
Experimental Comparison of
Online Anomaly Detection Algorithms

Cynthia Freeman,1 2 Jonathan Merriman,1 Ian Beaver,1 Abdullah Mueen2

1Verint Intelligent Self-Service, 2University of New Mexico
cynthia.freeman@verint.com, jonathan.merriman@verint.com, ian.beaver@verint.com, mueen@cs.unm.edu

Abstract

Anomaly detection methods abound and are used extensively
in streaming settings in a wide variety of domains. But a
strength can also be a weakness; given the vast number of
methods, how can one select the best method for their ap-
plication? Unfortunately, there is no one best way for all do-
mains. Existing literature is focused on creating new anomaly
detection methods or creating large frameworks for experi-
menting with multiple methods at the same time. As the liter-
ature continues to grow, extensive evaluation of every avail-
able anomaly detection method is not feasible. To reduce
this evaluation burden, in this paper we present a framework
to intelligently choose the optimal anomaly detection meth-
ods based on the characteristics the time series displays. We
provide a comprehensive experimental validation of multiple
anomaly detection methods over different time series charac-
teristics to form guidelines. Applying our framework can save
time and effort by surfacing the most promising anomaly de-
tection methods instead of experimenting extensively with a
rapidly expanding library of anomaly detection methods.

Introduction
An anomaly in a time series is a pattern that does not con-
form to past patterns of behavior in the series. It is used in a
wide variety of fields such as intrusion and fraud detection,
tracking KPIs, and medical sensor technologies. Early detec-
tion of anomalies is vital for ensuring undisrupted business
and efficient troubleshooting.

Time series anomaly detection is a difficult problem for
a multitude of reasons: (1) What is defined as anomalous
may differ based on application. There is no one-size-fits-
all method (Kejariwal 2015; Laptev, Amizadeh, and Flint
2015). (2) Anomaly detection often must be done on real-
world streaming applications. Strictly speaking, an online
anomaly detection method must determine anomalies and
update all relevant models before occurrence of the next
time step (Saurav et al. 2018). Depending on the needs of
the user, it may be acceptable to detect anomalies period-
ically. Regardless, computational efficiency is vital which
presents a challenge. (3) Given the application-specific na-
ture of anomaly detection, it is unlikely that anomaly de-
tection systems will have access to large numbers of tagged

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

datasets. Therefore, these systems will likely encounter be-
havior that was not present in the training data. (4) As an
anomaly is a pattern that does not conform to past patterns
of behavior, non-anomalous data tends to occur in signifi-
cantly larger quantities than anomalous data. This guaran-
tees the imbalanced class problem for a machine learning
classifier approach to anomaly detection. (5) It is important
to detect as many anomalies as accurately and efficiently as
possible, but minimizing false positives is also desirable to
avoid alarm fatigue. This demands the selected anomaly de-
tection method be optimal to the application for success. (6)
There is a massive wealth of anomaly detection methods to
choose from.

Because of these difficulties inherent in time series
anomaly detection, we present a framework for automating
the classification of time series and choice of anomaly detec-
tion method based on the characteristics the time series pos-
sesses. For example, if the time series data in a user’s appli-
cation exhibits concept drift, the user may want to consider a
forecasting RNN and not Twitter AnomalyDetection. If the
time series exhibits trend, Donut’s variational auto-encoder
may be a good choice. After a discussion of time series char-
acteristics and datasets, we proceed with a description of all
anomaly detection methods we experiment with, parameters
used, and how we evaluate the performance of the methods.
After obtaining the results, we derive several guidelines on
method selection by time series characteristics and outline
areas for future work.

Preliminaries
We discuss the time series characteristics under considera-
tion, how to detect them, and the evaluation datasets.

