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Abstract

We set out to compare the utility of different representations
of driving simulator time series data in the context of both
supervised and unsupervised learning algorithms. Given the
task of identifying similar time series; it is important to un-
derstand how a dataset of time series samples might be dis-
tributed and how effectively different methods capture the
groupings of distinct behaviors. First we engineer three rep-
resentations of the driving simulator data: converting them
to feature vectors, using the raw time series, and rendering
them as images. At which point, we introduce a novel method
for comparing time series using temporal and spatial align-
ments. Then, we employ a battery of clustering algorithms
to isolate groups of samples with similar traits and evaluate
the quality of clusters produced. We also explore the per-
formance of k-NN classifiers using the different dissimilar-
ity measures resulting from these representations. While our
methods demonstrated some sensitivity to the data’s class la-
bels (0.43 cluster purity and classification accuracy vs. 0.33
base-line values) we assert that the classes are not easily sepa-
rable; at least when time series are compared globally (suffer-
ing from being “weakly-labelled and strongly aligned” data).

Keywords— Time Series Clustering, DTW, Driving Simulator

Introduction
In order to best protect everyone on the road, there must be a con-
sistent way to identify drivers with skill deficits or cognitive im-
pairments so to evaluate the risk they present to themselves and
others. Driver safety is an established field of research where sub-
ject matter experts (SMEs) typically construct domain-specific fea-
tures, variables as input for machine learning classifiers to train
and test on, for the purpose of identifying and characterizing dif-
ferent driving behaviors. Employing SMEs can be cost-ineffective
for some research efforts, and the specialized features developed
may not be applicable to other studies. In recent years driving sim-
ulators have become an increasingly popular method of evaluating
driving performance in a variety of settings without the motor vehi-
cle safety concerns of on-road testing (Walshe, Oppenheimer, and
Winston 2019). Being able to distinguish appropriate from dan-
gerous driving behaviors could be invaluable for preventing motor
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vehicle crashes (Yasar, Berbers, and Preuveneers 2008) and im-
proving evaluator safety within state licensing procedures by iden-
tifying unskilled drivers beforehand (McDonald et al. 2015).

With so many aspects of driver safety and driving behavior un-
der investigation, there is a need to quickly and reliably determine
which driving records are most alike and to articulate which charac-
teristics unify them. Conversely, detecting outliers and anomalous
behaviors is of equal importance when examining a cache of driv-
ing simulator data (Wong et al. 2018). Thus, this paper focuses on
numerical methods for processing and identifying time series with
homogeneous characteristics, distinct from other groups of time
series considered to be similar, and to evaluate these methods on
driving simulator data. Specifically, in this paper we compare three
different representations of driving simulator time series data: (1)
converting them to manually engineered feature vectors, (2) using
the raw time series data, and (3) rendering them as images with the
driving paths. We then compare a collection of distance and dissim-
ilarity functions in the context of input for partitioning algorithms.
In addition to comparing existing functions, we also propose a new
one, which we call Dynamic Coordinate Locally Aligned Warp-
ing (DCLAW). DCLAW is an an extension of FastDTW (Salvador
and Chan 2007), that leverages the spatiotemporal (measurements
through space over a period of time) aspect of the driving simula-
tor data to align time series. Finally, we compare and contrast all
these functions in terms of classification accuracy in automatically
detecting drivers diagnosed with ADHD using a k-NN classifier.
Particular concern is paid attention to the scalability of all con-
sidered methods, as large troves of driving simulator data may be
computationally infeasible to process by traditional methods.

The rest of this paper is organized as follows: first we review sev-
eral recently developed approaches to clustering time series data.
Next, we discuss the driving simulator data collected and analyzed
for this study. Then, we describe the dissimilarity measurements
used to construct matrices as the basis for clustering. Finally, we
review our experimental results and posit several extensions to our
algorithms as future work for manipulating larger datasets and dis-
tilling clusters more indicative of the data’s class labels.

Background

This section presents a brief introduction to Dynamic Time Warping
(DTW), one of the most common techniques to assess the dissim-
ilarity between time series (since much of our work builds upon
DTW), as well as some brief description of the various clustering
algorithms used in this paper. Moreover, throughout this paper, we
will use the term samples to refer to individual time series within a
dataset, i.e. to the time series that represent a single driving simu-
lator session in our application domain.
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Dynamic Time Warping

Dynamic Time Warping (DTW) has long been the preferred tech-
nique for assessing the dissimilarity between time series in count-
less studies (Ten Holt, Reinders, and Hendriks 2007). Intuitively
DTW aligns two time series, stretching one of them along the time
dimension, trying to find the time warping that minimizes their
difference, i.e., the aggregate residual distance between aligned
time steps. The major drawback of DTW is its O(n2) complex-
ity for time series of length n, prohibiting its effective use for
larger and longer time series datasets. As a brute force method,
DTW will always generate the minimum warping distance between
time series. There have been numerous well-documented exten-
sions to the original algorithm that can vastly increase its scala-
bility and predictive power (Al-Naymat, Chawla, and Taheri 2009;
Hartmann and Link 2010; Bettens and Todoroff 2009).

