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Abstract

In this paper the generations of artificial neural networks
(ANN) are surveyed. The assumptions present in Gen 1 and
2 ANNs are enumerated. In the process of reformulating the
Gen 2 ANN an extension was observed that could increase the
biological plausibility of the model. This new model makes
use of the neurological interneuron structures that provide in-
hibition and input gain control in the cortical regions of the
brain. The resultant interneuron neural network (INN) is ap-
plied to the MNIST data set. The first attempt at applying the
INN achieves a higher accuracy than an equivalent ANN. The
application of the model serves as the initial validation for the
derivation of the model and associated backpropagation.

Background
First, a background understanding of biological neurons is
necessary. In Figure1 a simple neuron is shown. The major
features which will be referred to are the dendrites, cell body,
and synaptic terminals.

The dendrites provide the input field for the neuron. Typ-
ically, this is the output of other neurons. Synaptic termi-
nals projecting from other neurons connect to the dendrites
of the target neuron. Just as the synaptic terminals of the
target neuron terminate on other neurons. These terminals
release neurotransmitters at the dendrite and provide excita-
tion to the neuron. The neurological discussion here is based
on (Purves et al. 2004).

With the arrival of each action potential at a synaptic ter-
minal, neurotransmitters are released and carried into the
neuron by way of ion channels and pumps. The ions change
the voltage present across the membrane of the cell body.
If the membrane voltage increases past the action poten-
tial threshold, an action potential will occur and propagate
along the axon to the synaptic terminals. A membrane volt-
age that has been elevated is referred to as depolarized. In
homeostasis a neuron attempts to enforce polarization, re-
maining ready to receive input leading to an action poten-
tial. To transform these terms into the common computer
science vernacular, perform the following substitutions; den-
drites are the input layer, action potentials are neuron activa-
tions, and synapse terminals are outgoing edge connections
to other neurons.
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Figure 1: Neuron Diagram

From this simple functional description it should be ap-
parent that the firing rate of the target neuron is dependent
upon the rate of depolarization present at the associated den-
drites. This concept is solidified in Eq 1. Where, rpol is
the internal rate of polarization for the target neuron. Then
rdepol is the rate at which a specific synaptic connection is
firing. The parameter α is the amount of neurotransmitter
released with each pulse at the synaptic terminal. The result
raction is the rate of action potential propagated along the
axon. Summation is required to account for connection of
more than one synapse to the target neuron. Eq 1 does not
represent a full characterization of a neuron but is intended
to provide intuitive understanding of biological neural activ-
ity.

raction = −rpol +
∑

α ∗ rdepol, α ≥ 0 (1)

An important structure found in the biological neural net-
work is the inhibitory interneuron network. It uses gamma
aminobutyric acid or GABA as a neurotransmitter, resulting
in a polarizing rather than depolarizing effect on the den-
drite. These interneurons are in contrast to traditional neu-
rons referred to as principal cells. Interneurons are seen to
perform many important tasks but one is of particular im-
portance to this study. According to (Freund and Kali 2008)
interneurons allow for selective gating of inputs to different
regions of the dendrite. This means that interneurons are be-
lieved to facilitate dynamic changes in the relative contribu-
tion of inputs. This is stated in Eq 2. This equation does not
represent a full picture of interneuron behaviour but rather
provides the relevant understanding.

raction = −rpol+
∑

α∗βInter ∗rdepol, 0 ≤ β ≤ 1 (2)
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Gen 1, 2, and 3 ANNs
Many models have been invented throughout the study of
neuroscience. These range from the simplistic perceptron,
containing only a step activation function, to the Hodgkin-
Huxley and LIF models that are commonly used in spiking
network simulations. These network models have come to
be classified into three groups, generation 1, 2, and 3. The
descriptions provided are for the elementary units of each
ANN Generation. A network from any of the following gen-
erations can be constructed by connecting the output of one
set or layer of artificial neurons to the input of another set.