Time Series Characteristics
A time series is stationary if the mean, variance, and au-
tocorrelation structure are constant for all time (Natrella
2013). A typical first step for determining stationarity is con-
ducting an Augmented Dickey-Fuller test, a statistical unit
root test which can determine how strongly a time series is
defined by a trend (Brownlee 2016). The Levene test is a
test for nonconstant variance (Pardoe 2018). Although other
such tests exist, the Levene test does not require terms to be
drawn from a normal distribution.

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

364

Figure 1: An example of concept drift. The posterior proba-
bility of the run length at each time step using a logarithmic
color scale is included in the bottom plot.

Non-stationary time series may exhibit seasonal behav-
ior. It is often necessary to analyze the autocorrelation func-
tion (ACF) which displays the correlation for time series
observations with its lags (observations from previous time
steps) (Keshvani 2013). A time series that exhibits seasonal-
ity will show a repetitive pattern in its autocorrelation plot.
If most points are within the confidence intervals of an ACF
plot, the time series may not contain seasonality. In addi-
tion to analyzing an ACF plot, one could consider using
a Ljung-Box test. Other behaviors that may be exhibited
by non-stationary time series include trends and concept
drift where the definition of normal behavior changes over
time (Saurav et al. 2018). Concept drifts can be difficult to
detect especially if one does not know beforehand how many
concept drifts there are. In (Adams and MacKay 2007), this
number does not need to be known. An implementation of
this paper is available in (Kulick 2016) using t-distributions
for each new concept, referred to as a run. The posterior
probability (P (rt|x1:t)) of the current run rt’s length at each
time step (xi for i = 1...t) can be displayed, using a loga-
rithmic color scale (see Figure 1).1

1https://github.com/cynthiaw2004/adclasses contains Jupyter
notebooks for determining the presence of all characteristics.

Example Datasets
Almost all datasets we use come from the Numenta
Anomaly Benchmark (Numenta 2018) repository which
contains pre-annotated datasets across a wide variety of
domains. The exception is the ibm-common-stock-closing-
prices dataset, from (Hyndman 2018) which consists of the
daily stock closing prices for IBM from 1962 to 1965. This
dataset was annotated following the Numenta instructions
on (Numenta 2017) and (Lavin and Ahmad 2015). Numenta
instructions require a probationary period (first 15% of the
dataset) where models are allowed to learn normal patterns
of behavior. For this reason, no anomalies are labeled in the
probationary period. Missing time steps are filled using lin-
ear interpolation. Using the statistical tests listed in the pre-
vious subsection, we create corpora of behaviors: 3 datasets
each for seasonality, trend, and concept drift. In Table 1, we
provide a summary of all datasets under consideration.

Online Anomaly Detection Methods
We now define and discuss a selection of anomaly detec-
tion methods. Given a time series, ARMA models are tools
for understanding and forecasting future values by regress-
ing the variable on its own past values (AR) and model-
ing the error term as a linear combination of current and
past error terms (MA). By differencing between current
and past values, the time series can hopefully be made sta-
tionary (ARIMA). If seasonality is incorporated, we have
a SARIMA model. Much manual analysis can be neces-
sary (see Box-Jenkins method (Hoff 1983)) in choosing
the parameters for a SARIMA model (Nau 2018) although
there are general guidelines (Fomby 2008; SAS 2018) and
libraries that can automatically determine parameters, but
these methods are not perfect (Bourgeon 2016) and can
be very slow. Facebook Prophet is an additive regression
model that begins with a special time series decomposi-
tion method (y(t) = g(t) + s(t) + h(t) + εt) which in-
volves a piecewise linear or logistic growth curve trend
(g(t)), a yearly seasonal component modeled using Fourier
series or a weekly seasonal component (s(t)), and a user
provided list of holidays (h(t)) (Taylor and Letham 2017;
Sean J. Taylor 2017). εt is the error term and is assumed
to be normally distributed. Parameters are determined us-
ing MAP (maximum a posteriori) optimization. Prophet can
automatically detect changes in trends by selecting change
points between concept drifts. The user can also provide cus-
tom change points if desired. However, this requires know-
ing where change points are beforehand. Prophet was orig-
inally designed for daily time steps (Davidson-Pilon 2017).
Although adjustments have been made to deal with sub-day
time steps, time steps larger than a day can have unexpected
behaviors (Letham 2017). Given a window of time steps in
the past, multi-step forecasting RNNs can be trained to pre-
dict a window of time steps in the future. We use the multi-
step prediction RNN with GRU units2 developed in (Saurav