For example, using Piecewise Aggregate Approximations
(PAAs), which has been successful in non-trivially reducing the
number of pairwise comparisons for computing time series simi-
larity by condensing multiple time-steps into fewer frames through
averaging. Applying abstraction, the moving average yields a
trade: sacrificing the approximation’s fidelity to the original series
for a substantially quicker computation time (Keogh and Pazzani
2000). Compressing the resolution of comparison across time axes
too much may wash out the discernible features that typify a certain
class of time series. More recent efforts utilize a derivative algo-
rithm called FastDTW that scales linearly to compute near-optimal
warping dissimilarity between time series samples.

During our review of the literature we found no existing vari-
ants of DTW that leverage the spatial alignment of time steps when
positional data is available, which is the basis of our proposed dis-
similarity function, DCLAW.

Partitioning Algorithms

In the experimental evaluation presented in this paper, we em-
ployed the following algorithms:

• k-Means divides a dataset into k clusters by identifying k cen-
troids (cluster centers), and assigning each sample to the closest
centroid. A problem of k-Means is that it cannot distinguish clus-
ters from noisy samples, a problem exacerbated by the temporal
element of time series data (Ernst, Nau, and Bar-Joseph 2005;
Ding et al. 2008). k-Medoids is a variant of k-Means, which does
not require calculating the mean of collections of points in the
dataset, since it constraints the set of possible centroids to the
actual points in the dataset. Thus, it is useful for domains where
calculating the mean of two points is ill-defined (such as time
series data).

• DBSCAN (Ester et al. 1996): Density Based Spatial Clustering
of Applications with Noise is a clustering algorithm based on
grouping together points that are closely packed together. Points
in areas of low density left ungrouped are marked as outliers.

• Shared Nearest Neighbor clustering (SNN) (Ertoz, Steinbach,
and Kumar 2002) is an alternative to DBSCAN that uses the
number of nearest neighbors two points in a dataset share as
an affinity measure. Noise is separated from clustered points by
forming a graph from these affinities and imposing a threshold
on the minimum number of shared points to reduce the number
of edges to preserve.

• Spectral clustering (Shi and Malik 2000): uses the eigenvalues
of the dissimilarity matrix to perform dimensionality reduction
before performing clustering. It has been shown that using the
FastDTW dissimilarity measure for comparing velocity profiles
as a basis for spectral clustering can successfully predict vehicle
states (Lohrer and Lienkamp 2015).

• k-NN: A k-Nearest Neighbor Classifier (Cover and Hart 1967)
is a supervised learning methods that assigns a label to an unseen
sample by looking for the k most similar samples in the training
set, and then predicting the majority label amongst these k most-
similar neighbors. Using DTW and its derivatives as the basis
for constructing a k-NN classifier has yielded promising results
across many domains (Bagnall and Lines 2014).

Methods

In this section we give a detailed description of the origins of the
data used in all experiments reported on herewithin, and the rep-
resentations with which samples were compared. We review dis-
similarity measures such as the FastDTW algorithm, and present
our extension to it, DCLAW; both used to compare the time series
directly. At which point, we describe the configurations used in the
partitioning algorithms listed above and their respective parame-
ters’ implications on partitions produced. Lastly, we describe the
evaluation metrics used to measure the success of each partitioning
as it pertains to both unsupervised and supervised learning tasks.

Simulator Data

Our data was recorded from 30 participants in a behavioral study of
adolescent drivers conducted at CHOP (NSF Grant No. 1521943),
15 of whom had confirmed diagnoses of ADHD and had been pre-
scribed medications by their physicians prior to being considered as
candidates. Participants with confirmed diagnoses of ADHD were
considered the variable group as they were instructed to drive all
4 simulated tracks (Drive 1, Drive 2, Drive 3, Drive 4) twice: once
while taking their medication (regulated), and once while taking
a placebo (delayed). The other 15 individuals, the control group,
had no such diagnoses and were instructed to drive the simulated
tracks only once. One participant opted to stop recording part-way
through their session due to motion sickness, so we removed the
incomplete drive from the dataset (N = 179 total sessions).

For all our experiments we recorded time series data composed
of multiple channels sampled at 60Hz; however, we down-sampled
to 10Hz by selecting every 6th frame to reduce computation times
for all similarity measures. Acknowledging that this method is sus-
ceptible to picking up noise from higher frequencies, we opted not
to use PAA to avoid smoothing of already homogeneous charac-
teristics within a small dataset. Recordings varied in length from
3,829 to 9,746 frames, with an average of 5,728 frames; this is
equivalent to 6-17 minutes with an average of roughly 9 and a half
minutes. Several dozen channels compose each recording; we limit
our experiments to using a few to minimize reliance on domain
knowledge:

• posx : The x coordinate on the simulation’s Cartesian map.

• posz : The z coordinate on the simulation’s Cartesian map.

• throttle : The percent depression of the accelerator pedal where
0 corresponds to foot off the gas, and 1 is hard acceleration.

• brake : The percent depression of the brake pedal, where 0 cor-
responds to foot off the brakes, and 1 is hard braking.

