
Semantic Labeling of English Texts with
Ontological Categories Employing Recurrent Networks

Roberta Caroline Rodrigues Silva, Alcione de Paiva Oliveira, Alexandra Moreira
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Abstract

Semantic labeling of texts allows people and computing de-
vices to more easily understand the meaning of a natural lan-
guage sentence as a whole.Semantic annotation is often one
of the first steps carried out by applications focused on natural
language processing. However, this step is often done manu-
ally, which is very expensive and time-consuming. When au-
tomatic methods are employed they require that a set of fea-
tures, elaborated by specialists, be provided so that the system
can assign probabilities in order to make inferences. In this
article we present a model of the deep recurrent network that
semantically annotates texts in English using as labels the top
categories of an ontology. The tests showed that it is possible
to obtain better results than the models that need the features
to be made explicit.
Keywords: Natural language Processing, semantic annota-
tion, recurrent network, LSTM, Ontology

Introduction
The understanding of natural language is only possible from
the moment one understands the meaning of lexical ele-
ments in the context of a statement. This understanding,
which naturally occurs to people, has only recently pre-
sented encouraging results for automatic systems. This is
due to the difficulty of associating the precise meaning to
syntactic elements. The attribution of meaning to lexical
items is complex and is directly linked to the relative po-
sitioning of one word in relation to the others. Tradition-
ally, the assignment of meaning to lexical items, so that ut-
terances can be processed by machines, is done manually
by specialists in a process called semantic annotation or se-
mantic labeling. According (Pustejovsky and Stubbs 2012)
any metadata tag used to mark up elements of the dataset is
called an annotation over the input. Normally, the annotation
process is expensive and time consuming, being done man-
ually by specialists. However, recent advances in hardware
and machine learning techniques, especially those of deep
learning, have opened up new perspectives for automatic
semantic annotation. When automatic labeling systems are
employed, methods such as maximum entropy models are
used, which receive as input features specified by specialists
that also make the development of an annotation system an
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expensive task. Nonetheless, recurrent neural sequence-to-
sequence network models (Sutskever, Vinyals, and Le 2014)
have recently emerged as a possibility of creating annota-
tion systems that do not require the specification of fea-
tures to serve as input to the system. This paper aims to
address the issue of automatic semantic annotation, partic-
ularly the association of ontological categories to lexical
items, through the construction of an annotator based on
a deep neural network. In our application the vocabulary
Schema.org, founded by Google, Microsoft, Yahoo and Yan-
dex, was used as the top-level ontology which provided the
concepts for the annotation. The results showed that this ap-
proach can obtain better results than the features-based an-
notation models.

This paper is organized as follows. The next section gives
an overview of the works that have a relation with this re-
search, presenting the advances and highlighting the points
that can be improved. Section describes the corpus used
in the tests as well as the top-level ontology that provided
the classes that served as labels. Section presents the neural
model architecture used to perform the annotation process.
The results achieved in the classification stage and a discus-
sion about them are discussed on the section and finally the
conclusions are presented at section.

Related works
In this section some work is described that have an approach
that is related to the one adopted in the present work.

(Sukhareva and Chiarcos 2015) proposed an annotator
based on ontologies for the POS (part-of-speech) labeling
using a heterogeneous database (corpora that have differ-
ent annotations). Although the authors trained the network
with corpora with different sets of tags and degree of gran-
ularity, the annotations were partially compatible. The algo-
rithm used in the research was a neural network with Rprop
(Resilient back-propagation), and the classes for language
categories were specified by OLiA (Ontologies of Linguis-
tic Annotation). The authors’ intention was to execute au-
tomatic POS tagging using the morphosyntactic categories
present in OLiA, differing from our approach, since the on-
tology used in our work provided concepts observed in Web
sites, that is, they reflect what is observed on the Web.