2GRU units adapt more quickly to concept drifts than LSTMs
and are computationally more efficient (Yin et al. 2017) which is
important as many anomaly detection tasks must be done online.

365

Name Length Step Min Max Median Mean # Anomalies # Miss Corpora
nyc taxi 10320 30 min 8 39197 16778 15137.569 5 0 seasonal (48)
exchange-2 cpm results 1624 1 hr 0 1.051 0.295 0.337 2 25 seasonal (24), possible trend
ambient temperature system failure 7267 1 hr 57.458 86.223 71.858 71.242 2 621 possible trend, seasonal (24)
ibm-common-stock-closing-prices 1008 1 day 306 598.50 460.625 462.818 2 452 possible trend
grok asg anomaly 4621 5 min 0 45.623 33.445 27.685 3 0 concept drift
rds cpu utilization cc0c53 4032 5 min 5.190 25.103 6.082 8.112 2 1 concept drift
rds cpu utilization e47b3b 4032 5 min 12.628 76.230 16.678 18.935 2 0 concept drift

Table 1: Summary of all datasets. Statistics were gathered before any linear interpolation if time steps are missing. Step is the
time step size, Min and Max are the minimum and maximum values, and # Miss is the number of missing time steps in the
dataset. Corpora is one or more corpora the dataset belongs to by characteristics it displays. If there is seasonality, we include
the number of time steps per period in parenthesis.

et al. 2018) which can adapt to concept drifts after an ini-
tial period of training. The RNN is then trained and tested
incrementally to determine anomaly scores as an average of
the prediction error. Computing the score as an average is
important; a very short-term anomaly will only affect the
anomaly score for a short period of time. If the anomaly
score is consistently large, however, this alerts the RNN to
adapt to the new normal by changing its parameters accord-
ingly. Twitter’s AnomalyDetection (AD) (Twitter 2015;
Hochenbaum, Vallis, and Kejariwal 2017) detects anoma-
lies using a modified version of the extreme studentized de-
viate test (ESD). As a preprocessing step, the time series
is made stationary by applying a modified version of STL
(seasonal and trend decomposition using LOESS) where the
median of the time series is used to represent the trend com-
ponent. The authors in (Hochenbaum, Vallis, and Kejariwal
2017), argue that the mean and standard deviation are very
sensitive to anomalous data and that the median is statisti-
cally more robust. Thus, for the ESD test statistic, instead of
the mean, the authors use the median, and, instead of stan-
dard deviation, the authors use MAD (median of the abso-
lute deviations from the sample median) to compute the test
statistic. Unfortunately, this method may not adapt well to
concept drift. Twitter counters this by stating that anomalies
are point-in-time anomalous data points whereas concept
drifts (or breakouts) “ramp up from one steady state to an-
other” (Kejariwal 2015). A downside of using ESD is that an
upper bound on the number of anomalies must be specified,
otherwise ESD will assume that up to half of the data can be
anomalous (Choudhary, Hiranandani, and Saini 2018). De-
spite STL’s innate capability to handle missing time steps,
Twitter’s AD library will error out and suggest replacing
NANs with interpolated values as Twitter AD uses R’s de-
fault stl library instead of the stlplus library. Donut (Xu et al.
2018) is an unsupervised anomaly detection method based
on variational auto-encoders (VAE) available in Python (Xu
2018). VAE is a deep Bayesian network, and as it is not a
sequential model, a sliding window is used over the time
series. Optimizing the evidence lower bound (ELBO) using
Stochastic Gradient Variational Bayes (SGVB) is tradition-
ally used to train VAEs. However, abnormal patterns and/or
missing points need to be avoided as much as possible when
training the VAE-based model for anomaly detection; thus,
the authors use a modified version of ELBO to indicate ei-
ther when an anomaly has occurred (if a supervised task, but