• steering : Signed percentage of rotation of the steering wheel
from its resting position at center normalized to the interval
[−0.5, 0.5] where the extremes correspond to one and a half
complete rotations from center in either direction (negative be-
ing left, and positive being right).

• mph speed diff : The miles per hour difference between the sim-
ulated player vehicle and the posted speed limit on the stretch of
road they are driving in each frame.
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Representations of Simulator Data

Going forward we refer to the time series channels described in
the previous section as the raw representation. We explored two
strategies for directly manipulating this representation: comparing
the inputs (throttle, brake, and steering channels) from both sam-
ples; and comparing the speed diff (mph speed diff channels).

Intuitively, the inputs should help establish the partitioning
power of only considering each participants’ interactions with the
simulator’s physical hardware (use of steering wheel, brake and ac-
celerator pedals). Alternatively, the speed diff should establish the
partitioning power of only considering each participants’ vehicle
speed within the context of speed-limited environments (requires
domain knowledge of posted speed limit and vehicle speed).

We pursue both strategies with and without the map coordinates
(posx and posz channels) of the simulated vehicle in each frame; to
determine if temporal or spatial alignments produce dissimilarities
with more partitioning power over the dataset.

Each driving simulator session, which we call a sample, is
recorded and stored as a replay file representing a multivariate T
composed of one univariate time series Ti (a.k.a., a channel) for
each variable i we recorded: time series T = {T1, T2, ..., Td}.
Each channel Tc = [T(1,c), T(2,c), ..., T(n,c)] tracks a particular
value frame by frame over time-steps [t1, t2, ..., tn], referred to as
the time axis. The vector of values from all channels at time-step tj
is denoted T(j,:).

The features representation embodies the traditional approach
for building classifiers that are heavily reliant on domain knowl-
edge and manual feature construction. Each simulator session is
reduced to a feature vector of 43 global values intended to quantify
known aspects of driving behaviors. Features computed to assess
vehicle speed relative to the posted speed limit, braking, acceler-
ation, steering, the number of times the vehicle came to a com-
plete stop, lateral deviation from lane center, mismatch between
the road-following direction and vehicle heading, and the vehicle’s
lateral distance from the center of the road.

Our third approach, the image representation, also has fixed di-
mensions for evaluating each sample; attempting to embed each
session by plotting the vehicle trajectory as a 3-channel RGB im-
age (plotted at size: 1470 by 850 pixels). Each plot is a birds-eye
view framed by the coordinates of the planned route through the
variant (simulated track). Every frame of the session is illustrated
as a plot-point against a black background, where coloration is
determined by the inputs in the given frame (green representing
throttle, red representing brake, and blue representing steer) and
positioned by the map coordinates. Plot-points congregate densely
when the participant vehicle is moving slowly through the environ-
ment and more sparsely when the vehicle is moving faster. Plots
are resized to 350 by 200 pixels with averaging to reduce dimen-
sionality of samples as well as accounting for variance in vehicle
positions along the route. Figure 1 shows one such image.

Dissimilarity Matrices

In order to apply clustering, we precomputed pair-wise dissimilar-
ity matrices between all N samples using a collection of functions,
resulting in non-negative dissimilarity matrix X ∈ RN×N . This
section enumerates the list of dissimilarity/distance functions used
in our experiments for each of the three representations used.

The features and images representations of the data are com-
pared using distance metrics; i.e. dissimilarity measures that satisfy
the conditions of: obeying the triangle inequality; non-negativity;
symmetry; and the identity of indiscernibles. These mathematical
properties provide assurances against false dismissals, confusing
dissimilar samples with similar samples; though such metrics are

Figure 1: Plot-points are circles with radii of 5 pixels
and alpha transparency set to %20 (we don’t want to ig-
nore many plot-points overlapping when the vehicle moves
slowly). RGB channels of every plot-point expect values
in [0, 1] so we manipulate the inputs to colorize each one:
(throttle , brake , 2 ∗ abs(steering)).

often too rigid to work well directly manipulating temporal data of
constant dimension (Ratanamahatana and Keogh 2004).

Features Representation For the features representation,
each feature vector �v is stored as a row in a 2-D matrix V ∈
RN×43. Manhattan (D1) and Euclidean (D2) distances where used
to assess the dissimilarity between row vectors of V to construct
dissimilarity matrices XMan and XEuc. Accounting for the poten-
tial numerical dominance of any particular feature, we separately
normalize the columns of V to have 0 means and standard devi-
ations of 1 each. These normalized feature vectors and the same
distance metrics construct dissimilarity matrices X̂Man and X̂Euc.

Images Representation Comparing samples with the image
representation requires manipulating tensors; each of which has
been reduced to constant dimensions (R350×200×3). Acknowledg-
ing that there are vastly more intensive means of computing image
dissimilarity (Chen and Chu 2005), we opt to simply flatten each
tensor into a 1-D vector. The distances between flattened vectors
are computed with Euclidean and Manhattan distances to construct
dissimilarity matrices XIMan and XIEuc, respectively.

