinct from the
perception of the present and its effects.)

The combination of instances of these MF types comprises
the set of memory influences that affect an observed behav-
ior. To illustrate how these MFs work, suppose we have a
trace of some observed behavior over five time steps, which
consists of two binary features, A and B (see Table 1).

Table 1: Example Trace
t 0 1 2 3 4
A + - - + +
B - + - + -

Just as an example, suppose we add two MFs to our trace
(see Table 2):

• A(2)V : a value-back MF that stores the value of feature
A at time t− 2 for t ≥ 2.

• B(+)T : a time-back MF that stores the number of time
steps before time t (for t ≥ 1) since the last time the value
of feature B was ‘+’.

Table 2: Example Trace with Memory Features
t 0 1 2 3 4
A + - - + +

A(2)V + - -
B - + - + -

B(+)T 1 2 1

In Table 2, we see that the value-back MF A(2)V at time
t = 2 stores the value of A at time (t− 2) = 0, which is ’+’.
This MF stores no value at time t = 0 or t = 1 because at
those times, (t − 2) < 0. At times t = 3 and t = 4, A(2)V
stores the value of A at times (t − 2) = 1 and (t − 2) = 2,
respectively.

The first time B = ‘+’ is at time t = 1. Therefore, the
time-back MF B(+)T stores nothing at times t = 0 and
t = 1 because there is no time before time t = 1 when B =
‘+’. At times t = 2 and t = 3, the number of time steps
before t since the last time B = ‘+’ (time t = 1) are 1 and
2, respectively. At time t = 4, B(+)T = 1 because B = ‘+’
at time t = 3, which is one time step before time t = 4.

We now proceed to discuss how MCL automatically
learns the most appropriate MFs for modeling memory in-
fluences on an observed behavior.

87

Memory Composition Learning
MCL is a trace analysis technique that learns which MFs
capture the most salient influences of memory in an ob-
served behavior. The learned MFs are then added to the orig-
inal traces to produce memory-enhanced traces. The MCL
task can be described as:

Input: A set of traces of an observed behavior.
Output: A set of memory-enhanced traces that incor-
porate a set of learned MFs that describe the memory
influences on the observed behavior.

The memory-enhanced traces contain the time-stamped fea-
tures found in the original traces plus the set of learned MFs
reflecting memory influences. The MFs can be treated in the
same way as the original features by a machine learning al-
gorithm that uses the memory-enhanced traces.

MCL is a case-based reasoning (CBR) approach to learn-
ing MFs from traces. Algorithm 1 reflects the major opera-
tions in MCL. These are:

1. Create a set of cases from the given set of traces. Each
case consists of a subset of a trace up to a given time step
(the problem component) and the action the observed ac-
tor took at that time in the trace (the solution component).

2. Perform MF Extraction for each case in the case base in
the procedure extract to get a list of MFs that make a
given case’s run conform to the Markov assumption.

3. Perform MF Refinement in the procedure refine to re-
duce the set of extracted MFs into a minimal refined sub-
set of MFs that appear often in the case base and traces.

4. Perform Trace Enhancement for each trace in the proce-
dure enhance by adding the refined MFs to the trace,
which creates a memory-enhanced trace.

The set of memory-enhanced traces are the final output of
MCL. We now discuss the MF Extraction, MF Refinement,
and Trace Enhancement operations in greater detail.

Algorithm 1 Memory Composition Learning

1: procedure MEM-COMP-LEARN(traces)
2: casebase← create-casebase(traces)
3: mf-lists← (empty set)
4: for each case in casebase do
5: tmp-mfs← extract(case, casebase)
6: mf-lists.add(tmp-mfs)
7: refined-mfs← refine(traces, casebase, mf-lists)
8: mem-traces← (empty set)
9: for each trace in traces do

10: tmp-trace← enhance(trace, refined-mfs)
11: mem-traces.add(tmp-trace)
12: return mem-traces

Memory Feature Extraction
MF Extraction is the process of learning which MFs would
capture the necessary memory influences needed to predict
the solution component of a given case. This means that the

MFs must be useful in distinguishing between cases with a
similar solution and those with a different solution.

MF Extraction relies on Temporal Backtracking (TB)
(Floyd 2013), 1 which is a case-based retrieval algorithm
that compares entire runs, element-by-element, in reverse
chronological order. As an example, suppose we have the
case base in Table 3 encoding traces with a single binary
feature F . TB will determine the appropriate next action for
the test case by comparing its elements to corresponding el-
ements of the cases at time step t, then t−1, then t−2, etc.,
where the value of t for a given case is the last time step for
that case. Cases 1-5 in the case base prescribe action α or β,
as shown in the table. In our example, Cases 1, 2, and 3 are
discarded as dissimilar to the test case in TB iterations 1, 2,
and 3, respectively. At Iteration 3, the solution components
of the remaining cases (Cases 4 and 5) agree, so there is no
need to compare elements for earlier time steps; TB will re-
turn the solution agreed upon by the remaining cases, action
α, after three iterations.