not necessary) or if there are missing points. This modifica-
tion helps Donut reconstruct missing points using a MCMC
(Markov chain Monte Carlo) based missing data imputation
technique. According to (Xu 2018), the smallest time step
is used to resample the time series. The likelihood of a win-
dow can be returned by the VAE (using the last data point of
the window), and a probability density can be computed, but
the authors discover that this method does not work well in
practice. Thus, they determine the “reconstruction probabil-
ity” (An and Cho 2015) using the variational posterior. This
is not a well-defined probability density.

Note that some popular anomaly detection “methods”
were not considered because we do not wish to compare
frameworks but the anomaly detection methods themselves.
For example, Yahoo’s EGADS (Laptev, Amizadeh, and Flint
2015) is a framework for anomaly detection. It includes 3
separate components: forecasting, detecting, and alerting.
The user could choose ARIMA for the forecasting compo-
nent, the prediction error for the detecting component, and
k-sigma for the alerting component. Many of these com-
ponents are already discussed above. Our goal is to com-
pare the methods and not frameworks. Other popular frame-
works include: LinkedIn’s Luminol, Etsy’s Skyline, Men-
tat Innovation’s datastream.io, eleme’s banshee, Opprentice,
and Lytics Anomalyzer.

Experiment Setup
For SARIMA parameters, we initially use the guidelines
in (SAS 2018) based on the presence of seasonality and
trend. For example, if there is seasonality (with s time steps
every cycle) but no trend, consider using seasonal exponen-
tial smoothing (SARIMA(0, 1, s+1)× (0, 1, 0, s)). If there
are invertibility issues, we use Pyramid’s auto.arima which
is usually considerably slower and more memory intensive.
Pyramid determines the best set of parameters according to
a given information criterion (we use ‘AIC’) and the step-
wise algorithm (Hyndman 2008) which is less likely to over-
fit compared to an extensive grid search. Like (Numenta
2018), we maintain a cumulative/rolling estimate of the pre-
diction error (Gaussian) distribution and use the Q-function
to obtain an anomaly score between 0 and 1. For Face-
book Prophet, we generally use default parameters, allow-
ing Prophet to automatically determine if there are change
points, etc. We use “linear” for the growth parameter as set-
ting it to “logistic” requires knowing a maximum and min-

366

imum value the data will reach (van der Merwe 2018). In
an online setting, this knowledge is often not known. As
seasonality is a time series characteristic determined be-
forehand, this is the only parameter we manually adjust in
Prophet. Q-functions are also used to determine anomaly
scores based on the prediction error. For RNNs, we use 3
GRU layers ending with a dense layer. We use the Adam
optimizer with a learning rate of .0005 and β1 = .5. The
number of input observations (nlag) is 100, the number of
output observations (nseq) is 50, the number of epochs is 50,
and the number of cells in each layer is 40. The initial train-
ing period matches the probationary period. Extensive grid
search in an online, streaming setting with this many param-
eters is typically not possible. In addition, as anomalies are
(and should be) rare, it can be difficult to obtain a train and
test set containing both anomalous and non-anomalous be-
havior. Instead, our goal is to choose models and parameters
as intelligently as possible based on discovered time series
characteristics. Although an anomaly score is naturally re-
turned for the RNN, this score is data dependent and not
normalized. Thus, we apply the Q function on the anomaly
score to normalize it. For Twitter AnomalyDetection, the
direction of anomalies is set to ‘both’, α = .001, and the
upper bound percentage on the number of anomalies is set
to 2

of time steps to emulate (Numenta 2018) as in a streaming
setting, it is impossible to know the number of anomalies be-
forehand. The anomaly score is the label (0 or 1). For Donut,
we use the default sliding window of 120 whenever possible
(or half the default when not), and apply the Q function to
the anomaly score as it is not well-defined.