Raw Representation Disimilarity between samples A and B
using the raw representation is computed numerically with Fast-
DTW by finding the approximate minimum distance warp path
ρFastDTW =< (i1, j1), (i2, j2), ... > aligning each time step
A(i,:) to a B(j,:). Residual distance between time steps is calcu-
lated D(A(i,:), B(j,:)). The approximate minimum warping dis-
tance DFastDTW is calculated by recursively reducing A and B to
coarser resolutions using PAA’s, and projecting minimum warping
paths computed to search areas in finer resolutions. The parameter
radius defines the width of the search area around each projected
warping path at all resolutions; where larger values increase the
chances of finding the true minimum distance warping path at the
cost of increased computation times.

For the input time series, FastDTW dissimilarity matrices
X

(r)
FInp(D)

are constructed using both D = D1 and D = D2 with
radii r = {1, 2, 4, 8, 16}. Using the same permutations of parame-
ters and the speed diff time series, FastDTW dissimilarity matrices
X

(r)
FSD(D)

are constructed. This method attempts to meaningfully
compare samples by their performances aligned temporally.
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Algorithm 1: DCLAW for time series A , B with
alignment distance Dalign, FastDTW radius r, and
residual distance Dresid.
Result: DDCLAW

A = {Aalign channels, Aperf channels};
B = {Balign channels, Bperf channels};
ρalign =FastDTW(Aalign, Balign ; Dalign, r);
DDCLAW = 0;
for (i, j) in ρalign do

DDCLAW+ = Dresid(Aperf(i,:)
, Bperf(j,:)

);
end
return DDCLAW ;

The central purpose of using simulated driving environments is
to suss out how different drivers react when commonly exposed to
the same road conditions. For that reason, it’s imperative to under-
stand variance in behaviors over time aligned spatially (i.e. how do
different drivers behave when navigating the same stretch of road).

We propose a new alignment method for DTW we call Dy-
namic Coordinate Locally-Aligned Warping (DCLAW) to compute
a warping path ρalign for alignment channels (i.e. map coordinates
for all experiments) with FastDTW, and then compute the aggre-
gate residual distance DDCLAW between time-steps of the perfor-
mance channels defined by ρalign. Thus, intuitively, DCLAW first
finds the best warping path to align the spatial trajectories of two
driving simulator traces, and then uses that alignment to compare
the other variables (e.g., speed, throttle and brake usage).

Since our map coordinates exist in a Euclidean plane, we al-
ways use Dalign = D2 to compute ρalign. Using the inputs time
series as the performance channels, DCLAW dissimilarity matrices
X

(r)
DInp(D)

are constructed with the same parameterizations as the
FastDTW methods (D = Dresid). The same is true for DCLAW
dissimilarity matrices X

(r)
DSD(D)

constructed with the speed diff
time series as the performance channels. Algorithm 1 shows the
pseudo code of DCLAW.

Given time series A, B of lengths n, m respectively, DCLAW
scales O(n+m); experimentally, the majority of the computational
overhead is incurred obtaining the warping path from the alignment
channels. That is unless there are significantly more performance
channels than alignment ones. In which case, walking the approxi-
mate minimum distance warping path ρalign to compute aggregate
residual distance DDCLAW still requires O(n+m) steps.

Partitioning Algorithms

All dissimilarity matrices X constructed were used as the input for
several popular clustering and classification algorithms:

• DBSCAN: DBSCAN has a collection of parameters. The
first is the size of the neighborhoods ε. We tested ε =
{0.1, 0.2, 0.3, ..., 0.7, 0.8, 0.9}. The second is the minimum
number of connections to other points a graph point must
have to be considered a core point. We tested minedges =
{1, 2, 3, 4, 5, 10, 15, 20, 25}.

• k-Medoids: For all dissimilarity matrices, we tested k =
{2, 3, 4, 5, ..., 18, 19, 20}. Since k-Medoids relies on random
initialization and the final clusters may therefore not be consis-
tently obtained; we ran 100 trials for each k, reporting results
from the trial with maximum median silhouette value.

• k-Nearest Neighbors Classification: We tested k =
{1, 2, 3, 4, 5, 10, 15, 20, 25}.

• Shared Nearest Neighbor Clustering: We tested k =
{1, 2, 3, 4, 5, 10, 15, 20, 25} for the number of neighbors to con-
sider. The second parameter of SNN is the minimum affinity ε
two points must have for their connection to be preserved. We
tested ε = {1, 2, ..., k−1}. After graph reduction, samples with
at least minedges connections are nominated as core points. We
tested minedges = {1, 2, 3, 4, 5, 10, 15, 20, 25}.

• Spectral Clustering: To construct adjacency and degree matrices
A and D, respectively; spectral clustering uses each sample’s k-
nearest neighbors. We tested k = {1, 2, 3, 4, 5, 10, 15, 20, 25}.
Next, samples are projected onto e eigenvectors of the Graph
Laplacian matrix L = D − A, corresponding to the e smallest
eigenvalues; we tested e = {2, 3, 4, 5, ..., 18, 19, 20}. Finally,
we perform 20 trials of e-Means clustering on the projected data
(accounting for random initialization of cluster centers).