Table 3: Temporal Backtracking Example

Iter Time
Cases

SolnsTest 1 2 3 4 5
? α β β α α

1 t - + - - - - α, β
2 t− 1 - + - - - α, β
3 t− 2 - + - - α

.

Our research goes one step further and tries to explicitly cap-
ture the memory influence that caused TB to terminate after
three iterations. In the example, TB terminated at time t−2,
at which point the value of the test case’s singular feature F
is ‘-’. Thus, we can create the following MFs to capture this
information from memory:

• F (−)T : a time-back MF to track the number of time steps
since the last time F = ‘-’.

• F (2)V : a value-back MF to track the value of F at time
t− 2 for t ≥ 2.

With this information, TB would need fewer iterations to
determine the appropriate solution. With additional MFs, TB
would only need one iteration.

Algorithm 2 shows the major operations of MF Extraction
for a given case C. These are:

1. Repeat the following until the number of TB iterations
required to terminate for C is just one:

(a) Get the number of iterations k that TB uses for C.
(b) Create one value-back MF and one time-back MF from

information about C at time t− k.
(c) Create two copies of C and the case base. Incorporate

one MF into each copy and run TB for each copy.
(d) For the MF (value-back or time-back) whose TB run

had the fewest iterations, do the following:

1https:/github.com/sachag678/LFO Framework

88

• Add that MF to the list of extracted MFs.
• Permanently add this MF to the test case C and to

each case in the case base.
2. Return the list of extracted MFs.

Algorithm 2 Memory Feature Extraction
1: procedure EXTRACT(case, casebase)
2: T ← case.lastTimeStep
3: extractedMFs← (empty set)
4: while true do
5: numIter← TB(case, casebase)
6: if numIter == 1 then
7: break
8: valBackMF← ValBack(case, T− numIter)
9: timBackMF← TimeBack(case, T− numIter)

10: valCase, valCasebase← addMF(valBackMF)
11: timCase, timCasebase← addMF(timBackMF)
12: valNumIter← TB(valCase, valCasebase)
13: timeNumIter← TB(timCase, timCasebase)
14: if valNumIter ≤ timeNumIter then
15: extractedMFs.add(valBackMF)
16: case, casebase← addMF(valBackMF)
17: if timeNumIter ≤ valNumIter then
18: extractedMFs.add(timBackMF)
19: case, casebase← addMF(timBackMF)
20: return extractedMFs

In our example, Step 1a is illustrated with Table 3 and Step
1b is illustrated with the creation of MFs F (−)T and F (2)V .
Step 1c is illustrated with Table 4, which shows the incorpo-
ration of MF F (2)V (assuming F is ‘-’ for any time steps not
shown). The feature values at each time step are of the form
(F (2)V , F). Here, we see that TB now terminates after just
two iterations. With the addition of more MFs, TB will use
fewer and fewer iterations until it only requires one iteration
because the MFs have captured all memory influences.

Table 4: MF Extraction Example

Time
Cases

SolnsTest 1 2 3 4 5
? α β β α α

t -, - -, + -, - +, - -, - -, - α, β
t− 1 -, - -, + -, - -, - α
.

The final output is a list of MFs for a given test case C that
make C’s sub-run conform to the Markov assumption. The
extracted MFs encapsulate all memory influences from prior
time steps for a given case and they allow TB to terminate
after just one iteration. This process is performed for each
case in the case base. We now describe the next task: reduc-
ing all extracted MFs to a refined subset.

MF Refinement and Trace Enhancement
After a set of MFs is extracted for each case in the MF Ex-
traction stage, this multitude of MFs (many of which are

repeated) must be reduced to a concise set of MFs that ap-
pear the most frequently and are therefore the most useful
for capturing the major memory influences of the observed
behavior. To do this, we compute the following values for
each unique MF:

• pc: the proportion of cases for which the MF is extracted

• pt: the proportion of traces for which an MF appears at
least once for some case derived from the trace

The proportions pc and pt are compared to experimen-
tally determined domain-specific thresholds, threshc and
thresht, respectively. Each MF for which the conditions
pc > threshc and pt > thresht hold will be retained in
the final refined MF set.

