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Abstract
A Knowledge Graph (KG), popularly used in both industry
and academia, is an effective representation of knowledge. It
consists of a collection of knowledge elements, each of which
in turn is extracted from the web or other sources. Information
extractors that use natural language processing techniques or
other complex algorithms are usually noisy. That is, the vast
number of knowledge elements extracted from the web may
not only be associated with different confidence values but
may also be inconsistent with each other. Many applications
such as question answering systems that are built on top of
large-scale KGs are required to reason efficiently about these
confidence values and inconsistencies. In addition, they are
required to incorporate ontological constraints in their rea-
soning. One way to do this is to extract a subgraph of a KG
that is consistent with the ontological constraints and is of
maximum total confidence value. Such a subgraph is referred
to as the top hypothesis and is combinatorially hard to find.
In this paper, we introduce an algorithmic framework for ef-
ficiently addressing the combinatorial hardness and selecting
the top K hypotheses. Our approach is based on powerful al-
gorithmic techniques recently invented in the context of the
Weighted Constraint Satisfaction Problem (WCSP).

Introduction
A Knowledge Graph (KG) has been widely accepted as a
prominent and effective representation of knowledge since
its debut in 2012. KGs allow users to search for “things” in-
stead of just “strings” (Singhal 2012). Therefore, they have
been used to enhance search engines. Conceptually, a KG is
a graphical representation of facts where nodes represent en-
tities and directed edges represent relations between entities.
The types and properties of entities and relations are defined
in an ontology that covers various topics (Paulheim 2017).

In a KG, the facts can come from knowledge bases such
as DBpedia (Lehmann et al. 2014) or from web data, e.g.,
NELL (Carlson et al. 2010).

Despite their prominence, KGs bear a few fundamen-
tal obstacles: noisy information extractors and unreliable
and inconsistent knowledge embodied in documents (Bor-
des and Gabrilovich 2014). These obstacles severely under-
mine our ability to reason at a corpus level. Therefore, it is
imperative for us to design strong inference algorithms.
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One approach that renders KGs useful is to annotate a
confidence value with each fact and ontological constraint.
A calculus of confidence values can then be formalized to in-
clude reasoning about uncertain facts and hard constraints.
In our framework, the task of reasoning with uncertainties,
noise and inconsistencies is reformulated to be the combi-
natorial task of extracting a subgraph of the KG that is con-
sistent with the ontological constraints and is of maximum
total confidence value. Such a subgraph is referred to as the
top hypothesis. Finding the top K hypotheses qualifies as a
task in knowledge graph refinement, a topic of research that
focuses on improving the consistency and correctness of a
KG despite the noise of the extracted facts (Paulheim 2017).

Unfortunately, finding the top hypothesis is combinatori-
ally NP-hard; finding the top K hypotheses is even harder.
Nonetheless, finding the top K hypotheses is useful for gen-
erating alternative interpretations. Moreover, it also allows
users to pick or reject a hypothesis with a declared reason
that can then be incorporated for further reasoning.

In this paper, we introduce an algorithmic framework
for efficiently selecting the top K hypotheses on a KG. In
our approach, the top K hypotheses correspond to the top
K solutions of a Weighted Constraint Satisfaction Prob-
lem (WCSP) instance in which Boolean variables correspond
to edges in the KG and weighted constraints model uncer-
tainties and ontological constraints. We use a solver called
WCSPLift (Xu, Koenig, and Kumar 2017) that constructs
the Constraint Composite Graph (CCG) (Kumar 2008a;
2008b) of a WCSP instance, compiles a substrate Minimum
Weighted Vertex Cover (MWVC) problem, and then uses
powerful algorithmic techniques such as the Nemhauser-
Trotter reduction and message passing for solving WC-
SPs (Xu, Kumar, and Koenig 2017; Fioretto et al. 2018).
Using this novel approach, we discuss preliminary results
supplemented by a case study.