Gen 1 ANNs Gen 1 ANNs are considered those limited to
classification. They are incapable of performing regression
because the output assumes only the values one or zero. The
perceptron is such a model. This model characterizes neu-
rons as switches as shown in Eq 3. The weight wj represents
the relative amount of neurotransmitters released or, α in Eq
1, for the jth synapse connection on the neuron. While, Ij
is the firing rate present at the jth synapse. b is the bias as-
sociated with this neuron. The bias can be understood to be
synonymous with the rate of polarization, rpol.

net =

{
0 b+

∑
wj ∗ Ij ≥ 0

1 b+
∑
wj ∗ Ij < 0

(3)

As with any model, there exists a set of assumptions made
that justify validity in a certain context for each generation
of ANN. The assumptions for the common Gen 1 model are
shown in Table 1.

Table 1: Gen 1 ANN Model Assumptions
Number Assumption

1 Firing Frequency Encoding
2 Steady State
3 Unity Static Firing Rate
4 Learned Inhibition
5 Unconditional Weighting

The first assumption is based on Eq 1. If it is true that neu-
rons fire with a rate defined by the rate of input activations
and the associated weights of the activations, then a transfor-
mation is possible such that simulation occurs completely in
the frequency domain. This transformation occurs without
consideration of transition from one firing rate to another
giving rise to assumption 2. The network is only evaluated
once the underlying neurons have reached steady state.

Assumption 3 deals with the way Gen 1 models imple-
ment activation. A step function is commonly used to show
that any value greater than 0 input to the neuron causes ac-
tivation. The model was intended to capture the all or noth-
ing activation and activation threshold present in biological
neurons. However, this would seem incompatible with the
frequency domain transformation. The implication for the
model can be seen in Eq 4. The firing rate is now restricted
to a logical 1 or 0 regardless of the magnitude of input. Thus,
the model assumes that neurons only fire with a unity static
firing rate.

raction =

{
0 −rpol +

∑
α ∗ rdepol ≥ 0

1 −rpol +
∑
α ∗ rdepol < 0

(4)

Assumption 4 is the result of the training operation. Dur-
ing training wj is updated to become consistent with the de-
sired linear separation. This is true to the point that wj may
become negative. This is not seen in the biological neurons
as in general they are only capable of excitation. Inhibition
is performed predominately by interneurons.

The perceptron does not implement the relative gating
seen in the behavior of the interneuron network. Therefore,
assumption 5 recognizes that the weight wj remains static
once the desired value is found and no other method is
present to allow for dynamic changes.

Gen 2 ANNs Gen 2 ANNs are where the bulk of research
in computer science has been focused. The ability to output
a continuous value from zero to one provided the ability to
learn non-linear regressive approximations thanks to contin-
uously differentiable activation functions. Most neural mod-
els employed are Gen 2 models. The typical equation for a
Gen 2 ANN is presented in Eq 5. Much is the same as the
perceptron. The main difference is the step function has been
replaced by the sigmoid function represented by σ.

net = σ
(
b+

∑
wj ∗ Ij

)
(5)

The effect of the change from step activation to sigmoidal
is made obvious by Table 2. The unity static firing rate as-
sumption is no longer present. So, the model is now func-
tionally equivalent to Eq 1 with the other assumptions de-
tailed previously still in effect.

Table 2: Gen 2 ANN Model Assumptions
Number Assumption

1 Firing Frequency Encoding
2 Steady State
3 Learned Inhibition
4 Unconditional Weighting

Gen 3 ANNs Gen 3 ANNs are those that attempt to re-
lax all of the considered assumptions. They are most com-
monly referred to as spiking neural networks (SNN). The
most common neural model of this sort is the leaky integrate
and fire neuron. In this model, the neuron is considered to be
an electrical circuit possessing a time constant, τ , such that
the depolarization rate is some natural exponential ef(τ).

Spiking neural networks are gaining traction and in
(Arthur and Boahen 2007) were implemented on chip with
interneurons. Though spiking ANNs are an interesting topic,
little attention is given them in this paper. They are included
as part of a general explanation of the state of affairs.