Evaluation Metrics

The quality of labellings produced are assessed quantitatively to
determine the fitness of suggested partitions derived from X with
respect to the ADHD class labels. For all experiments, only clus-
tered samples (i.e. not noisy points) were included in the computa-
tion of evaluation metrics. When using SNN and Spectral Cluster-
ing we record ξ, the fraction of the dataset considered to be noise.

• Accuracy : The percentage of correct classifications made for
true class labels (k-NN classification only).

• Silhouette Score : Each clustered sample in a dataset has a rela-
tive “fitness” to its cluster; that being the relative distance from
its assigned cluster center with respect to the distance for the
next nearest cluster’s center (Rousseeuw 1987). Samples per-
fectly fit to their cluster have silhouette values of 1, samples
definitely incorrectly grouped have silhouette values of -1. Near
0 means a sample is on the decision boundary and not strongly
associated with either potential cluster assignment. This intu-
ition holds especially true when clusters are Gaussian in shape,
though it may not be indicative of success with all cluster shapes.
We track the Median Silhouette Value (MSV) to indicate that at
least %50 of clustered samples had the reported fitness or better
to their assignments.

• Purity : The degree to which the dominant class label in each
cluster composes the entirety of the cluster membership, taken
as an average over all clustered samples. A proxy for accuracy.

Purity(Clusters C,Classes D) =
1

N

∑

c∈C

max
d∈D

|c ∩ d|

• V Measure : The overall performance of separating class labels
when partitioning a dataset may be judged as a proxy for accu-
racy in unsupervised learning tasks when such labels are avail-
able. To do so, we compute homogeneity, the amount which
clusters contain uniform true class labels; and completeness, the
amount which samples of the same class labels are grouped into
single clusters (Rosenberg and Hirschberg 2007).

VM =
2 ∗ homogeneity ∗ completeness

homogeneity + completeness

Results
Table 1 shows our empirical results, organized such that the best
results for all partitioning algorithms are reported in each row. We
used the following procedure to determine the “best” results for
each partitioning algorithm: for the DBSCAN, SNN, and Spectral
Clustering algorithms the configurations that maximize MSV are
considered the best. For the k Medoids algorithm, the trial identified
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by Elbow Method, examination of the largest value of k whereby
MSVk−1 −MSVk is maximized, is reported. For the k-NN algo-
rithm, the trial with k that maximizes accuracy is reported. More-
over, while a parameter for Spectral Clustering, the number of re-
sultant clusters (# C) is not an explicit parameter for the DBSCAN
and SNN algorithms, we report it for completeness.

Overall, we found that the ADHD class labels were highly co-
mingled as Table 1 shows, none of the algorithms cleanly parti-
tioned the dataset along those lines (max VM < 0.1). DBSCAN
struggled to capture clusters of different densities for most similar-
ity matrices (# C = 2 and Purity ≈ 0.34), considering large portions
of the dataset as noise (ξ > 0.5). The notable exception for DB-
SCAN are from dissimilarity matrices constructed using the inputs
time series channels via DCLAW; producing uniform density clus-
ters that capture the entire dataset (ξ = 0.0) with no indication
of separating class labels (VM ≈ 0.01 and Purity ≈ 0.34). As a
result of this uniformity, DBSCAN likely struggled to distinguish
samples driven along the different simulated tracks (# C < 4).

The elbow method for selecting the most appropriate k in k
Medoids tended to partition the data into more groups than the other
algorithms (k typically > 5). Dividing the data into more groups
distills clusters with elevated purity (> 0.39) and provides some
evidence that class labels and the partitioning are correlated (VM
≈ 0.04). The speed diff FastDTW dissimilarity matrices generated
prototypical behaviors that were indicative of common driving pat-
terns (e.g. smooth vs. jerky braking and accelerating; speeders vs.
timid drivers) showed some signs of corresponding to ADHD class
labels (VM = 0.05 and purity > 0.4). The features representation
with dissimilarity computed via D2 performs even better at isolat-
ing such prototypical behaviors, partially along the lines of ADHD
class labels (VM = 0.04 and purity = 0.47).

Computing distance as dissimilarity between the engineered fea-
tures of samples still produces the best classification accuracy (0.43
for D2, 0.4 for D1) with a larger neighborhood size (k = 22 for
D2, k = 23 for D1). Rendering samples as images to compute dis-
similarity via D1 relied on fewer neighbors (k = 9) and distilled
groups with the strongest evidence of aligning with ADHD labels
(purity = 0.49 and VM = 0.09) suggesting k-NN is susceptible to
conflating the class labels with one another (Acc = 0.37). Since the
class prior probabilities are roughly 0.33, any accuracy higher than
that is an improvement in ADHD detection in drivers. Marginal
gains in accuracy reinforce the extreme difficulty inherent to the
task of partitioning the time series data along ADHD class labels.