(Chiu and Nichols 2016) proposed the use of a hybrid
bidirectional LSTM and CNN neural network for Named
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Entity Recognition (NER) task. NER is a type of semantic
annotation restricted to a small number of classes, such as
Person, Organization and Location. Hence, the techniques
that work for NER can work for semantic annotation for a
larger number of classes. They used as input only tokenized
text and publicly available word embedding. The resulting
system proved to be competitive on the CoNLL-2003 dataset
and surpassed the previously reported state of the art perfor-
mance on the OntoNotes 5.0 dataset by 2.13 F1 points. In an-
other test they used two lexicons constructed from publicly-
available sources, and their system established new state of
the art performance with an F1 score of 91.62 on CoNLL-
2003 and 86.28 on OntoNotes. This work has a strong in-
tersection with our work since it uses a bidirectional LSTM
neural network to tackle the semantic annotation problem.
The difference is that our task encompasses a larger number
of classes and, as will be seen, we get strong results with a
rather simpler network.

(Mendonça-Júnior, Barbosa, and Macedo 2016) also used
a bidirectional LSTM and CNN neural network to perform
NER as in the previously mentioned work. The main dif-
ference is that they applied the system on various corpora
in Brazilian Portuguese. The model also obtained superior
performance to traditional classifier models, such as Condi-
tional Random Fields. Backing up the hypothesis that Deep
Neural Networks are currently the best approach for this
type of task.

In the work proposed by (Andrade 2018) is presented a
semantic annotator that uses the top level categories of the
Schema.org ontology as labels. He used as a classification
model the discriminative technique of Conditional Random
Fields (CRF). CRF is a technique that requires a feature en-
gineering work and has high memory and processing re-
quirements, but produces good classification results, espe-
cially when it is necessary to relate features that occur far
apart in the input sequence. The system proposed yielded
excellent prediction results, achieving results above 85% in
the F1-score for all classes and a general average of 93.5%.
The objectives and dataset of this work are the same of our
work, and the distinction is in the technique used. Thus, the
results of this work were used as a measure of comparison
with our results.

The Ontology and the Corpus
Schema.org c©1 was the ontology selected for this project
for being based on evidence from corpora and for being
supported by big technology companies. Indeed, as stated
on its site, Schemas.org is a vocabulary that covers enti-
ties, relationships between entities and actions. The initiative
is founded by Google, Microsoft, Yahoo and Yandex, and
the vocabulary is developed by an open community process.
This ontology is the result of a joint effort to improve the
quality of the web, being a structured data marking scheme
that is supported by the main search engines. The core vo-
cabulary currently consists of 598 classes, 862 Properties,
and 114 Enumeration values.

1https://schema.org/

Figure 1: A segment of the corpus annotated with Schema.

For this project, the top-level concepts were used because,
according to (Guarino 1998) Top-level ontologies describe
very general concepts like space, time, matter, object,event,
action, etc., which are independent of a particular prob-
lem or domain. The categories present in the top level of
Schema.org which were used as labels in our research, be-
ing the following: Action, Creative Work, Event, Intangible,
Organization, Person, Place and Product.

Each category has a formal definition, which is key to cor-
rectly assign a lexical item to one of the categories. More-
over, the fact that it is an ontology based on corpora evi-
dence, concepts are easier to understand than the ones from
an ontology based on philosophical concepts.

In this project we used two corpora: OANC (Open Amer-
ican National Corpus) corpus (Fillmore et al. 1998) that was
used in tests 1 and 2, and Wikiner (Nothman et al. 2013),
which was used in test 3. Test 3 was performed with a set
of different data to demonstrate the ability of our model to
generate good results in different corpora. Both corpora used
will be described in more detail later in this article.

The first dataset chosen to test the proposed model was
the OANC (Open American National Corpus) corpus (Fill-
more et al. 1998) (Ide 2013). The choice of dataset occurred
because of its size and the wide range of textual genres. The
data volume ensures that the algorithm can capture the co-
occurrence and relations between words. The corpus is avail-
able online free of charge at the url http://www.anc.org, and
contains about 15 million words of contemporary Ameri-
can English for a variety of topics. An important feature is
that the OANC data has the following annotations: Struc-
tural markup (sections, chapters, etc.) down to the level of
paragraph; Sentence boundaries; Words (tokens) with part
of speech annotations and lemma using the Penn tagset;
Noun chunks; Verb chunks; and Named Entities (Person,
Location, Organization, Date). These annotations make the
dataset ideal for use in supervised learning, one more factor
that was considered in its choice.

