
Improving Classification Accuracy
by Mining Deterministic and Frequent Rules

Yuxiao Huang
George Washington University

yuxiaohuang@gwu.edu

Abstract

Patterns underlying the data sometimes take the form of IF
conditions THEN outcome. However, not all the classifiers
can detect such rules, resulting in compromised classifica-
tion accuracy. In this paper we proposed an Add-on Rule-
based Classifier (ARC) that can be paired with any exist-
ing classifier (base). The idea of ARC is improving the ac-
curacy of the base by 1) mining deterministic and frequent
rules, and 2) using such rules to assist the base in classifica-
tion. Key novelty includes 1) a greedy search algorithm that
identifies the rules by alternating between adding the “best”
condition and removing the “worst”, and 2) new heuristics
for selecting the best and worst conditions. We theoreti-
cally proved that rules detected by ARC are sound, com-
plete, and minimal, indicating that ARC will almost never
degrade the accuracy of the base, but instead, could often
improve it. To experimentally verify this claim, we paired
ARC with 9 leading classifiers and tested the ensembles on
12 UCI datasets. Empirical results show that, ARC never
lowers the accuracy of the base and, more importantly, usu-
ally increases it (where some of the increases are statis-
tically significant), echoing what we theoretically proved.
The code, data, and full results are publicly available in our
github repository: https://github.com/yuxiaohuang/research/
tree/master/gwu/accepted/flairs 2020/arc. The results are re-
producible by simply using one command.

Introduction

While some features can bring about the outcome when act-
ing alone, others can only do so when acting with a set of
features. This mechanism is common in drug interactions.
Pravastatin (a lipid-lowering agent) and paroxetine (an an-
tidepressant) are among the most widely prescribed drugs
in the world. Although none of them associates with blood
glucose, mixing the two drugs could result in high blood glu-
cose level. A more general example is Simpson’s paradox:
when contingency tables are combined, the resulting table
may show a relationship different from those shown by the
original tables.

The above interactions (between drugs or between contin-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gency tables) can be represented using a rule:

c1 ∧ c2∧, . . . ,∧cn → y, (1)

where c1 ∧ c2∧, . . . ,∧cn is a conjunction of conditions
(feature-value pairs, e.g., drug = used) and y the outcome
(class label, e.g., high blood glucose level). The rule says
that, IF all the conditions in the conjunction are met THEN
y could be brought about. This rule can be either determin-
istic (y will absolutely be produced) or nondeterministic (y
will be produced with a probability).

While rule-based classifiers (RCs hereafter) can capture
the rules above, non-rule-based classifiers may not be able
to do so. This could result in compromised classification ac-
curacy when data were generated by such rules. Intuitively,
this can be handled by using RCs to detect rules to assist
non-rule-based classifiers (base hereafter) in classification.
The problem is, most RCs were designed to find both “im-
portant” (i.e., deterministic and frequent) and “less impor-
tant” (nondeterministic or rare) rules (we will give the for-
mal definition of these rules later). This guarantees that for
every new sample there is always a rule that fires (i.e., all the
conditions in the rule are met), so that the class label can be
predicted (by the fired rule). As a result, a RC will always
propose its predicted class to the base. In simple words, a
RC (fanatically) shouts “I know, I know!” all the time, leav-
ing the base to decide whether the suggested class should be
taken. However, it could be difficult for the base to decide,
because it may not know whether the suggested class comes
from an important rule or a less important one. While taking
classes produced by important rules can improve the accu-
racy of the base, accepting ones obtained by less important
rules may degrade the accuracy (since such results could be
less accurate than the ones provided by the base itself).