Results
To evaluate and compare the anomaly detection methods on
different time series behaviors, we use the standard metrics
of precision, recall, and F-score on windows as due to class
imbalance, accuracy is not a good measure, and points are
too fine a granularity. For the purposes of this paper, we use
the same window size as in (Numenta 2018) which is 10%
of the number of time steps in the time series divided by the
number of ground truth anomalies.3 All anomaly detection
method times reported were done on a laptop with an Intel
Core i7-4710MQ CPU @ 2.50GHz, 16 GB of RAM, run-
ning Ubuntu 16.04. In Tables 2 and 3, every anomaly detec-
tion method considered returns an anomaly score between 0
and 1 or is adjusted to return a score (via a Q function). A
threshold is set on this score to determine if the window is an
anomaly. To choose this threshold, we use the same method-
ology as in (Numenta 2018). However, instead of choosing
the threshold (in steps of .0001) based on what returns the
best NAB score, we choose the threshold based on what re-
turns the minimum number of window mistakes across all
datasets comprising a corpus (where every behavior type has

3Like in (Numenta 2018), we do not remove the probationary
period of the time series before determining window length. Also,
we acknowledge that the number of ground truth anomalies is not
known beforehand in an online setting. This means that the window
size will most likely be an application specific user choice.

Figure 2: Top plot: The RNN’s predicted outliers (red cir-
cles) versus the ground truth outliers (green x’s) on the time
series rds cpu utilization e47b3b. Ground truths are pro-
vided in Numenta’s repository. Bottom plot: The anomaly
scores (not yet normalized) for the RNN. How quickly the
anomaly score decreases after an anomaly depends on the
size of the prediction window.

its own respective corpus).4 In determining the threshold,
we chose to focus on false negatives more than false posi-
tives and give a weight of 1 to false negatives (wFN = 1)
and .5 to false positives (wFP = .5). The choice of weights
is application dependent and can affect how anomaly detec-
tion methods perform. For example, SARIMA suffers with
a 0 F-score for trend in Table 2. This is because it gives no
predictions under wFP = .5. However, SARIMA will ac-
tually give anomaly predictions if this weight is set lower
(wFP = .1 returns a F-score of .4 for SARIMA).5

Discussion and Conclusion
The RNN in (Saurav et al. 2018) uses GRU units to adapt
more quickly to concept drifts, and the RNN achieves the

4Note that Twitter AD’s anomaly score threshold appears very
small (.0001), but recall that Twitter AD returns a label of 0 or 1,
and this label is the anomaly score.

5Precision-recall curves for every behavior-method combina-
tion (15 total) are available in https://github.com/cynthiaw2004/
adclasses.

367

SARIMA Prophet RNN Twitter Donut
Threshold P R F-Score Threshold P R F-Score Threshold P R F-Score Threshold P R F-Score Threshold P R F-Score

Seasonality 1 1 .22 .36 .9999 .6 .67 .63 .9999 .33 .78 .47 .0001 1 .22 .36 1 .33 .44 .38
Trend 1 0 0 0 1 1 .17 .29 .9999 .14 .33 .2 .0001 1 .17 .29 1 .43 .5 .46
Concept Drift 1 1 .43 .6 1 1 .29 .44 .9835 .46 .86 .6 .0001 .67 .29 .4 1 .5 .57 .53

Table 2: Results on behavior corpora. Each method returns an anomaly score between 0 and 1. The anomaly threshold that
minimizes the number of window mistakes across all datasets that comprise the corpus is shown, where false positives are
weighted .5 and false negatives are weighted 1. For example, a threshold of .9835 for the RNN returns the minimum number of
weighted mistakes across all three concept drift datasets. The precision (P), recall (R), and F-score across all datasets making
up the corpus is displayed in the table, where the best F-score for a behavior is bolded in its respective row.