Related Work
Many methods for knowledge graph refinement have been
proposed to resolve inconsistencies on KGs. (Paulheim
2017) divides these methods into two broad categories: com-
pletion and correction. The former includes completing type
assertions and predicting relations, while the latter is mainly
about detecting errors. (Namata, Kok, and Getoor 2011) in-
troduces graph identification to address the problem of iden-
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tifying “true” underlying networks from noisy data. After
that, the related problem of knowledge graph identification
from noisy facts is addressed in (Pujara et al. 2013) using
Probabilistic Soft Logic (PSL) (Bröcheler, Mihalkova, and
Getoor 2012). A similar problem of automatically cleaning
a noisy knowledge base is addressed in (Jiang, Lowd, and
Dou 2012) using Markov Logic Networks (MLNs) (Richard-
son and Domingos 2006). These problems correspond to the
identification of the top hypothesis in our framework. Our
approach is different from these methods not only because it
generates the top K hypotheses but also because it uses algo-
rithmic techniques that focus on kernelization instead of re-
laxation. Methods based on relaxation may not keep proper
semantics because of the fractional values of variables.

Background on WCSPs
The WCSP (Bistarelli et al. 1999) is a combinatorial opti-
mization problem that generalizes the Constraint Satisfac-
tion Problem (CSP). It is formally characterized by a triplet
B = (X ,D, C) where X = {X1, · · ·XN} is a set of N vari-
ables with an associated set of domains D = {D1, · · ·DN}.
C = {C1, · · ·CM} is a set of M weighted constraints.
For each weighted constraint Ci ∈ C defined on a sub-
set of variables Si ⊆ X , each possible combination of
values to variables in Si has an associated non-negative
weight (cost). The goal is to find an assignment of values
to all variables in X from their respective domains such
that the sum of the weights identified by each constraint
in C is minimized. This task is equivalent to calculating
argmina∈A(X )

∑
Ci∈C ECi

(a|Ci), where A(X ) represents
the set of all complete assignments, i.e., the Cartesian prod-
uct of the domains of all variables |D1| × · · · |DN |. a|Ci

represents the projection of a complete assignment a onto
the subset of variables in Ci. ECi

is a function that maps
each assignment a|Ci to its associated weight. WCSPs are
NP-hard to solve in general. Boolean WCSPs are WCSPs in
which all variables are Boolean. They are representationally
as powerful as WCSPs and are also NP-hard to solve.

Exploiting Structure in WCSPs
Although WCSPs are NP-hard, special structure in indi-
vidual instances can be exploited for computational bene-
fits. There are two kinds of structure in WCSP instances:
(a) micro structure (numerical structure) that captures how
variables interact with each other; and (b) macro structure
(graphical structure) that captures which variables interact
with each other (Dechter 1992). These two kinds of struc-
ture have been traditionally exploited in different ways.

The idea of the CCG provides a unifying framework for
simultaneously exploiting the graphical structure of the vari-
able interactions in a Boolean WCSP and the numerical
structure of the weighted constraints in it. The task of solv-
ing the Boolean WCSP can be reformulated as the task
of finding an MWVC on its associated CCG. Under this
reformulation, various properties of the MWVC problem
can be computationally leveraged. For example, the half-
integrality property of the MWVC problem can be converted
to a kernelization procedure, a maxflow-based polynomial-

time preprocessing algorithm that fixes the optimal values of
a large subset of the variables before search starts.

This and other techniques for solving WCSPs are imple-
mented in WCSPLift. In this paper, we use it to generate
the top K hypotheses on a KG after casting them as the top
K solutions of a WCSP.

Hypotheses Selection Using WCSPs
The nodes of a KG can represent different objects, such as
real-world entities, events or constants like certain numbers
and strings. The directed edges between nodes of the KG
represent the semantic relations between them. Edges can
be of two kinds: (a) from an entity or event node to a con-
stant node and (b) from an event node to an entity node. An
edge of the first kind describes the entity or the event from
which it emanates. For example, an edge labeled IS A from
an entity node with label Mike to a constant node with label
Person indicates that Mike is a Person. An edge of the sec-
ond kind indicates that the entity node is an argument for the
event node. For example, an edge labeled Life.Born Person
from an event node with label Born to an entity node with
label Mike indicates that Mike is an object of the argument
Life.Born Person for this event.

Hypotheses selection in our framework consists of three
steps: (1) represent uncertainties in facts; (2) represent onto-
logical constraints; and (3) use WCSPLift to generate and
score the top K hypotheses.

