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Abstract 
In a multiagent system or MAS, due to agent interactions, the 
agents as a group may make decisions that none of them 
would make alone; this phenomenon is called emergence. 
Emergence is characterized by an unanticipated system be-
havior caused by nonlinear interactions. This paper detects 
such emergence in a MAS by analyzing agent behaviors 
across two simple strategies. In the first strategy, agents make 
decisions based on the local information; in the second strat-
egy, agents make decisions based on global information pro-
vided via communication. The proposed method identifies 
when and how nonlinear interactions cause behavior change, 
and quantitatively defines emergence based on the change in 
team performance. It then proves several theorems about 
emergence in a MAS. Experimental results on several bench-
marks demonstrate the promising performance of the pro-
posed framework in detecting emergence in a MAS. 

 Introduction    
A multiagent system (MAS) is “a system with many agents 
who interact to reach goals” (Wu, Zilberstein, and Chen 
2011). Due to agent interactions, a phenomenon called 
emergence could occur, which significantly impacts system 
reliability and predictability. We study it by comparing sys-
tem behavior with and without agent interaction, finding 
that although interaction improves average performance, it 
may cause agents to perform worse in certain cases. 

The contributions of this paper are threefold: 1) quantita-
tively defined emergence in a MAS, 2) found optimal com-
munication strategy, and 3) analyzed risky actions. 

The rest of the paper is organized as follows: the Back-
ground introduces emergence. Next, the Method details an 
emergence framework. Then, we proceed to the Experi-
ment. Lastly, we present conclusions and future directions.  

Background 
This section introduces emergence and a MAS model.  
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Emergence has been defined as “higher-level properties 
resulting from lower-level causal interactions” (Mill 1884). 
In a MAS, agent interactions cause emergence, and agent 
often interact via communication. Even though researchers 
have heavily studied various aspects of emergence (Gold-
stein 1999, Bar-Yam 2004, Ryan 2007, Halley and Winkler 
2008, Becker et al. 2009, Haglich et al. 2010, Santos et al. 
2013, Santos and Zhao 2017, Santos et al. 2018, Zhao and 
Santos 2018), they have not studied how agent interaction 
via communication can influence emergence. Therefore, we 
study emergence by comparing the behavior difference of 
two teams, where one team communicates to make cooper-
ative actions while the other does not communicate and 
make independent decisions. Their behavior difference re-
flects the impact of agent communication on emergence. 

We model a MAS as decentralized partially observable 
Markov decision processes (Dec-POMDPs) (Bernstein 
2000), which is formally defined as a 9-tuple 
(𝐼, 𝑆, {𝐴'}, 𝑇, 𝑅, {Ω'}, 𝑂, 𝑏.,𝐻). In a Dec-POMDPs, 𝐼 is a fi-
nite set of n agents. 𝑆 is a finite set of states. 𝐴' is the set of 
agent i’s actions. 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1] is the state transition 
probability function. 𝑅: 𝑆 × 𝐴 × 𝑆 → 𝑅 is the reward func-
tion. 𝛺' is the set of agent i’s observations. 𝑂:𝛺 × 𝐴 × 𝑆 →
[0,1] is the observation probability function. 𝑏. is the initial 
state distribution named as belief state. 𝐻  is the problem 
horizon. Agent 𝑖’s observation history at 𝑡 is 𝑜ℎ'= , while a 
joint observation history is 𝑗𝑜ℎ=. An action history is 𝑎ℎ=, 
and a joint action history is 𝑗𝑎ℎ=. A joint observation action 
history is noted as 𝑗𝑜𝑎ℎ=. Given 𝑗𝑜𝑎ℎ= , a distribution over 
the current state at 𝑡 is 𝑏=(𝑠|𝑗𝑜𝑎ℎ=) (Wu et al. 2011). Solv-
ing Dec-POMDPs has NEXP complexity (Bernstein et al. 
2000). Researchers have proposed various optimal and ap-
proximate solvers, but extant solvers cannot solve policies 
for both types of agents. Therefore, we propose an approxi-
mate Dec-POMDPs solver to detect emergence. 
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Method 
This section defines emergence in a MAS and introduces an 
approximated Dec-POMDPs solver to detect emergence.  