The purpose of these case and trace coverage thresholds
is to eliminate artifacts (extracted MFs) that appear as a re-
sult of a particular scenario or sequence of events instead of
as a result of true memory influence on the observed behav-
ior. For example, in a car driving domain, if a driver lowers
her speed to match the value of the speed limit sign she just
passed, then we wish to capture memory of the speed limit
sign’s value (a true memory influence on her behavior) and
not memory of the presence of a red truck that just happened
to pass her in approaching traffic (a coincidental artifact).

Blip artifacts pass neither threshold. These MFs are aber-
rations in the MF Extraction stage that bear no relation to
the memory influences on an observed behavior. MFs that
pass the case coverage threshold, but not the trace cover-
age threshold, are trace artifacts; such MFs are indicative of
memory of specific aspects of a scenario faced in a particu-
lar trace instead of memory that affects the behavior overall.
MFs that pass the trace coverage threshold, but not the case
coverage threshold, are rare memory influences that affect
the observed behavior so infrequently that they are negligi-
ble. Finally, MFs that pass both thresholds are the true mem-
ory influences that affect the observed behavior frequently in
multiple scenarios — these are the MFs we want to retain.

Once the final set of MFs is captured in the MF Refine-
ment stage, these MFs are added to the original traces to
create memory-enhanced traces in the Trace Enhancement
stage. The value of each MF is computed for every time
step in each of the original traces and incorporated into the
new memory-enhanced traces. Then, a machine learning al-
gorithm that uses these memory-enhanced traces will have
access to the salient aspects of memory that affect the ob-
served behavior. The MFs can be treated the same way as
the regular features. The intent is for the learned MFs to
make the trace conform to the Markov assumption so that
the information at each time step is sufficient for predicting
the decision that is made by the observed actor at that time.
We now discuss the assessment of our approach.

Assessment
We assessed the efficacy of our approach in modeling
how an observed entity uses memory to improve machine
learning performance by using the same simulated vacuum
cleaner domain used in (Ontañón, Montaña, and Gonzalez
2014). In this domain, a vacuum cleaner agent moves up,

89

right, left, and down in a wall-enclosed 2D grid world, clean-
ing dirt patches and bumping into walls. The vacuum cleaner
agent perceives the environment through eight binary fea-
tures, two per direction that indicate the closest object in
that direction (dirt or wall) and the distance to it (close or
far). There are several agent behaviors defined in (Ontañón,
Montaña, and Gonzalez 2014) for this domain:

• Sequential (SEQ) — Level 1: This agent repeatedly exe-
cutes the same 20-move sequence.

• Random (RD) — Level 2 Non-deterministic: This agent
performs a random action at each time step.

• Wall Follower (WF) — Level 2 Deterministic: This
agent follows the left wall, but goes right if there is none.

• Straight Line (SL) — Level 3 Non-deterministic: This
agent goes straight until it hits a wall, then it begins mov-
ing in a new random direction. The agent must remember
its direction from the previous time step.

• Zig Zag (ZZ) — Level 3 Deterministic: This agent goes
right until it hits a wall, then moves down one and goes
left. At the bottom wall, it repeats its horizontal behav-
ior going up. It must remember its short-term horizontal
direction and long-term vertical direction.

• Smart Agents: The RD, WF, and SL agents have “smart”
variants (named SRD, SWF, and SSL, respectively) that
behave the same as their non-smart counterparts except
that they prefer moving toward any sighted dirt.

We simulated each vacuum cleaner agent in seven maps
to generate traces of 1000 time steps. Then, we ran MCL
(threshc = 0.05, thresht = 0.80) on these traces to gen-
erate a set of memory-enhanced traces for each agent. (We
set threshc relatively low to capture memory influences that
only manifest for a single time step, such as those influenc-
ing the ZZ agent’s vertical movement.) We provided both
the original traces and the memory-enhanced traces to three
machine learning algorithms in the Weka framework (Hall
et al. 2009): J48 decision tree, Bayes Network, and Mul-
tilayer Perceptron. We then recorded the F1-score using 10-
fold cross validation. The average F1-score over all maps for
each agent/classifier combination is shown in Table 5. For a
given agent and learning algorithm, if the average F1-score
for the MCL traces exceeded that for the original traces by
at least 0.10, we bolded the MCL F1-score.