To address this problem, we propose an Add-on Rule-
based Classifier (ARC) that aims to detect only important
(deterministic and frequent) rules. When paired with a base,
ARC only classifies samples where an important rule fires,
and leaves other samples to the base. In simple words, ARC
(calmly) says “I am confident, let me do it” to the base when
an important rule fires, and “I do not know, it is up to you”
when no important rule fires. In this case, the base can sim-
ply follow ARC’s instruction, since it knows that ARC only
proposes classes obtained by important rules (so that ARC

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

63

Algorithm 1: predict(x, base)
1 if there is a rule C → y in R (the set of detected

rules) where conjunction C is met in sample x then
2 return class label y
3 else
4 return base.predict(x)

Algorithm 2: fit(X, y, base)
1 base.fit(X, y)
2 for each class label y of y do
3 Ry = greedy search(X, y, y, ∅)
4 R = R∪Ry

is confident about what it says). Intuitively, the ensemble (of
ARC and the base) should be at least as accurate as the base,
since classes produced by the important rules should be at
least as accurate as those provided by the base. This claim
will be experimentally demonstrated later.

While we can tweak existing RCs (rule-based classifiers)
to find only important rules, the ensemble of a tweaked RC
and a base may still not be as accurate as the ensemble of
ARC and the base. The reason is that, important rules de-
tected by ARC can be more accurate than those found by
RCs (which will later be echoed by empirical results). This
is because ARC uses a new approach to search for the rules,
which can handle problems in methods used by most RCs
(more on this in the Related Work section).

Method

ARC has two actions: fit the model and predict the class la-
bel. We explained how ARC predicts (with the base classi-
fier) in Introduction. That is, if an important (deterministic
and frequent) rule detected by ARC fires (all the conditions
in the rule are met), the class will be predicted by the rule.
Otherwise, it will be predicted by the base. The above steps
are summarized in algorithm 1. Here, function predict takes
as input a new sample x (discrete or discretized) and the base
classifier base, and outputs the predicted class of the sample.

We now explain how ARC fits, that is, how ARC detects
important rules (R in line 1 of algorithm 1). The steps for fit-
ting are summarized in algorithm 2. Here, function fit takes
as input the samples X (discrete or discretized), the target y
(discrete or discretized), and the base classifier base. The al-
gorithm begins with fitting the base, then for each class label
of the target, y, it finds a set of important rules, Ry , using a
method named greedy search.

The Definition of Important Rule and Necessary
Condition

Before moving on to the greedy search, let us formally de-
fine the two concepts that will be used frequently hereafter:
important rule and necessary condition. Let C be a conjunc-
tion of conditions and y a class label. We claim that C → y
is an important rule if it is both deterministic and frequent.

Algorithm 3: greedy search(X, y, y, C)
1 repeat
2 if detected rule C → y is important (both eqs. (2)

and (3) hold) then
3 Remove irrelevant conditions from C
4 Ry = Ry ∪ {C → y}
5 Remove samples where rule C → y fires
6 for each condition c in C do
7 greedy search(X, y, y, C \ c)
8 Delete conditions in C from conditions pool
9 C = ∅

10 else if some conditions can be added to C then
11 Add the best condition to C
12 else
13 Remove the worst condition from C

14 until step 13 removes the last condition from C;
15 return Ry

That is, the rule must satisfy both of the constraints below:

P (y | C) = 1, (2)

#
(
C → y

) ≥ min samples importance. (3)

The first constraint says that, for any sample where the rule
C → y fires (all the conditions in C are met), the class of
the sample must be y. That is, the rule is deterministic. The
second constraint says that, the number of samples where
the rule fires cannot be smaller than a threshold. That is, the
rule is frequent (with respect to the threshold). On the other
hand, we claim that a rule is less important if it is either
nondeterministic (eq. (2) fails) or rare (eq. (3) fails).

We now formally define the necessary condition. For an
important rule C → y, we claim that condition c in conjunc-
tion C is necessary, if the rule is less important when remov-
ing c from C. That is, eq. (2) fails when replacing C with
C \ c (i.e., C without c). On the other hand, we claim that
a condition is irrelevant if the rule is still important when
removing the condition from the conjunction. It turns out
that, the definition of necessary and irrelevant conditions are
closely related to the heuristics for selecting the “best” and
“worst” conditions, which are the key of the greedy search.