Emergence Definition in a MAS 
First, we define a communicative team (CT) as a team of 
agents who communicate with each other in decision-mak-
ing processes and define a non-communicative team (NC) 
as a team of agents who do not communicate. CT needs an 
optimal joint policy 𝜋DE∗ , which maps joint observation his-
tories to joint actions. NC needs an optimal local policy 
𝜋GD∗ = 〈𝜋J∗,… , 𝜋L∗ 〉, which maps local observation histories 
to individual actions. Then, we define several terms for 
emergence definition as follows: 
Def 3.1 Define 𝑝𝑎𝑡ℎ = 〈𝑗𝑜ℎ=, 𝑗𝑎ℎ=〉 as a joint observation 
action history at step 𝑡 = 𝐻 − 1,  and define 𝑃𝐴𝑇𝐻(𝜋) as 
the set of paths induced from policy 𝜋. 
Def 3.2 Define a pair of paths, 𝑝𝑎𝑡ℎQ = 〈𝑗𝑜ℎ=Q, 𝑗𝑎ℎ=Q〉 ∈
𝑃𝐴𝑇𝐻(𝜋DE∗ )  and 𝑝𝑎𝑡ℎQQ = 〈𝑗𝑜ℎ=QQ, 𝑗𝑎ℎ=QQ〉 ∈ 𝑃𝐴𝑇𝐻(𝜋GD∗ ) 
as partially matched paths iff: 𝑗𝑜ℎ=Q = 𝑗𝑜ℎ=QQ  and 𝑗𝑎ℎ=Q ≠
𝑗𝑎ℎ=QQ;   

We use partially matched paths to evaluate agent behavior 
change measured by accumulated rewards (ARs), where AR 
is the sum of rewards of all steps. 
Def 3.3 Define 𝑓(𝑝𝑡)  as the CDF of ARs of 𝑝𝑡, 𝑝𝑡 =
{𝑝𝑎𝑡ℎQ, 𝑝𝑎𝑡ℎQQ}. 

Next, we compare the CDFs with Quantile-Quantile (QQ) 
plots for 𝑝𝑎𝑡ℎQ and 𝑝𝑎𝑡ℎQQ, and perform linear regression on 
the QQ plot, which yields a linear function 𝑦 = 𝑎𝑥 + 𝑏 + 𝜖 
and 𝑅Y. 
Def 3.4 Define Type-I emergence if 𝑅Y > 0.95	&	𝑎 ≠ 1.  

A slope of 𝑎 ≠ 1 means the length of 𝑓(𝑝𝑎𝑡ℎQQ)’s domain 
differs from the length of 𝑓(𝑝𝑎𝑡ℎQ)’s domain. Therefore, 
communication changes AR distribution. A correlation co-
efficient larger than 0.95 means each NC AR maps to a 
higher CT AR linearly. Therefore, communication does not 
change the relative order of possible rewards agent can earn. 
Def 3.5 Define Type-II emergence if 𝑅Y ≤ 0.95. 

 Type-II emergence reflects a nonlinear change of AR 
distribution. CT may have a different number of ARs than 
NC does. The relative order of ARs in CT may differ from 
that of NC’s. The lower bound of AR distribution of CT may 
be smaller than that of NC’s. Such changes are more drastic 
than those in Type-I emergence. 

Theoretical Foundations of Emergence in a MAS 
This subsection proves three theorems on emergence. The-
orem 1 proves that CT has higher or equal expected AR than 
NC does. Theorem 2 proves that if CT only communicates 
at 𝐻 − 1, CT earns higher or equal AR than NC does. The-
orem 3 proves that if CT communicates at 𝑡 < 𝐻 − 1, CT 
may get lower expected AR than NC does. 

Theorem 1 𝐸(𝐴𝑅(𝜋DE∗ )) ≥ 𝐸(𝐴𝑅(𝜋GD∗ )). 
Proof: We can build a 𝜋DEQ  from 𝜋GD∗ : at 𝑡 ∈ [0,𝐻), add 

𝜋DEQ (𝑗𝑜ℎ=) = �⃗�= ,  where 𝜋'∗(𝑜ℎ'=) = 𝑎'=  for agent 𝑖, 𝑗𝑜ℎ= =
〈𝑜ℎJ= ,… , 𝑜ℎL= 〉 , and �⃗�= = 〈𝑎J= , . . , 𝑎L= 〉 . Therefore, 
𝐸d𝐴𝑅(𝜋DE∗ )e = 𝐸(𝐴𝑅(𝜋GD∗ )) . In addition, if ∃�⃗� ∈
𝐴	𝑎𝑛𝑑	𝑗𝑜ℎ=, 𝑡 ∈ [0,𝐻)  s.t. 𝑅(𝑗𝑜ℎ=, �⃗�) > 𝑅(𝑗𝑜ℎ=, �⃗�=) , 
where 𝑅(𝑗𝑜ℎ=, �⃗�) = ∑ 𝑏=(𝑠|𝑗𝑜𝑎ℎ=) ∙ ∑ 𝑅(𝑠, �⃗�, 𝑠Q)kl∈m ∙k∈m
𝑇(𝑠, �⃗�, 𝑠Q), then replacing �⃗�= with �⃗� improves 𝐴𝑅(𝜋DEQ ). In 
this case, 𝐸(𝐴𝑅(𝜋DE∗ )) > 𝐸(𝐴𝑅(𝜋GD∗ )). QED. 