Using the speed diff channels for computing dissimilarity via
DCLAW, SNN consistently captured clusters (# C = 4 and Pu-
rity ≈ 0.34) along the lines of the simulated tracks driven (Drive
1,...,Drive 4). Results where the majority of the dataset was treated
as noise (ξ > 0.5) suggest that samples aren’t similar enough for
SNN to detect any overarching patterns in the data. When DCLAW
(parameterized with D1) computes dissimilarity between the inputs
channels, SNN considers a large portion of the dataset to be noise
(ξ ≈ 0.63); isolating prototypical behaviors that showed some
alignment with ADHD class labels (VM = 0.07 and purity ≈ 0.4).

Spectral clustering showed little signs of producing clusters that
aligned with ADHD class labels (VM ≈ 0.00). Instead it cap-
tured more obvious divisions in the data; e.g. dissimilarity derived
from the speed diff channels separated samples by the simulated
track that was driven (# C = 4 and purity = 0.34). Dissimilar-
ities computed using the features and images representations did
not distinguish samples from different tracks as clearly (# C < 4).
FastDTW dissimilarity between the inputs channels isolated proto-
typical behaviors (# C = 6) that are loosely associated with class
labeling (VM = 0.01 and purity ≈ 0.39). Given the small dataset
(N = 179), it is difficult to surmise one way or the other if such
prototypes are generalizable to larger populations of drivers.

Conclusions
In this paper we presented an empirical evaluation of methods for
computing dissimilarity between time series samples, leveraging
the spatiotemporal nature of the simulator data intended to uncover
common behavioral sequences. We employed a battery of partition-
ing algorithms to break that data apart into groups to isolate these
prototypical behaviors.

All approaches relied on global dissimilarity measurements be-
tween drives, where highly predictive traits may only occur in crit-
ical interviews along the planned routes and are therefore washed
out. Moreover, examining segments of drives in isolation may
strengthen both the connection from class labels to distinct events
and the alignment of time series considered. While the distilled pro-
totypical driving behaviors didn’t cleanly partition class labels, spa-
tial comparisons such as image embedding and DCLAW showed
some sensitivity to the presence of ADHD. We plan to assess the
utility of DCLAW in other time series domains, including those
with known separable classes, to further develop an understanding
of its ability to isolate similar time series relative to FastDTW.

We plan to explore several other methods for developing proto-
typical behavior profiles not heavily reliant on domain knowledge.
For example, we are interested in discretizing the time series into
sequences of state-action pairs and attempt to learn patterns of par-
ticipant interactions with the physical inputs (Ontañón et al. 2017).
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DBCSAN K Medoids KNN Classifier SNN Spectral
Dissimilarity Matrix ε ME # C ξ MSV Pur VM K MSV Pur VM K Acc MSV Pur VM ε K # C ξ MSV Pur VM K # C MSV Pur VM
FEATS EUC 0.3 1 2 0.00 0.74 0.34 0.01 12 0.40 0.47 0.04 22 0.43 0.17 0.43 0.02 5 5 3 0.97 0.47 0.67 0.58 15 3 0.44 0.37 0.01
FEATS MAN 0.1 4 6 0.37 0.51 0.41 0.02 3 0.39 0.35 0.01 23 0.40 0.10 0.40 0.01 19 20 8 0.82 0.57 0.61 0.25 10 2 0.46 0.34 0.00
NORM FEATS EUC 0.5 1 2 0.00 0.64 0.34 0.01 3 0.41 0.34 0.01 21 0.38 0.06 0.38 0.01 9 10 4 0.95 0.58 0.78 0.51 5 2 0.43 0.34 0.00
NORM FEATS MAN 0.1 5 2 0.68 0.74 0.37 0.00 17 0.16 0.46 0.05 23 0.38 -0.01 0.38 0.01 19 20 3 0.97 0.77 0.50 0.30 10 2 0.50 0.34 0.00
IMAGE EUC 0.5 3 4 0.71 0.28 0.38 0.06 8 0.19 0.38 0.02 12 0.35 -0.01 0.36 0.00 9 15 3 0.01 0.21 0.34 0.00 15 3 0.20 0.34 0.00
IMAGE MAN 0.4 5 5 0.00 0.05 0.38 0.03 3 0.24 0.34 0.02 9 0.37 -0.43 0.49 0.09 20 20 2 0.53 0.21 0.39 0.01 4 2 0.43 0.36 0.01