Gen 2 Required Assumptions A good question to ask at
this point is what assumptions are intrinsic to Gen 2 ANNs.
Or to put it another way, where is the line between Gen 2
and Gen 3. This paper takes the opinion that the boundary
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lies in assumptions 1 and 2 from Table 2. The boundary be-
tween Gen 1 and 2 seems to lie along the non-linear regres-
sive ability of Gen 2. Likewise, the boundary between Gen
2 and 3 lies in the time domain implementation of SNNs.

About the Research
In the process of reviewing and reformulating the Gen 2
ANN we find that there are interesting divergences. These
divergences we have presented as the assumptions in Table
2. Some of these assumptions can be seen as intrinsic to the
Gen 2 ANN model and some not. Specifically, assumption
4 is of interest. A common belief in neuroscience holds that
a separate structure to the simple neural network, namely
the interneuron, is specifically capable of allowing dynamic
relative input weight adjustment. This functionality has not
been captured in a Gen 2 model. We became motivated to
address this for two reasons: biological plausibility and im-
proved predictive modeling.

Improved Biological Plausibility Biologically inspired,
heuristic algorithms have been very successful. Particle
swarm optimization, genetic algorithms, and ANNs are all
forms of biological algorithms. It is believed that these
ecorithms exist because they have been endowed with a su-
perior combination of motility and utility. So, by building
algorithms that more closely move with Einstein’s music of
the spheres it is believed that their performance will bene-
fit. Furthermore, by building better approximations of neu-
rological processes we hope to provide qualified answers to
neurological questions.

Better Predictive Modeling As stated it is believed and
hoped that by more closely modeling a natural process we
will gain some benefit in the performance of the algorithm.
Specifically, since neuroscience has postulated on the gating
ability of inputs for neural networks by way of interneurons
it is hoped that they will provide better input feature selec-
tion. There is reason to believe that if this is true it should
offer benefits in network generalization and multi-task learn-
ing. The justification for this hope is grounded in the related
works.

Contribution
This paper contributes a Gen 2 ANN model which is ex-
tended to include interneurons. The combined model is re-
ferred to as an INN. The interneurons are capable of selec-
tively gating the input along any edge to edge connection
between neurons to allow for input gain control with a unity
max gain. The backpropagation equations necessary for an
arbitrary INN have been derived but are not presented for
brevity. Further the network is applied to the MNIST dataset
and is shown to outperform the same base ANN possessing
no interneuron gating. While this is true, it should be under-
stood that the point of this paper is not to build a better per-
forming ANN. It is the beginning of investigation towards a
new more biologically plausible model.

Related Work
Most related work to this is only related in the sense that
it mathematically implements something notably similar.

There has been no work that was found to implement in-
terneuron structures in a Gen 2 framework.

In (Schuster and Berrar 2014), the authors recognize the
same deficiency with static weights asserted in assumption
4 of the gen 2 model. Their aim was to improve multi-task
learning in ANNs by adding a dynamic weight to the ANN.
The resulting neural equation is presented in Eq 6. The key
difference is that there is no selective gating and the dynamic
weight is only dynamic in the sense that when a new task
is to be learned, only the dynamic weight is allowed to be
trained.

net = σ
(
b+

∑
(wstaticj + wdynamicj ) ∗ Ij

)
(6)

In (Kirkpatrick et al. 2017) a method is presented that al-
lows for a stochastic analysis to decide what the reduction in
plasticity for a given neuron should be based on relative im-
portance to the network output. This work is based on the
synaptic plasticity of neurons to learn to fire more easily
with the neurons that are relevant in their input field and
to ignore those that are not. This provides a mechanism for
learning a task B when a task A has already been learned
without forgetting task A.

The last paper to be mentioned is (Wan et al. 2013). Here
the authors extend the concept of dropout to the dropconnect
algorithm. They also derive a bound for the generalization
benefit of each. This work is included as dropconnect is a
stochastic process that dynamically modifies the weights of
the network. However, it does so in a random fashion and in
no way contributes to input feature selection or implementa-
tion of interneurons.