Theorem 2 If 〈𝑝𝑎𝑡ℎQ, 𝑝𝑎𝑡ℎQQ〉 only differ at �⃗�noJ , then 
𝐸d𝐴𝑅𝑠(𝑝𝑎𝑡ℎQ)e ≥ 𝐸d𝐴𝑅𝑠(𝑝𝑎𝑡ℎQQ)e. 
Proof: Both paths have the same 𝑏noJ(𝑠), and �⃗�GDnoJ =

〈𝜋J∗(𝑜ℎJnoJ),… , 𝜋L∗ (𝑜ℎLnoJ)〉 , �⃗�DEnoJ = 𝜋DE∗ (𝑗𝑜ℎnoJ) . 
If ∑ 𝑏noJ(𝑠)𝑅(𝑠, �⃗�GDnoJ)k∈m > ∑ 𝑏noJ(𝑠)k∈m 𝑅(𝑠, �⃗�DEnoJ) , 
then mapping 𝑗𝑜ℎnoJ  to �⃗�GDnoJ  will increase 𝐸(𝐴𝑅(𝜋DE∗ )), 
which contradicts the definition of 𝜋DE∗ . Therefore, 
∑ 𝑏noJ(𝑠)𝑅(𝑠, �⃗�GDnoJ)k∈m ≤  	∑ 𝑏noJ(𝑠)k∈m 𝑅(𝑠, �⃗�DEnoJ), and  
𝐸d𝐴𝑅𝑠(𝑝𝑎𝑡ℎQQ)e ≤ 𝐸d𝐴𝑅𝑠(𝑝𝑎𝑡ℎQ)e. QED. 

Theorem 3 If 〈𝑝𝑎𝑡ℎQ, 𝑝𝑎𝑡ℎQQ〉  differ at step 𝑡 ∈ [0,𝐻 −
2], then 𝐸d𝐴𝑅𝑠(𝑝𝑎𝑡ℎQ)e 	≥ 𝑜𝑟	 ≤ 𝐸d𝐴𝑅𝑠(𝑝𝑎𝑡ℎQQ)e. 
Proof: Assume that they only differ at 𝑡 ∈ [0,𝐻 − 2] , 

(�⃗�DE= , �⃗�GD= ) . There are 	𝐾 = |Ω|noJo=  paths with �⃗�DE= , 
{𝑝s|𝑘 = 1, … ,𝐾}, and 𝐾 paths with �⃗�GD=  . Per Theorem 1, 
∑ 𝑃𝑟(𝑝s) ∙ 𝐸d𝐴𝑅(𝑝s)e ≥ ∑ 𝑃𝑟(𝑝sQ ) ∙ 𝐸d𝐴𝑅(𝑝sQ )es .s  
Therefore, it is possible that 𝐸d𝐴𝑅(𝑝sJ)e > 𝐸d𝐴𝑅(𝑝sJQ )e 
when 𝑃𝑟(𝑝sJ) > 𝑃𝑟(𝑝sJQ ) and 𝐸d𝐴𝑅(𝑝sY)e < 𝐸d𝐴𝑅(𝑝sYQ )e 
otherwise. If 𝑝𝑎𝑡ℎQ = 𝑝sJ, 𝑎𝑛𝑑	𝑝𝑎𝑡ℎQQ = 𝑝sJQ , then 
𝐸d𝐴𝑅𝑠(𝑝𝑎𝑡ℎQ)e > 𝐸d𝐴𝑅𝑠(𝑝𝑎𝑡ℎQQ)e ; if 𝑝𝑎𝑡ℎQ =
𝑝sY, 𝑎𝑛𝑑	𝑝𝑎𝑡ℎQQ = 𝑝sYQ , then 𝐸d𝐴𝑅𝑠(𝑝𝑎𝑡ℎQ)e < 
𝐸d𝐴𝑅𝑠(𝑝𝑎𝑡ℎQQ)e. QED. 