Due to the computational costs to annotate a large vol-
ume of documents, it was necessary to select a corpus frag-
ment to make project development manageable in a timely
manner. The fragment extracted from the corpus for training
and testing the neural network was supplementary annotated
with the top level tags of Schema.org by (Andrade 2018). It
was also necessary to normalize the data by excluding irrele-
vant information such as paragraph marks, blanks and other
structural marks. The Figure 1 shows a segment of the anno-
tated corpus. After normalization, we obtained the resulting
corpus presented the numbers shown in Table 1.

The texts used as input to the model were in plain Unicode
format, segmented into sentences where each word receives
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Table 1: OANC in numbers.
Items Quantity
Input Sentences 3,295,069
Vocabulary size 222,553
Sentence size 50

Figure 2: Wikiner sentence sample

a tag and where such tags are assigned according to the as-
sociated ontological class: Action, Creative Work, Event, In-
tangible, Organization, Person, Place, Product, and Other
for cases in which the word does not belong to any of the
aforementioned classes.

The second corpus used was Wikiner, which is the result
of (Nothman et al. 2013) work. Wikiner is a silver standard
annotated corpus for named entity recognition. It is multi-
language, consisting of texts written in several genres ex-
tracted from Wikipedia. In the test performed, the portion
available in English was selected.

The corpus has one sentence per line, each token is sepa-
rated by a blank space and contains three items: a text token,
a POS tag, and a Beginning-Inside-Outside (BIO) tag fol-
lowed by the token class acronym, as shown in the figure 2.
It was necessary to normalize the corpus by removing mark-
ers, spaces and also the initials of the BIO pattern of the
classes, leaving them in a leaner format.

It is noteworthy that Wikiner was annotated with five
ontological classes: Organization, Person, Place, Miscella-
neous (Misc) and Other. The misc class encompasses words
marked as event, action, product, intellectual production,
and intangible things of the Oanc corpus.

Table 2: Wikiner in numbers.
Items Quantity
Input Sentences 142,153
Vocabulary size 7,875
Sentence size 50

Proposed Model
After defining the dataset and the tags that would be used, we
set out to prepare the model and prepare the data to feed the
network. The entire dataset was converted to vector form us-
ing the GloVe algorithm proposed by (Pennington, Socher,
and Manning 2014). They used aggregated global word-
word co-occurrence statistics from a corpus to train the algo-
rithm, allowing it to capture linear substructures of the word
vector space. Converting the words in the dataset to a vec-
tor of float point numbers is an essential step when one uses
neural network models, once it makes it possible code the
sentences through an embedding layer. In our test we used

Figure 3: The proposed network architecture.

vectors with 200 elements, and this number was obtained
from empirical tests that showed that vectors with greater
number of elements did not bring significant improvements.

The neural network implemented was of the type Bidi-
rectional Long-Short Term Memory (BiLSTM). The LSTM
network can handle arbitrary-sized sentences, detecting rela-
tionships between distant words in the sentence. Being bidi-
rectional allows these relationships to be detected both in
the previous words, and in the words subsequent to the cur-
rent word. Several architectural arrangements have been at-
tempted and Figure 3 shows the architecture of the network
that returned the best results.

The first layer of the network is an embedding layer that
receives the sentences in the form of sequence numbers and
substitutes each word for its vectored representation. As pre-
viously mentioned, we used 200 size vectors resulting from
training on the whole corpus with the Glove algorithm. The
embedding layer receives each sentence in the form of inte-
ger indices and encodes them using the Glove matrix, pass-
ing the result to the next layer. The subsequent layer is a
Bi-LSTM layer with 32 hidden elements. This layer is re-
sponsible for learning which annotation sequence should be
associated with the input sentence. We define this layer to
return the entire sequence and not just the result of the last
time step. The remaining hyper-parameters were left with
the default values. Finally, the last layer of the model is a
dense layer enveloped with a time distribution wrapper that
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according to the author of Keras, François Chollet (Chollet
and others 2015), “applies a same Dense (fully-connected)
operation to every time step of a 3D tensor”. The dense layer
uses a softmax function as an activation function in order
to approximate the probability of each of the ontological
classes.