The Greedy Search Algorithm

The idea of the greedy search is that, we iteratively add the
“best” condition to the conjunction until we 1) find an im-
portant rule, or 2) cannot add condition anymore (due to the
sparseness of data in high dimensions). We then iteratively
remove the “worst” condition from the conjunction until we
1) find an important rule where every condition is necessary,
or 2) can add condition again. The removal step expels irrel-
evant conditions, which in turn, makes room for the neces-
sary ones. This is one of the differences between ARC and
many top-down approaches (more on this in Related Work).

The steps used in the greedy search are summarized in
algorithm 3. Here, function greedy search takes as input the
samples X (discrete or discretized), the target y (discrete or

64

discretized), a class label y, and a conjunction C. Here C is
initialized as empty, which is different from the bottom-up
approaches that begin the search with a conjunction of all
the conditions (more on this in Related Work).

There are three stages in algorithm 3: the stage where the
detected rule is important (steps 2 to 9), the stage where we
add the best condition to C (steps 10 and 11), and the stage
where we remove the worst condition from C (step 13). We
now explain each stage in detail.

When the rule is important, we first remove all the irrel-
evant conditions (step 3 in algorithm 3). This leads to an
important rule comprised of only necessary conditions. We
then remove the samples where all the conditions in C (the
conjunction in the rule) are met. This is a standard step in
many rule-based methods (to isolate the impact of detected
rules and make better choice for best and worst conditions).
Next we loop over each condition c in C, and recursively
call the function (steps 6 and 7). However, instead of kick-
ing off the search with an empty conjunction (which is the
case the first time we call the function, as shown in step 3 of
algorithm 2), we do so with conjunction C \ c (i.e, C with-
out c). This helps us find rules that have many conditions
in common with the detected ones. Last (steps 8 and 9), we
first delete all the conditions in C from the conditions pool
(initialized as the set of all the conditions), so that they will
not be selected again. We then empty the conjunction. This
helps us find rules that have no condition in common with
the detected ones.

When the rule is less important (defined below eq. (3)),
we check if there is any condition c satisfying all of the
following four constraints, so that it can be added to con-
junction C (step 10 in algorithm 3). First, c has not been
removed from C (step 13) or deleted from the conditions
pool (step 8). Second, if we add c to C the new conjunction
(C ∧ c) will not contain all the conditions in any conjunc-
tion of any detected rule. The two constraints above prevent
us from repeatedly exploring the same search space, guar-
anteeing that the search will eventually terminate. Third, the
number of samples where C ∧ c is met (both C and c are
met) cannot be smaller than min samples importance (the
same parameter for determining whether a rule is frequent,
as shown in eq. (3)). Last, the number of samples where
C ∧ ¬c is met (C is met but c is not) cannot be smaller than
min samples importance. The last two constraints not only
help us find rules that are frequent, but also help us choose
more accurate “best” conditions (more on this later). If there
are conditions satisfying all of the four constraints above, we
add the best of them to C (step 11). Otherwise, we remove
the worst condition from C (step 13). We stop the search
after removing the last condition from C (step 14).

As mentioned earlier, the key of the greedy search is the
heuristics for selecting the best condition (that should be
added to conjunction C) and the worst condition (that should
be removed from C). Intuitively the best condition is a nec-
essary condition that, once added, increases the predictive
power of the conjunction the most. The increase of predic-
tive power (brought about by adding condition c to C) can
be written as the following difference in probabilities:

P (y | C ∧ c)− P (y | C). (4)

Here, the first item is the probability of class label being y
when both C and c are met, and the second is the probability
when C is met. Then we can think of the best condition as
the one that maximizes the above difference.