Table 5: Learning Performance Results - F1-score

Agent Bayes Net J48 Tree MLP
Orig MCL Orig MCL Orig MCL

SEQ 0.71 0.82 0.58 1.00 0.59 0.99
RD 0.35 0.35 0.17 0.20 0.18 0.20

SRD 0.35 0.32 0.30 0.33 0.33 0.33
SSL 0.53 0.89 0.52 0.94 0.52 0.94
SWF 0.99 0.99 0.99 0.99 1.00 1.00
SL 0.50 0.89 0.49 0.94 0.50 0.94
WF 1.00 1.00 1.00 1.00 1.00 1.00
ZZ 0.55 0.99 0.52 1.00 0.52 0.98

The trends observed for all machine learning algorithms
are similar. For the Level 1 SEQ behavior, the original
traces’ F1-score was superseded by that of the memory-
enhanced traces generated with MCL, showing that the
learned MFs improved machine learning performance for
SEQ. Performance improvements are also seen for the Level
3 SL, SSL, and ZZ behaviors when the memory-enhanced
traces are used. For the Level 2 RD, SRD, WF, and SWF be-
haviors, there was no performance increase (because these
behaviors don’t use memory at all), however, there was no
performance degradation. These results show the positive
impact that MCL’s learned MFs had on learning.

The learned MFs also shed insight into which memory
influences MCL was able to detect for each agent behavior.
The perception features are represented asObjX orDistX ,
which indicate the closest object in direction X and the dis-
tance to it; X is U (Up), D (Down), L (Left), or R (Right).
Possible values for ObjX are ’dirt’ or ’wall’, possible val-
ues for DistX are ’close’ and ’far’, and possible values for
Move (the agent’s choice of movement) are U, D, L, R. The
MFs learned for each agent behavior are presented below.
The MFs we deemed “necessary” are underlined; the rest
are considered “extraneous” (though possibly still helpful):
• SEQ: DistU(Far)T , Move(D)T , DistU(1)V ,
DistU(2)V , DistU(4)V , Move(3)V , Move(5)V

• RD / SRD: too many (over 25 each), all extraneous
• WF / SWF: none
• SL: Move(U)T , Move(R)T , Move(L)T , Move(D)T ,
Move(1)V

• SSL: DistU(far)T , DistD(2)V , Move(U)T ,
Move(R)T , Move(L)T , Move(D)T , Move(1)V

• ZZ: Move(U)T , Move(R)T , Move(L)T , Move(D)T ,
Move(1)V , Move(8)V

For the Level 1 SEQ behavior, the learned MFs track the
Action taken at time t− 3 and t− 5 as well as the time since
the last “Down” action. These indicate an attempt by MCL
to codify where in the 20-move sequence an agent is at a
given time. The other learned MFs likely should have been
categorized as trace artifacts, but were retained anyway.

For the Level 2 deterministic WF/SWF behaviors, no MFs
were learned, which is good because these behaviors don’t
require memory. For the Level 2 non-deterministic RD/SRD
behaviors, too many (unhelpful) MFs were learned because
MCL does not yet have the capability for determining that a
behavior is random and thus cannot benefit from memory.

For the Level 3 SL/SSL behaviors, time-back MFs were
learned for each possible value of Move to determine
the most recent action taken, but only the value-back MF
Move(1)V is needed for this. Therefore, future work should
better compare the utility of time-back and value-back MFs
for a given case. Finally, the MFs learned for the ZZ behav-
ior appropriately captured memory of the agent’s short-term
horizontal and long-term vertical directions. Thus, the mem-
ory influences of each behavior were learned automatically
by MCL with minimal knowledge of the domain and future
work can further minimize the final refined MF set.

90

Related Work
There are some works in the literature that specifically ad-
dress Level 3 memory-based behaviors by using one of
two approaches. The first approach, probabilistic reason-
ing, seeks to model a behavioral probability distribution
that captures stochastic memory-based behaviors. Dynamic
Bayesian Networks (DBNs) were used to prove that stan-
dard supervised learning algorithms and metrics were insuf-
ficient for properly modeling and assessing stochastic Level
3 memory-based behaviors (Ontañón, Montaña, and Gonza-
lez 2014). However, new metrics and algorithms based on
DBNs were shown to fulfill this task. Probabilistic Finite
Automata (PFAs) were used to see how different memory
constraints affected learning performance (Tı̂rnǎucǎ et al.
2016); PFAs were generally the best approach for behav-
ior recognition and behavior cloning with mild difficulty in
differentiating between deterministic/stochastic variants of a
behavior. The limitation of these approaches is that the struc-
ture for memory is too simplistically predefined; memory
influence is either confined to a limited subset of prior time
steps or it is constrained to a predefined discrete value set.