Representing Uncertainties in Facts
A KG can contain edges that represent uncertain facts. For
example, suppose that the KG contains an edge annotated
with confidence value 0.8 and label Life.Born Person. If
this edge is from an event node with label Born to an entity
node with label Mike, it represents the fact that the person
born in this event is Mike with confidence value 0.8.

Our approach does not naively deem an uncertain fact in
the KG true in a hypothesis. This is because it has a cer-
tain annotated confidence value. Instead, a hypothesis de-
cides the truth value of each fact. Therefore, each uncer-
tain fact can be treated as a Boolean variable where “0”
and “1” represent “False” and “True,” respectively. For each
Boolean variable v corresponding to an uncertain fact with
confidence value p, say, treated as a probability, we add a
unary weighted constraint with weights − ln(1 − p) and
− ln(p) against the assignments v = 0 and v = 1, respec-
tively. For the uncertain fact associated with the edge labeled
Life.Born Person in the previous example, Table 1a shows
the unary weighted constraint created for it.

Representing Ontological Constraints
To resolve inconsistencies between uncertain facts, we also
need to consider ontological constraints. Typically, we en-
force ontological constraints based on the corresponding on-
tology of the KG. For example, two common types of onto-
logical constraints are cardinality and domain constraints.

• Cardinality Constraint: The arguments for some types of
events can only be present a limited number of times.
For example, suppose the argument Life.Born Person
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Table 1: Shows the weighted constraints created in our
framework. (a) shows a unary weighted constraint represent-
ing an uncertain fact and (b) shows a binary weighted con-
straint representing an ontological constraint.

(a) v represents
the edge labeled
Life.Born Person from
Born to Mike.

v

True − ln(0.8) = 0.2

False − ln(0.2) = 1.6

(b) v1 and v2 represent the edges la-
beled Life.Born Person from Born to
Mike and Mary, respectively.

v1

v2 True False

True ∞ ln(3) = 1.1

False ln(3) = 1.1 ln(3) = 1.1

can ontologically be present only once for an event.This
means that there can be at most one edge labeled
Life.Born Person emanating from an event node.

• Domain Constraint: Each argument of an event can only
be specific types of objects. For example, the argument
Life.Born Person can only be an object with type Per-
son. Suppose there is an edge labeled Life.Born Person
from an event node to an entity node. Any edge labeled
IS A emanating from the entity node needs to terminate
at a constant node labeled Person.

Such ontological constraints can be encoded as weighted
constraints in our framework. Consider an ontological con-
straint involving Boolean variables v1, · · · vk, where each
vi corresponds to an uncertain fact in the KG. For exam-
ple, the cardinality constraint can enforce a mutual exclu-
sion between the edges labeled Life.Born Person from the
event Born to the entities Mike and Mary. A correspond-
ing weighted constraint that is built on the same variables
resembles a truth table on these variables. In other words,
the truth table entries that evaluate to “False” are given an
infinite weight, and those that evaluate to “True” are given
a uniform positive weight. This positive weight depends on
the semantics and calculus of confidence values. If treated as
probabilities, then the positive weight is set to ln(s) where
s is the number of truth table entries that evaluate to “True.”
This value is derived from the principle of insufficient rea-
son. Table 1b shows the weighted constraint created from
the mutual exclusion involving Mike and Mary.

Sometimes, ontological constraints are also uncertain. For
example, we might be interested in reasoning with general
knowledge that restricts any person to have at most two jobs
but only with confidence value 0.9. Such uncertain onto-
logical constraints can also be encoded as weighted con-
straints in our framework by assigning a uniform positive
finite weight to all truth table entries that evaluate to “True”
and a different uniform positive finite weight to all truth ta-
ble entries that evaluate to “False”.

Generating and Scoring the Top K Hypotheses
As described above, each uncertain fact and each ontological
constraint in a KG can be reformulated to a weighted con-
straint. Suppose the confidence values are treated as proba-
bilities and the weights are obtained by taking the negative
natural logarithm of the probabilities. Maximization over the

product of probabilities is mapped to minimization over the
sum of weights, and all weights are non-negative as all prob-
abilities are in the interval [0, 1]. For a different semantics of
the confidence values, a different formulation can be used.

Since the top hypothesis of a KG corresponds to the
optimal solution of its associated WCSP, we can invoke
WCSPLift to efficiently perform combinatorial search in
the space of all hypotheses. However, we are often interested
in generating the top K hypotheses for a specified value of
K. This is important because it generates alternative inter-
pretations of KGs and allows users to pick or reject hypothe-
ses with additional reasons. Such reasons can also be incor-
porated back into the KG for further inference.