It is worth noting that the above idea for choosing the
best condition has been widely used in most top-down ap-
proaches. For instance, Decision Tree defines the best con-
dition as the one leading to the largest information gain.
The difference is that, unlike eq. (4) that directly uses dif-
ference in probabilities, the measurement in Decision Tree
uses difference in impurities (e.g., gini or entropy). Simi-
lar to eq. (4), the measurement also considers the increase
of predictive power when a new condition is met. However,
when C contains almost all of the necessary conditions, the
increase (in either probabilities or impurities) could be too
small to separate necessary conditions from irrelevant ones
(the definition of the two kinds of conditions were given in
the second paragraph below eq. (3)). As a result, an irrele-
vant condition could be wrongly chosen as the best one.

To address this problem, besides considering the increase
of predictive power when a new condition is met, we also
consider the decrease of predictive power when a new condi-
tion is not met. The decrease can be represented by replacing
c in eq. (4) with its negation, ¬c:

P (y | C ∧ ¬c)− P (y | C). (5)

Here the first item is the probability of class label being y
when C is met but c not met, and the second item is the
probability when C is met. The idea is that, (when C con-
tains almost all of the necessary conditions) the first proba-
bility in the equation will be close to 0 when c is necessary,
but close to 1 when c is irrelevant. Thus we can also think of
the best condition as the one that minimizes eq. (5).

Since (as mentioned below eq. (4)) the best condition can
also be thought of as the one that maximizes eq. (4), we com-
bine the two measurements so that the best one can stand out.
That is, in this paper the best condition is defined as the one
that not only maximizes eq. (4) but also minimizes eq. (5)
or, in other words, maximizes eq. (4) minus eq. (5), which
can be written as

P (y | C ∧ c)− P (y | C ∧ ¬c). (6)

This equation can also be thought of as the difference of
predictive power when c works for C (the first probability in
the equation) and when c works against C (the second prob-
ability). Then the best condition is the one that maximizes
the difference. To the best of our knowledge, this is the first
time such heuristic (combining the maximization of eq. (4)
and minimization of eq. (5)) is used in rule search.

Now let us recall the last two constraints for deciding
whether there is any condition c that can be added to con-
junction C (step 10 in algorithm 3). That is, both the num-
ber of samples where C ∧ c is met, and the number of
samples where C ∧ ¬c is met, cannot be smaller than
min samples importance (the parameter in eq. (3)). The two
constraints allow us to have enough number of samples
when using eq. (6) to choose the best condition.

It turns out that, the worst condition can be defined by
replacing C in eq. (6) with C \c (i.e., C without c). The idea

65

is that, unlike the best condition which is not in C (so that
we can add it to C), the worst condition is actually in C (so
that we can remove it from C). After replacing C with C \c,
eq. (6) can be written as

P (y | C \ c ∧ c)− P (y | C \ c ∧ ¬c). (7)

Here, the first item is the probability of class label being y
when C (which contains c) is met, and the second is the
probability when C \ c (which does not contain c) is met but
c not met. Then similar to eq. (6), eq. (7) measures the dif-
ference of predictive power when c works for C \ c (the first
probability in the equation) and when c works against C \ c
(the second probability). However, unlike the best condition
which maximizes eq. (6), the worst condition is defined as
the one that minimizes eq. (7).

Soundness, Completeness, and Minimality

Theorem 1. The rules detected by ARC (using algorithm 3)
are sound, complete, and minimal.

Here the soundness property ensures that ARC will only
find important (deterministic and frequent) rules. The com-
pleteness ensures that (in theory) ARC will find all the im-
portant rules, and the minimality ensures that the rules are
the most generalized. The last two properties guarantee that
the rules will cover the most possible samples (where all the
conditions in one of the rules are met). The three properties
as a whole guarantee that ARC will make use of the most
possible samples (covered by the important rules) to assist
the base classifier in classification. Further, such assistance
(in theory) will only improve (rather than degrade) accuracy.

Proof. We first prove that the rules detected by ARC are
sound. That is, they are important, satisfying eqs. (2) and (3).
This is guaranteed by step 2 in algorithm 3, where we accept
a rule only when both equations are met.