The second approach to learning memory-based behav-
iors uses case-based reasoning (CBR). CBR is considered a
“lazy” machine learning algorithm that waits until run-time
to generalize a solution to a novel problem. Temporal Back-
tracking (Floyd 2013) was used to represent entire runs in a
case base and compare them to an agent’s current run dur-
ing deployment to select the next action. Various inductive
biases were compared to that of Temporal Backtracking as
part of a more general CBR approach to memory-based be-
haviors in (Gunaratne, Esfandiari, and Fawaz 2018) — no
single inductive bias proved superior to the others. The lim-
itation of these approaches is that memory influence must
be inferred at each decision because no memory structure is
maintained over time. For each new case in the case base,
the computational cost increases quadratically.

Our approach overcomes the limitations of the prior ap-
proaches because 1) it does not predefine the memory struc-
ture like in the probabilistic reasoning approaches and 2) the
MFs that MCL learns remove the need for machine learning
to compare arbitrarily long history segments like in the CBR
approaches. A set of MFs specifically tailored to an observed
individual is learned automatically with no predefined mem-
ory structure. These MFs then help restore the i.i.d. assump-
tion used by standard supervised learning algorithms.

Conclusions
Learning from Observation is an advantageous machine
learning paradigm for modeling observed behaviors and
capturing implicit behaviors that are hard to articulate but
easier to demonstrate. However, the major challenge of LfO
is modeling crucial unobservable internal processes that in-
fluence an entity’s behavior. In this paper, we introduced
a novel approach, Memory Composition Learning (MCL),
that learns memory features (MFs) that capture salient as-
pects of memory of past events in an observed behavior that
are highly correlated with an actor’s decisions. These MFs
are used to produce memory-enhanced traces that consol-

idate all pertinent information from memory into the cur-
rent state and enable learning algorithms that rely on the
Markov assumption to learn memory-based behaviors. We
showed the efficacy of our approach in a simulated vacuum
cleaner domain and found that MCL determined which as-
pects of memory were useful for modeling and that the re-
sultant memory-enhanced traces improved machine learning
performance of memory-influenced behaviors.

Acknowledgments: This material is based on work partially
supported by the National Science Foundation under Grant
No. IIS-1521972.

References
Bentivegna, D. C., and Atkeson, C. G. 2001. Learning from
Observation Using Primitives. In Proceedings of the Inter-
national Conference on Robotics and Automation (ICRA),
1988–1993. IEEE.
Faltersack, Z.; Burns, B.; Nuxoll, A.; and Crenshaw, T. L.
2011. Ziggurat: Steps Toward a General Episodic Memory.
In Proceedings of the AAAI Fall Symposium: Advances in
Cognitive Systems, 106–111. AAAI Press.
Fernlund, H. K.; Gonzalez, A. J.; Georgiopoulos, M.; and
DeMara, R. F. 2006. Learning Tactical Human Behavior
through Observation of Human Performance. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cyber-
netics) 36(1):128–140.
Floyd, M. 2013. A General-Purpose Framework for Learn-
ing by Observation. Ph.D. Dissertation, Dept. of Computer
Science, Carleton University.
Gunaratne, A. S. E.; Esfandiari, B.; and Fawaz, A. 2018. A
Case-Based Reasoning Approach to Learning State-Based
Behavior. In Proceedings of the FLAIRS-31 Conference,
377–382. AAAI Press.
Hall, M.; Franke, E.; Holmes, G.; Pfahringer, B.; Reute-
mann, P.; and Witten, I. H. 2009. The Weka Data Mining
Software: An Update. In Proceedings of SIGKDD Explo-
rations, 10–18. ACM.
Ontañón, S.; Montaña, J.; and Gonzalez, A. 2011. Towards
a Unified Framework for Learning from Observation. In IJ-
CAI Workshop on Agents Learning Interactively from Hu-
man Teachers (ALIHT).
Ontañón, S.; Montaña, J. L.; and Gonzalez, A. J. 2014. A
Dynamic-Bayesian Network Framework for Modeling and
Evaluating Learning from Observation. Expert Systems with
Applications 41(11):5212–5226.
Pomerleau, D. A. 1989. Alvinn: An Autonomous Land Ve-
hicle in a Neural Network. In Proceedings of Advances in
Neural Information Processing Systems, 305–313. NIPS.
Sidani, T. A., and Gonzalez, A. J. 2000. A Framework
for Learning Implicit Expert Knowledge through Observa-
tion. Transactions of the Society for Computer Simulation
17(2):54–72.
Tı̂rnǎucǎ, C.; Montaña, J. L.; Ontañón, S.; Gonzalez, A. J.;
and Pardo, L. M. 2016. Behavioral Modeling Based on
Probabilistic Finite Automata: An Empirical Study. Sensors
16(7):958.

91