SARIMA Prophet RNN Twitter Donut
FP FN Time FP FN Time FP FN Time FP FN Time FP FN Time

Seasonality
nyc taxi 0 3 18.23 0 2 27.79 5 0 597.88 0 4 .66 3 4 38
exchange-2 cpm results 0 2 1.81 9 0 8.27 0 2 69.01 0 1 .29 1 1 3.58
ambient temperature system failure 0 2 7.73 1 1 31.21 5 0 386.69 0 2 .49 3 0 25.65

Trend
exchange-2 cpm results 0 2 1.81 0 1 8.27 0 2 69.01 0 1 .29 1 1 3.58
ambient temperature system failure 0 2 7.73 0 2 31.21 5 0 386.69 0 2 .49 3 0 25.65
ibm-common-stock-closing-prices 0 2 .46 0 2 5.55 1 2 46.31 0 2 .20 0 2 3.51

Concept Drift
grok asg anomaly 0 2 5.84 0 3 26.15 3 0 312.31 1 3 .32 1 1 15.12
rds cpu utilization cc0c53 0 1 5.55 0 1 28.06 0 1 297.57 0 0 .5 2 1 14.76
rds cpu utilization e47b3b 0 1 22.44 0 1 20.18 3 0 296.54 0 2 .37 1 1 15.18

Table 3: Results on all datasets. As a dataset may appear in multiple corpora, a single dataset may appear multiple times in
this table but give different results as thresholds are determined on a behavioral basis (using wfp = .5 and wfn = 1) and not
a dataset basis. The number of false positives (FP) and false negatives (FN) as well as the time it took (in seconds) for the
anomaly detection method to produce anomaly scores are shown.

highest F-score (tied with SARIMA) out of all methods for
the concept drift corpus (Table 2). However, the RNN also
has a total of 22 false positives (see Table 3 and Figure 2).
Despite the occurrence of false positives, these false posi-
tives tend to occur very closely to the location of ground
truth anomalies. We try to counteract this by using win-
dow precision and recall instead of point precision and re-
call, but if the window size is small, false positives can still
occur. There is also a tradeoff on the choice of nseq . The
larger nseq is, the earlier the change detection happens, but
the longer false positives will persist after the occurrence
of a true anomaly. The authors demonstrate this behavior
by experimenting with nseq = 1, 5, 10 in the literature. As
we use nseq = 50 for speed considerations, this increases
the number of false positives. However, these false positives
still occur very closely to ground truths. SARIMA’s ability
to handle concept drifts is surprising given that its parame-
ters are only determined in the probationary period (whereas
the concept drift occurs after the probationary period) with
an average RMSE of 1.30 across all 3 concept drift datasets.
Although Prophet can detect change points automatically,
it was middle of the pack. Twitter AnomalyDetection per-
formed the worst on concept drift, but this is not surprising
as Twitter has stated that change points are not the focus
of AnomalyDetection (Kejariwal 2015). Donut performs the
best on trend which follows as Donut was built to handle
“seasonal KPIs with local variations” with an explicit exam-
ple of such a variation being trend (Xu et al. 2018). Prophet
does well on the seasonality corpus although all datasets
considered use 5 minute time steps. It would be interesting
to analyze the performance of Prophet on seasonal time se-
ries with different time step sizes as Prophet’s behavior on
time steps larger than a day has been reported to be unex-
pected (Letham 2017). Prophet differs from SARIMA in that
it formulates this problem as a curve-fitting exercise (Hastie

and Tibshirani 1987). Its decomposition method has a com-
ponent specifically built for seasonality which might explain
its performance.