The model Hyper-parameters that were established empir-
ically and returned the best results. Table 3 presents the main
hyper-parameters used in the construction of our model.

Table 3: The main model Hyper-parameters.
Hyper-parameters Values
Word Embedding Vector Size 200
Batch Size 32
Dense Layers elements 9
Activation function Softmax
Loss function Categorical crossentropy
Optimizer Adam
Number of epochs 50

A Batch Size of 32 was used to allow the speed of con-
vergence, but at the same time, preventing the model from
being stuck in a local minima. The activation function in the
LSTM layer was hyperbolic tangent which is the standard,
and in the final dense layer the Softmax function was used,
which is the default activation function when the problem is
of the multi-class classification type, which is the case. Soft-
max assigns decimal probabilities to each class in a multi-
class problem where those decimal probabilities must add
up to 1.0, generating a probability distribution over the nine
different possible outcomes. Each score will be the probabil-
ity that the word belongs to one of our 9 ontological classes.

The loss function chosen was the categorical crossentropy
(equation 1), being the one suggested for a many-class clas-
sification problem. It minimizes the distance between the
probability distributions output by the network and the true
distribution of the targets (Chollet and others 2015).

L(y, ŷ) = −
∑
n

∑
i

y
(n)
i log ŷ

(n)
i (1)

where:

y is the ground-truth class probabilities.
ŷ is the model predicted probability distribution.
i is the class index.
n is the sample index.

The optimization algorithm chosen for our deep learn-
ing model was the Adam optimizer (Adaptive Moment Esti-
mation) (Kingma and Ba 2014). According to the authors
Adam is an algorithm for first-order gradient-based opti-
mization of stochastic objective functions, based on adap-
tive estimates of lower-order moments. It computes adaptive
learning rates for each parameter and also keeps an expo-
nentially decaying average of past gradients, similar to mo-
mentum approach used in other stochastic gradient descent
optimization algorithms. The authors state that the algorithm
is robust and well-suited to a wide range of non-convex op-
timization problems in the field machine learning.

Results
The LSTM network was implemented through the Keras
framework (version 1.2.0) (Chollet and others 2015) which,
in turn, ran at the top of the Tensorflow framework(Abadi
et al. 2016). Keras is a high level framework that allows the
construction of neural networks in an easy way through the
python language where the user can gradually specify the
layers of the networks or define their functional relations.
The implemented model ran on a computer with an Intel I7
processor of eighth generation and 16 GB RAM, equipped
with an NVIDIA GeForce GTX 680 graphics card. The op-
erating system used was Linux Mint 18.3.

There were three types of tests performed whose charac-
teristics are detailed below:

Test 1: used only a short section of the corpus to validate
the neural network implemented. In this test we worked with
only 4 classes, the only ones present in the selected section
(Action, Organization, Person and Other). The performance
evaluation for test 1 used the accuracy metric and F1-score
(Equation 4), both metrics presented similar values of preci-
sion. 1000 sentences were selected using the split 80% for
training and 20% for testing. The purpose of this experiment
was to verify the performance of the implemented model,
evaluate and adjust the established parameters.

Precision =
TruePositive

TruePositive+ FalsePositive
(2)

Recall =
TruePositive

TruePositive+ FalseNegative
(3)

F1 = 2× Precision×Recall

Precision+Recall
(4)

Test 2: characterized by the total use of the normalized
corpus. More than 3 million sentences were consumed by
bi-LSTM, using as tags the 9 ontological classes mentioned
previously. This test was the basis for verifying the perfor-
mance of bi-LSTM with a greater number of data. Based on
test 1, the metric used at this stage was the F1-score and the
number of epochs was 50.

Taking into account the second test and selecting the best
result achieved for the assignment of the ontological classes,
we constructed the Confusion Matrix shown in the Table 4.