An Approximate Dec-POMDPs Solver: MCGD 
This subsection proposes a solver called Monte Carlo sam-
pling and gradient descent or MCGD. Table 1 shows its 
pseudocode for CT. First, it samples paths (1-5). For a path, 
at 𝑗 ∈ [𝑡,𝐻), it computes 𝑏=(𝑠|𝑗𝑜𝑎ℎ=). Then it samples a 
state 𝑠u. Next, if 𝑗 = 𝑡, it picks �⃗�'=; otherwise, it scores each 

Table 1. MCGD for CT 

1 for each step 𝑡 ∈ [0, 𝐻 − 1] 
2  for each joint observation 𝑗𝑜ℎ= 
3   evaluate every joint action �⃗�J= ,… , �⃗�s= ∈ 𝐴  
4   if 𝑠d�⃗�u=e ≫ 𝑠(�⃗�w=), 𝑟 ≠ 𝑗  outperforms, pick �⃗�u= 
5   else if 𝑠(�⃗�sJ= ) ≈ ⋯ ≈ 𝑠(�⃗�sz= ), add  �⃗�sJ= … �⃗�sz=  to 𝑃𝐿 
6   and randomly pick from �⃗�sJ= … �⃗�sz=  
7 find the best joint actions in 𝑃𝐿 via gradient descent  
8 repeat step 1-7, pick the best joint policy 𝜋DE∗  

 
𝑆d�⃗�'

ue = ∑ 𝑏ud𝑠|𝑗𝑜𝑎ℎue𝑄d𝑠, �⃗�'
u , 𝑗ek∈m                                 (1) 

∑ 𝑏.(𝑠.)∏ 𝑇(𝑠=, �⃗�= , 𝑠=~J)∏ 𝑂(�⃗�=~J, �⃗�= , 𝑠=~J)noY
=�.

noJ
=�.k⃗∈m⃗ (2)   

∑ [𝑃(𝑠)k⃗∈m⃗ ∑ 𝑅(𝑠=, �⃗�= , 𝑠=~J)]noJ
=�.                                         (3) 

∑ 𝑃(𝑝𝑡s)𝐴𝑅(𝑝𝑡s)�
s�J /∑ 𝑃(𝑝𝑡s)�

s�J                                  (4) 
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�⃗�'
u , 𝑖 ∈ [1, |𝐴|] per (1). Later, it ranks all actions and picks 

one. Then it samples a joint observation.  
When a path 𝑝𝑡  finishes, it computes its probability 

𝑃(𝑝𝑡) and expected 𝐴𝑅(𝑝𝑡) per (2) and (3). After it samples 
enough paths, it picks the top three paths in 𝐻𝑝 and uses 
their weighted average score as �⃗�'=’s score per (4). If �⃗�s=  is 
significantly better, it maps 𝑗𝑜ℎ=  to �⃗�s= ; otherwise, it puts 
comparable actions {�⃗�sJ= , �⃗�sY= ,… , �⃗�sz= }  in a pool 𝑃𝐿. After 
it computes joint actions for all 𝑗𝑜ℎnoJ, it applies gradient 
descent to select the best combination of joint actions in 𝑃𝐿 
(6-7). It repeats this process several times and chooses the 
best policy as 𝜋DE∗ . The procedure for NC is similar. 

Experiment 
This section first introduces three Dec-POMDPs bench-
marks. It then compares MCGD with a state-of-the-art exact 
solver: generalized multiagent A* with incremental cluster-
ing and expansion (GMAA*-ICE) (Oliehoek, F. A. et al. 
2013). Lastly, it visualizes and explains emergence. 

Benchmarks and Evaluation of MCGD 
The first benchmark is Dec-Tiger (DT) (Nair et al. 2003): 
There are two doors, behind one is a tiger and behind the 
other is treasure. Two agents look for treasure via three ac-
tions: Listen, Open Left, and Open Right. An agent hears the 
tiger with a 0.85 probability. If both agents open the treasure 
door, they get a reward of 20. If both open the tiger door, 
they get -50. If one opens the treasure door, they get 9. If 
one opens the tiger door, they get -101. If they open two 
doors, they get -100. The game resets once a door opens. 