All discovered related work lies within the fields of net-
work sparsification and multi-task learning. For this reason
we expect to find some benefit in these domains.

The INN Model
In this section the Interneuron ANN is presented. The archi-
tecture is an extension of the existing Gen 2 ANN model.

Derivation
Before presenting the INN model it is important to clearly
state the desired functionality and requirements. The biolog-
ical reasoning has already been presented in the background
information. Based on the understanding of information pre-
sented there, this algorithmic description is presented.

The new model should possess the power to perform rel-
ative input gating. That is to say, given a set, I , of inputs to
neuron n it is required that any I ′ ∈ I be modifiable such
that the set I ′∆I is left unchanged. This lends itself to the
addition of some weight β to the ANN equation. This can be
seen in Eq 7.

A further requirement is that β must be variable depend-
ing on the inputs presented to the ANN. Any number of
methods could be conceived of to accomplish this but the
most biologically supported is to allow a separate ANN to
provide β as an output. Then there is an ANN of principal
cell neurons and an ANN of interneurons. For distinction,
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Figure 2: INN Diagram

any variables pertaining to the principal cell ANN will re-
main as shown in previous equations while the interneuron
network variables will be accompanied by a prime. This is
shown in the Eq 8. The principal cell and interneuron ANNs
together form the INN.

net = σ
(
b+

∑
wj ∗ βj ∗ Ij

)
(7)

βj = σ
(
b′ +

∑
w′
j ∗ I ′j

)
(8)

Extending this view to a network level, Figure2 shows
a view of an INN with the principal cell ANN horizontal
and the Interneuron ANN vertical. Notice that only the in-
put layer has the interneuron weights. This is not the general
case but is drawn this way because it more closely matches
the experimental setup. The general case allows for interneu-
rons to be connected as desired.

Applying the Model to MNIST
MNIST is a well known problem in machine learning. It
consists of 60000 training images of handwritten digits and
10000 test images. We have applied the INN model to learn-
ing the MNIST problem as a benchmark test and to pro-
vide proof of concept. The results prove the model learns
and converges to a solution in a multi-output, large input en-
vironment. The INN has been implemented in Tensorflow.
Interneurons were only applied to the hidden layer. This
limitation was placed to allow the algorithm to train more
quickly. All other values for the interneuron ANN were the
same as the principal cell ANN. The principal cell ANN
and interneuron ANN were optimized simultaneously using
backpropogation.

Results
The INN outperformed the ANN. The generalization perfor-
mance of the ANN as applied to the test set was 96.9 while
the performance of the INN was 97.2. The important result
here is that the model has been shown to converge and per-
forms better than the naive case.

The reason it did not outperform the ANN more is most
likely due to the problem domain. The power of the INN is
believed to be its ability to contextualize the network dynam-
ically. For this to be allowed to happen a staggered training
algorithm may need to be implemented. This is part of our
immediate future work as we begin to apply the now vali-
dated model on multi-task problems.

Future Work
Our future work is listed here. Primarily it deals with com-
putational experiments and further extension of the model.

Neuroscience
The theory that has been liberally applied in this paper is a
simple but powerful assertion. Interneurons possess the abil-
ity to uniquely gate the relative contribution of any input se-
lectively. But in truth the brain is a very complex mechanism
and there is little certainty regarding underlying mechanics.
So, as neuroscience has not been able to make a definitive
assertion about interneuron input feature selection, we in-
tend to provide an answer using this model. We have chosen
a Gen 2 framework because more is computationally known
in this domain. The hope is that through the isolation of vari-
ables an answer will be approximated.

Multi-Task and Transfer Learning
The literature review was rich with similar work in multi-
task learning. It is hoped that by training the principal ANN
weights with unity interneuron ANN weights, the special
case of INN backpropagation, the principal cell ANN will
converge to task 1 and allow the interneuron ANN to learn
task differentiation. A similar idea can be applied to experi-
ment with transfer learning.
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