Observing Table 4 it is possible to note that the class with
the highest absolute numbers of spurious classification is,
as expected, the class Other, due to the large number of el-
ements. It is also the class that receives the highest num-
ber of erroneous classifications of the other classes, being
the exception the class Event that has the highest number of
erroneous classifications assigned to the class Action. Mis-
taken Event for Action is something that can be expected
since there is a semantic proximity (actions generate events).
A clear disadvantage of the dataset is that it is unbalanced,
which can make it difficult to learn the relations related to
the identification of a particular class. Table 5 shows the ac-
curacy for each class collected from the test with the best
result.
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Table 4: Confusion matrix
Action Organization Person Product Creat. Place Event Intangible Other

Action 32097 49 124 1 6 36 7 9 1047
Organization 6 30241 735 44 1 962 0 3 5225

Person 2 727 40216 8 2 392 0 0 3115
Product 0 38 25 8456 3 1 0 1 41

Creative Work 2 1 2 2 10771 2 0 0 67
Place 6 1285 786 3 0 23573 0 1 2615
Event 12 2 0 0 0 0 2713 0 5

Intangible 13 3 5 1 1 1 0 16728 305
Other 746 8291 6955 24 6 2798 5 220 2086321

Table 5: Results per class
precision recall F1-score

Action 0.98 0.96 0.97
Organization 0.74 0.81 0.78

Person 0.82 0.90 0.86
Product 0.99 0.99 0.99

Creative Work 1.00 0.99 1.00
Place 0.85 0.83 0.84
Event 1.00 0.99 0.99

Intangible 0.99 0.98 0.98
Other 0.99 0.99 0.99

avg / total 0.98 0.98 0.98

Figure 4: The model accuracy curves.

The model presented an accuracy average over all classes
of 98% in the F1-score. Each ontological class was eval-
uated individually and the values obtained in the Precision,
Recall, F1-score, and Support. The results achieved are quite
impressive. The class that got the lowest F1-score was Orga-
nization, achieving 78%. Six out of the nine classes received
an F1-score greater than 96%.

In the Test 3 scenario the corpus used was the Wikiner,
employing around 150,000 sentences, as described in the
section . The main objective of this experiment was to vali-
date the developed model, comparing its results with another
model that used the same corpus. The results obtained with
this test were compared with those obtained by (Rondeau
and Su 2016) whose F1-score reached 89.28% overall pre-

Figure 5: The model accuracy curves.

cision. The model proposed by (Rondeau and Su 2016) con-
sisted of a NeuroCRF network performing in conjunction
with a Bi-LSTM.

As can be seen in Figure 5, in this test the training and test
datasets exhibited similar precision curves. The third test is
basically a superficial remodeling of the second and, accord-
ing to table 6, the Misc class presented the highest number
of false negatives due to the variety of entities involved in
the same class.

In the table 7 the results of the test performed are shown
and it can be concluded that the Bi-LSTM network gener-
ated better results than those obtained by the authors men-
tioned previously. Four of the five classes evaluated showed
results greater than 89%, presenting an overall F1-score of
95%.

Conclusions
Our main contribution is to achieve good results in the
assignment of ontological category labels to lexical items
through a rather simple bidirectional LSTM neural network
model. In addition to not needing a feature engineering
phase, as is the normal case of neural network models, we
didn’t use a hybrid model with convolutional networks, and
we did not use embedding at the character level, as was the
case in other related works. Nonetheless, our results were
much better than the work presented by (Andrade 2018) that
used a CRF model. The non-use of character-level embed-
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Table 6: Confusion matrix
Organization Place Misc Person Other

Organization 5800 13 12 10 450
Place 130 4880 80 30 170
Misc 20 40 3250 80 790

Person 60 20 10 4390 310
Other 60 59 150 60 102690

Table 7: Results per class
precision recall F1-score

Organization 0.91 0.87 0.90
Place 0.95 0.92 0.95
Misc 0.87 0.78 0.84

Person 0.96 0.90 0.93
Other 0.98 1.00 0.99

avg / total 0.97 0.93 0.95

ding is due to the hypothesis that the ontological semantic
annotation does not depend so much on features at character
level, but rather on features related to word co-occurrence.
The results corroborate the thesis that recurrent neural net-
works models, especially the variations of LSTM and GRU,
are the current choice for the processing of sequences pro-
cessing in the scope of NLP.

Following the idea of (Firth 1957) stating that you shall
know a word by the company it keeps, one approach that
may improve the labelling scores would be to feed the neural
network with constructions structures (Goldberg 2006) that
capture the usual schemes of relationships between words.
This proposal is the path we must pursue in future research.
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