In this paper, we have analyzed the performance of 5
anomaly detection methods (SARIMA, Facebook Prophet,
multistep forecasting RNN, Twitter AD, and Donut) on sev-
eral time series characteristics (seasonality, trend, and con-
cept drift). We create corpora of behaviors with 3 datasets for
every time series characteristic. By analyzing the window
precision, recall, and F-score we determine which meth-
ods tend to perform better or worse on these characteris-
tics. We observe that (1) despite the prevalence of false
positives, the RNN with GRU units adapts well to concept
drifts whereas Twitter AD suffers, (2) Facebook Prophet per-
forms well on seasonality, suggesting that decomposition-
based methods with components specifically for seasonal-
ity aid in performance on this characteristic, and (3) al-
though all methods suffer on trend, Donut, the variational
auto-encoder, appears to perform the best on this behav-
ior, suggesting that VAEs may be a worthwhile choice for
trend. There are many avenues for future work. In addi-
tion to considering more datasets for each behavior, we
could look at more behaviors themselves such as missing
time steps or nonuniform time step sizes. For example,
Donut can innately handle missing time steps, but Twitter
AnomalyDetection does not. Inclusion of contextual vari-
ables may change initial perceptions of what is anomalous.
Another avenue for future work is expanding the reper-
toire of anomaly detection methods (see (Gupta et al. 2014;
Wu 2016)). Numenta’s Hierarchical Temporal Memory Net-
work can be used for anomaly detection although it cur-
rently only works for univariate time series. Robust Princi-
ple Component Analysis (RPCA) with Netflix SURUs and
HOT-SAX are other possibilities and exploring what types
of time series behaviors these methods perform well (or even

368

not well) at would help the community. If the time series
data in a user’s application exhibits concept drift, the user
may want to consider a RNN with GRU units and not Twit-
ter AnomalyDetection. Instead of doing an extensive litera-
ture review and trying every anomaly detection method in a
rapidly expanding library, one could just observe character-
istics present in the data and narrow the choice down to a
smaller class of promising anomaly detection methods.

Acknowledgements
Dr. Mueen’s work is supported by NSF Grant OIA-1757207.

References
Adams, R. P., and MacKay, D. J. 2007. Bayesian online change-
point detection. arXiv preprint arXiv:0710.3742.
An, J., and Cho, S. 2015. Variational autoencoder based anomaly
detection using reconstruction probability. Special Lecture on IE
2:1–18.
Bourgeon, R. 2016. Seasonality not taken account of in
auto.arima(). https://stats.stackexchange.com/questions/213201/
seasonality-not-taken-account-of-in-auto-arima.
Brownlee, J. 2016. How to check if time series data is station-
ary with python. https://machinelearningmastery.com/time-series-
data-stationary-python/.
Choudhary, S.; Hiranandani, G.; and Saini, S. K. 2018. Sparse de-
composition for time series forecasting and anomaly detection. In
Proceedings of the 2018 SIAM International Conference on Data
Mining, 522–530. SIAM.
Davidson-Pilon, C. 2017. Extension to hourly components? https:
//github.com/facebook/prophet/issues/29.
Fomby, T. B. 2008. Exponential smoothing models. Man-
nual SAS/ETS Software: Time Series Forecasting System. Version
6:225–235.
Gupta, M.; Gao, J.; Aggarwal, C. C.; and Han, J. 2014. Outlier de-
tection for temporal data: A survey. IEEE Transactions on Knowl-
edge and Data Engineering 26(9):2250–2267.
Hastie, T., and Tibshirani, R. 1987. Generalized additive models:
some applications. Journal of the American Statistical Association
82(398):371–386.
Hochenbaum, J.; Vallis, O. S.; and Kejariwal, A. 2017. Auto-
matic anomaly detection in the cloud via statistical learning. arXiv
preprint arXiv:1704.07706.
Hoff, J. C. 1983. A practical guide to Box-Jenkins forecasting.
Lifetime Learning Publications.
Hyndman, R. 2008. J., and y. khandakar:“automatic time series
forecasting: The forecast package for r,”. Journal of Statistical
Software 26(3).
Hyndman, R. 2018. Time series data library. https://datamarket.
com/data/list/?q=provider:tsdl.
Kejariwal, A. 2015. Introducing practical and robust anomaly de-
tection in a time series. https://blog.twitter.com/engineering/en us/
a/2015/introducing-practical-and-robust-anomaly-detection-in-a-
time-series.html.
Keshvani, A. 2013. How to use the autocorreation func-
tion (acf)? https://coolstatsblog.com/2013/08/07/how-to-use-the-
autocorreation-function-acf/.
Kulick, J. 2016. Bayesian changepoint detection. https://github.
com/hildensia/bayesian changepoint detection.