Inp DCLAW EUC Rad 1 0.5 1 2 0.00 0.27 0.34 0.01 5 0.33 0.36 0.02 24 0.38 0.00 0.38 0.01 14 15 2 0.92 0.56 0.47 0.19 20 2 0.38 0.34 0.00
Inp DCLAW EUC Rad 2 0.5 1 2 0.00 0.27 0.34 0.01 9 0.14 0.37 0.02 22 0.35 -0.04 0.36 0.01 10 20 3 0.00 0.21 0.35 0.00 20 2 0.38 0.34 0.00
Inp DCLAW EUC Rad 4 0.5 1 2 0.00 0.27 0.34 0.01 4 0.36 0.35 0.01 24 0.36 -0.01 0.37 0.01 10 20 3 0.00 0.21 0.35 0.00 20 2 0.38 0.34 0.00
Inp DCLAW EUC Rad 8 0.5 1 2 0.00 0.27 0.34 0.01 5 0.34 0.37 0.02 24 0.36 -0.01 0.37 0.01 10 20 3 0.00 0.21 0.35 0.00 10 2 0.38 0.34 0.00
Inp DCLAW EUC Rad 16 0.5 1 2 0.00 0.27 0.34 0.01 6 0.35 0.38 0.04 24 0.36 -0.01 0.37 0.01 14 15 2 0.93 0.56 0.58 0.38 10 2 0.38 0.34 0.00
Inp DCLAW MAN Rad 1 0.5 1 3 0.00 0.26 0.35 0.02 5 0.36 0.35 0.02 19 0.35 0.03 0.36 0.00 23 25 6 0.64 0.27 0.41 0.06 25 2 0.38 0.34 0.00
Inp DCLAW MAN Rad 2 0.5 1 3 0.00 0.26 0.35 0.02 6 0.22 0.37 0.01 18 0.36 0.00 0.37 0.01 17 20 6 0.27 0.22 0.38 0.01 5 2 0.38 0.34 0.00
Inp DCLAW MAN Rad 4 0.5 1 3 0.00 0.26 0.35 0.02 7 0.22 0.36 0.02 22 0.36 0.00 0.38 0.01 23 25 7 0.64 0.23 0.40 0.07 15 2 0.38 0.34 0.00
Inp DCLAW MAN Rad 8 0.5 1 3 0.00 0.26 0.35 0.02 7 0.19 0.35 0.02 22 0.37 -0.01 0.39 0.02 23 25 7 0.64 0.23 0.40 0.07 20 2 0.38 0.34 0.00
Inp DCLAW MAN Rad 16 0.5 1 3 0.00 0.26 0.35 0.02 5 0.36 0.35 0.02 22 0.37 -0.01 0.39 0.02 23 25 7 0.63 0.23 0.41 0.07 25 2 0.38 0.34 0.00
Inp FDTW EUC Rad 1 0.2 25 2 0.65 0.42 0.40 0.00 5 0.37 0.39 0.07 2 0.38 0.03 0.39 0.02 13 15 7 0.85 0.40 0.59 0.23 3 6 0.31 0.40 0.02
Inp FDTW EUC Rad 2 0.6 1 2 0.00 0.46 0.34 0.01 5 0.36 0.35 0.01 25 0.39 0.05 0.39 0.02 13 15 6 0.83 0.54 0.48 0.11 25 6 0.31 0.39 0.01
Inp FDTW EUC Rad 4 0.2 25 2 0.67 0.42 0.39 0.00 7 0.24 0.36 0.01 25 0.39 0.05 0.41 0.04 23 25 8 0.69 0.33 0.45 0.10 25 6 0.29 0.39 0.01
Inp FDTW EUC Rad 8 0.6 1 2 0.00 0.45 0.34 0.01 6 0.23 0.37 0.02 25 0.41 0.05 0.41 0.02 4 4 2 0.98 0.41 0.50 0.00 25 6 0.28 0.39 0.01
Inp FDTW EUC Rad 16 0.6 3 2 0.01 0.42 0.34 0.01 3 0.37 0.36 0.01 25 0.38 0.06 0.39 0.01 14 15 2 0.92 0.64 0.36 0.07 25 6 0.27 0.39 0.01
Inp FDTW MAN Rad 1 0.2 25 2 0.65 0.42 0.40 0.00 15 0.13 0.39 0.03 23 0.37 0.04 0.37 0.01 19 20 2 0.97 0.40 0.60 0.46 25 6 0.31 0.39 0.01
Inp FDTW MAN Rad 2 0.2 25 2 0.65 0.42 0.37 0.00 5 0.33 0.36 0.02 25 0.37 0.08 0.41 0.03 14 15 2 0.93 0.60 0.46 0.18 5 6 0.30 0.37 0.01
Inp FDTW MAN Rad 4 0.2 25 2 0.65 0.40 0.37 0.00 15 0.16 0.40 0.04 1 0.35 0.00 0.37 0.01 19 20 2 0.98 0.48 0.75 0.80 25 6 0.28 0.39 0.01
Inp FDTW MAN Rad 8 0.5 4 2 0.03 0.36 0.35 0.01 7 0.22 0.37 0.01 25 0.39 0.06 0.39 0.01 19 20 2 0.98 0.48 0.75 0.34 25 6 0.27 0.39 0.01
Inp FDTW MAN Rad 16 0.5 3 2 0.03 0.36 0.35 0.01 4 0.33 0.37 0.04 25 0.38 0.02 0.39 0.01 19 20 2 0.97 0.48 0.50 0.17 25 6 0.26 0.40 0.01
SD DCLAW EUC Rad 1 0.1 25 2 0.61 0.75 0.39 0.00 9 0.64 0.37 0.02 18 0.39 -0.08 0.39 0.01 4 4 3 0.97 0.76 0.83 0.74 10 4 0.64 0.34 0.00