The second benchmark is Two Generals (2G) 
(http://www.fransoliehoek.net). Two generals can attack the 
enemy or observe its status (small or large) with an 85% 
accuracy. If the enemy is small and they attack simultane-
ously, they get a reward of 5; if the enemy is large and they 
attack simultaneously, they get -20; if one attacks, they get 
-10. The game resets once an attack occurs. 

The third benchmark is Recycling Robots (RR) (Sutton 
and Barto 1998). Two robots pick up cans of two sizes. A 
robot’s battery can be high and low, which is observable to 
itself with a 0.9 accuracy. A robot can recharge, pick up a 
small can by itself with reward 2 and jointly pick up a large 
can with reward 5. Every time a robot picks up a can, the 
battery becomes low with a 0.3 probability for a small can 
and with a 0.5 probability for a large can. If the battery is 
low and a robot picks a small or large can, it drains the bat-
tery with a 0.2 or 0.3 probability and gets recharged.  Alt-
hough there are only two agents in these problems, their so-
lutions are easily applicable to problems with more agents. 
We apply both MCGD and GMAA*-ICE to solve them on 
an Intel Xeon@2.66GHz CPU with 512GB ram. Table 2 
lists policy scores for NC and CT at various horizons by 

MCGD, which is at least 98% of the optimal score. Since 
GMAA*-ICE runs out of memory (512GB) for DT at H=6, 
2G at H=9 and RR at H=5, we only show results where both 
algorithms can finish. Type I and Type II show that MCGD 
detects at least 95% emergence cases. 

In different emergent path pairs, the relationship between 
CT and NC scores are classified into four cases (Table 3). 
Case 1 indicates that without communication, two agents 
will take uncoordinated actions and that communication im-
proves not only expected AR but also the lower bound of 
AR distributions. Case 2 means although CT gets higher ex-
pected AR, CT can earn lower rewards. Case 3 and Case 4 
shows that CT gets worse results than NC.  

Error! Reference source not found. shows the frequen-
cies of emergence cases in the benchmarks. In all bench-
marks, as horizon increases, more case 3 and 4 path pairs 
occur, as suggested by Theorem 3. However, different 
benchmarks have different leading emergence case and rel-
ative ranking of different cases. In general, case 3 and 4 are 
less likely than case 1 and 2, as suggested by Theorem 1. 

Visualization and Explanation of Emergence 
Error! Reference source not found. shows the QQ-plots 
of 2G at H=5. The majority part of QQ-plots is above the 
baseline, indicating that CT rewards are higher than NC 
(Theorem 1). There are several types of QQ plots. In the 
first type (case 1 of Type II emergence) such as the purple 
one, CT has higher expected AR (Theorem 1) and no worse 
AR than NC in each state (Theorem 2). In the second type 
(case 2 of Type II) such as the yellow, red, and black one, 
CT has higher expected and maximal AR, but lower mini-
mal AR (Theorem 2&3). In other words, CT chooses joint 
actions that give better expected AR while introducing the 
possibility of worse minimal reward. In the third type (case 
3&4 of Type II) such as the green and blue one, CT has 
lower expected AR and lower minimal AR than NC (Theo-
rem 3), which suggests CT chooses inferior joint actions in 
this path to maximize rewards in paths with higher probabil-
ities. 

Table 2. Policy Score and Emergence Case by MCGD 

D DT 2G RR 
H 3 4 5 3 4 5 6 7 8 3 4 

NC 5.2 4.8 7 -2.9 -2.4 -3.2 -3.6 -7.3 -8.6 10 12.4 
CT 13 23 26.8 -0.4 -0.6 -1.2 -1.8 -2.5 -3.3 10.2 12.9 

Type I 0 36 116 4 13 60 289 1304 3824 4 11 
Type II 8 16 112 0 4 41 168 795 3310 8 28 

Table 3. Emergence Case Based on AR Relation 

Case 1 2 3 4 
E(CT AR)>E(NC AR) Y Y N N 
lb(CT AR)>lb(NC AR) Y N Y N 

 

146



 

 

 
Figure 1. Emergence Case Frequency vs Problem Horizon  

 
Figure 2. QQ-plot in Type II Emergence in 2G H=5  

Conclusion 
This paper proposed a quantitative emergence detection 
framework based on the linearity of reward distributions. It 
also proved several theorems about emergence in a MAS 
and explored several features that lead to emergence. Exper-
imental results on several MAS planning problems showed 
that this framework could detect emergence by efficiently 
comparing two teams’ policies. To the best of the authors’ 

knowledge, this framework is the first of its kind for 
emergence detection. 
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