To generate the kth hypothesis, we construct a new WCSP
instance that includes all of the original weighted constraints
as well as some additional constraints that disallow the pre-
viously generated k − 1 hypotheses. Therefore, K WCSP
instances are solved in sequence to generate the top K hy-
potheses. The score of the kth hypothesis can be defined as
e−w, where w is the total weight of the optimal solution of
the kth WCSP instance. The exponential transformation is
used to revert the negative natural logarithm transformation.

Figure 1 shows a small example. The KG contains
uncertain facts with different confidence values. The event
of a birth occurs either in LA or in NYC. The person born
is either Mike or Mary. The entity Mike is an organization
(ORG) or a person (PER). The following ontologi-
cal constraints are used: (a) Life.Born Person(EVN1,
ENT1) and Life.Born Person(EVN1, ENT2) can-
not both be “True” because EVN1 refers to a spe-
cific person; (b) Life.Born Place(EVN1, ENT3) and
Life.Born Place(EVN1, ENT4) cannot both be “True”
because EVN1 occurs in at most one city; (c) IS A(ENT2,
PER) and IS A(ENT2, ORG) cannot both be “True”
because ENT2 is either a person or an organization; and
(d) IS A(ENT2, ORG) and Life.Born Person(EVN1,
ENT2) cannot both be “True” because the argument
Life.Born Person can only be a person (PER). Figure 1
also shows the top 2 hypotheses on the KG enforcing these
ontological constraints.

Case Study
The task of selecting the top K hypotheses on a KG is cen-
tral to DARPA’s Active Interpretation of Disparate Alterna-
tives (AIDA) program (Onyshkevych 2017). This program
is intended to generate alternative interpretations of struc-
tured and unstructured data. Generating the top K hypothe-
ses is critical for maintaining and refining understanding of
events, situations and trends in a variety of domains.

In the first stage, the KG is constructed by applying mul-
tiple natural language processing methods. For example,
named entities and nominal mentions are extracted using Bi-
LSTM (Hochreiter and Schmidhuber 1997), and events and
arguments are extracted using GAIL (Ho and Ermon 2016).
In the second stage, various techniques such as heuristic
rules and connected component analysis are applied to ad-
dress problems related to document-level coreference reso-
lution and corpus-level entity linking. The details of these
methods can be found in (Zhang et al. 2018). WCSPLift
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ENT1:
Mary

ENT2:
Mike

CON:
PER

CON:
ORG

Life.Born_Person: 0.7

Life.Born_Person: 0.6
IS_A: 0.65

IS_A: 0.7

ENT3:LA

ENT4:
NYC

Life.Born_Place: 0.7

Life.Born_Place: 0.5

EVN1:
Born

CON:
Life.Born

IS_A: 1.0

(a) The given KG

ENT2:
Mike

CON:
PER

Life.Born_Person: 0.7

IS_A: 0.65

ENT3:LA

Life.Born_Place: 0.7

EVN1:
Born

CON:
Life.Born

IS_A: 1.0

(b) The top hypothesis

ENT1:
Mary

ENT2:
Mike

CON:
ORG

Life.Born_Person: 0.6

IS_A: 0.7

ENT3:LA

Life.Born_Place: 0.7

EVN1:
Born

CON:
Life.Born

IS_A: 1.0

(c) The second best hypothesis

Figure 1: Illustrates top K hypotheses selection on a KG. Each edge is annotated with a label as well as a confidence value.
Event, entity and constant nodes have labels with prefix EVN, ENT and CON, respectively.

runs successfully on the KG produced after the first two
stages to generate the top K hypotheses as required in
the program. The KG contains about 1760682 nodes and
1922206 edges; and WCSPLift takes about 30 minutes to
generate each of the top K hypotheses.

Conclusions and Future Work
In this paper, we introduced the idea of using recent develop-
ments in WCSP technology to generate the top K hypothe-
ses on a KG. In particular, we used WCSPLift, a powerful
solver that can quickly explore the combinatorial space of
all hypotheses and return the top K of them. Future work
involves applying our method to KGs from various domains.
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