SD DCLAW EUC Rad 2 0.1 25 2 0.61 0.75 0.38 0.00 12 0.36 0.39 0.03 18 0.39 -0.07 0.39 0.01 21 25 4 0.06 0.66 0.35 0.00 5 4 0.64 0.34 0.00
SD DCLAW EUC Rad 4 0.1 25 2 0.62 0.75 0.37 0.00 15 0.25 0.41 0.04 18 0.39 -0.08 0.39 0.01 21 25 4 0.06 0.66 0.35 0.00 10 4 0.64 0.34 0.00
SD DCLAW EUC Rad 8 0.1 25 2 0.62 0.75 0.37 0.00 10 0.50 0.39 0.02 18 0.39 -0.07 0.39 0.01 21 25 4 0.06 0.66 0.35 0.00 5 4 0.64 0.34 0.00
SD DCLAW EUC Rad 16 0.1 25 2 0.62 0.75 0.37 0.00 8 0.46 0.36 0.01 18 0.39 -0.07 0.39 0.01 21 25 4 0.06 0.66 0.35 0.00 20 4 0.64 0.34 0.00
SD DCLAW MAN Rad 1 0.1 25 2 0.61 0.75 0.39 0.00 13 0.41 0.40 0.04 18 0.39 -0.08 0.39 0.01 4 4 3 0.97 0.76 0.83 0.74 10 4 0.64 0.34 0.00
SD DCLAW MAN Rad 2 0.1 25 2 0.61 0.75 0.38 0.00 12 0.35 0.40 0.03 18 0.39 -0.07 0.39 0.01 21 25 4 0.06 0.66 0.35 0.00 10 4 0.64 0.34 0.00
SD DCLAW MAN Rad 4 0.1 25 2 0.62 0.75 0.37 0.00 9 0.52 0.38 0.02 18 0.39 -0.08 0.39 0.01 21 25 4 0.06 0.66 0.35 0.00 10 4 0.64 0.34 0.00
SD DCLAW MAN Rad 8 0.1 25 2 0.62 0.75 0.37 0.00 8 0.53 0.38 0.02 18 0.39 -0.07 0.39 0.01 21 25 4 0.06 0.66 0.35 0.00 20 4 0.64 0.34 0.00
SD DCLAW MAN Rad 16 0.1 25 2 0.62 0.75 0.37 0.00 10 0.42 0.39 0.02 18 0.39 -0.07 0.39 0.01 21 25 4 0.06 0.66 0.35 0.00 20 4 0.64 0.34 0.00
SD FDTW EUC Rad 1 0.1 25 2 0.54 0.84 0.35 0.00 12 0.38 0.40 0.03 23 0.42 0.00 0.42 0.02 14 20 5 0.09 0.66 0.36 0.00 10 4 0.61 0.34 0.00
SD FDTW EUC Rad 2 0.1 25 2 0.55 0.85 0.36 0.00 11 0.44 0.37 0.01 17 0.37 -0.01 0.37 0.00 21 25 8 0.18 0.66 0.37 0.02 5 4 0.63 0.34 0.00
SD FDTW EUC Rad 4 0.1 25 2 0.55 0.85 0.38 0.01 9 0.45 0.39 0.02 21 0.37 0.06 0.37 0.00 21 25 6 0.14 0.67 0.36 0.01 5 4 0.62 0.34 0.00
SD FDTW EUC Rad 8 0.1 25 2 0.55 0.85 0.38 0.01 11 0.38 0.42 0.04 23 0.39 0.04 0.39 0.01 4 4 3 0.97 0.75 0.67 0.52 10 4 0.62 0.34 0.00
SD FDTW EUC Rad 16 0.1 25 2 0.55 0.85 0.38 0.01 10 0.47 0.41 0.05 23 0.39 0.10 0.39 0.01 4 4 3 0.97 0.75 0.83 0.65 5 4 0.62 0.34 0.00
SD FDTW MAN Rad 1 0.1 25 2 0.54 0.84 0.35 0.00 11 0.46 0.42 0.05 23 0.42 0.00 0.42 0.02 14 20 5 0.09 0.66 0.36 0.00 4 4 0.63 0.34 0.00
SD FDTW MAN Rad 2 0.1 25 2 0.55 0.85 0.36 0.00 18 0.19 0.44 0.05 17 0.37 -0.01 0.37 0.00 21 25 8 0.18 0.66 0.37 0.02 15 4 0.63 0.34 0.00
SD FDTW MAN Rad 4 0.1 25 2 0.55 0.85 0.38 0.01 11 0.36 0.41 0.04 21 0.37 0.06 0.37 0.00 21 25 6 0.14 0.67 0.36 0.01 10 4 0.62 0.34 0.00
SD FDTW MAN Rad 8 0.1 25 2 0.55 0.85 0.38 0.01 11 0.51 0.40 0.03 23 0.39 0.04 0.39 0.01 4 4 3 0.97 0.75 0.67 0.52 20 4 0.62 0.34 0.00
SD FDTW MAN Rad 16 0.1 25 2 0.55 0.85 0.38 0.01 12 0.30 0.39 0.02 23 0.39 0.10 0.39 0.01 4 4 3 0.97 0.75 0.83 0.65 10 4 0.62 0.34 0.00

Table 1: Results in bold are for the representations of samples that produce the highest k-NN classification accuracy.
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