Laptev, N.; Amizadeh, S.; and Flint, I. 2015. Generic and scalable
framework for automated time-series anomaly detection. In Pro-
ceedings of the 21st ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1939–1947. ACM.
Lavin, A., and Ahmad, S. 2015. The numenta anomaly benchmark
(white paper). https://github.com/NAB/wiki.
Letham, B. 2017. Sub-daily data. https://github.com/facebook/
prophet/blob/v0.2/notebooks/non-daily data.ipynb.
Natrella, M. 2013. Engineering statistics handbook: Sta-
tionarity. https://www.itl.nist.gov/div898/handbook/pmc/section4/
pmc442.htm.
Nau, R. 2018. Summary of rules for identifying arima models.
https://people.duke.edu/∼rnau/arimrule.htm.
Numenta. 2017. Anomaly labeling instructions. https://drive.
google.com/file/d/0B1 XUjaAXeV3YlgwRXdsb3Voa1k/view.
Numenta. 2018. The numenta anomaly benchmark. https://github.
com/numenta/NAB.
Pardoe, I. 2018. Tests for constant error variance. https://
onlinecourses.science.psu.edu/stat501/node/367/.
SAS. 2018. Equations for the smoothing models.
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/
default/viewer.htm#etsug tffordet sect014.htm.
Saurav, S.; Malhotra, P.; TV, V.; Gugulothu, N.; Vig, L.; Agarwal,
P.; and Shroff, G. 2018. Online anomaly detection with concept
drift adaptation using recurrent neural networks. In Proceedings
of the ACM India Joint International Conference on Data Science
and Management of Data, 78–87. ACM.
Sean J. Taylor, B. L. 2017. Prophet:forecasting at scale. https:
//research.fb.com/prophet-forecasting-at-scale/.
Taylor, S. J., and Letham, B. 2017. Forecasting at scale. URL:
https://facebookincubator. github. io/prophet.
Twitter. 2015. Anomalydetection. https://github.com/twitter/
AnomalyDetectionc.
van der Merwe, R. 2018. Implementing facebook prophet ef-
ficiently. https://towardsdatascience.com/implementing-facebook-
prophet-efficiently-c241305405a3.
Wu, H.-S. 2016. A survey of research on anomaly detection for
time series. In Wavelet Active Media Technology and Informa-
tion Processing (ICCWAMTIP), 2016 13th International Computer
Conference on, 426–431. IEEE.
Xu, H.; Chen, W.; Zhao, N.; Li, Z.; Bu, J.; Li, Z.; Liu, Y.; Zhao,
Y.; Pei, D.; Feng, Y.; et al. 2018. Unsupervised anomaly detection
via variational auto-encoder for seasonal kpis in web applications.
In Proceedings of the 2018 World Wide Web Conference on World
Wide Web, 187–196. International World Wide Web Conferences
Steering Committee.
Xu, H. 2018. Donut. https://github.com/haowen-xu/donut.
Yin, W.; Kann, K.; Yu, M.; and Schütze, H. 2017. Compara-
tive study of cnn and rnn for natural language processing. arXiv
preprint arXiv:1702.01923.

369