We next prove that the detected rules are complete. As-
suming enough number of samples, algorithm 3 will find at
least one important rule, if there is any. This is because in
the worst case we will find a conjunction including all the
possible conditions and all the irrelevant conditions will be
removed by step 3 in the algorithm. For the same reason, all
the rules that have conditions in common with the detected
rule will be identified by steps 6 and 7. Similarly, all the rules
that have no condition in common with the detected rule will
be identified due to steps 8 and 9. The idea above was also
discussed in the third paragraph above eq. (4).

Last we prove that the detected rules are minimal. That is,
all the conditions in the conjunction of a rule are necessary.
Similar to the proof for the completeness, this is guaranteed
by step 3 in algorithm 3, where we remove all the irrelevant
conditions from the conjunction of an important rule.

Time Complexity

Let m be the number of samples and n the number of con-
ditions. Then the time complexity of computing eqs. (6)
and (7) is O(mn). Then the complexity of updating a con-
junction (by adding the best condition or removing the
worst) each time is O(mn2), since it entails at most n times

of calculating eq. (6) or (7). Then the complexity of de-
tecting an important rule (that satisfies eqs. (2) and (3)) is
O(mn3), since it entails at most 2n times of updating the
conjunction. In turn, the complexity of the greedy search (al-
gorithm 3), which is the most time consuming part in ARC,
is O(rmn3), with r being the number of important rules. As
a result, the complexity of ARC is also O(rmn3). In reality
n is usually much higher than r, indicating that the average
time complexity of ARC could be O(mn4).

Related Work
Discovering rules in the form of IF conditions THEN out-
come (eq. (1)) has been widely studied in areas such as sta-
tistical relational learning, inductive logic programming, and
association rule mining.

One kind of methods detect rules by starting with a con-
junction of all the conditions and iteratively removing the
“worst” condition from the conjunction. Such methods are
sometimes referred to as the bottom-up (or generalization)
approaches (Michalski 1983; Valiant 1984). However, due
to the sparseness of data in high dimensions, the bottom-ups
are infeasible when there are moderately large number of
conditions in the conjunction.

Contrary to the bottom-ups (which identify rules by iter-
atively removing the “worst” condition from the conjunc-
tion), the top-down (or specialization) approaches detect
rules by iteratively adding the “best” condition to the con-
junction. Since the top-downs usually begin with an empty
conjunction, they are more practical than the bottom-ups
(which start with a conjunction of all the conditions). Along
the line of top-downs (e.g., AQ15 (Michalski et al. 1986),
FOIL (Quinlan 1990), nFOIL (Landwehr, Kersting, and
De Raedt 2005), DL-FOIL (Fanizzi, d’Amato, and Espos-
ito 2008), IREP (Fürnkranz and Widmer 1994)), the most
widely used one is Decision Tree, with its early implementa-
tions such as CART (Breiman et al. 1984) and ID3 (Quinlan
1986). Later, ID3 was first extended to PRISM (Cendrowska
1987), which induces rules that are modular (rather than
in the form of trees), and then to C4.5 (Quinlan 2014),
which allows continuous features and pruning the trees.
While methods such as Apriori (Agrawal and Srikant 1994)
are also related to the top-down category, they focus on
finding all the association rules (that satisfy some mini-
mum support and confidence constraints), some of which
may not be suitable for classification. This problem was
later addressed by methods such as CARs (Liu, Hsu, and
Ma 1998), CMAR (Li, Han, and J. 2001), and Super-
vised Apriori Gen (Ding et al. 2006) (most of which aim to
identify a special subset of association rules that can be used
for classification). Apriori was also improved by approaches
such as (Wu, Zhang, and Zhang 2002), which allows both
positive and negative association rules.

Unlike the top-down and bottom-up approaches that ei-
ther add or remove conditions, ARC (the proposed method)
combines the two by alternating between adding and remov-
ing conditions. Compared to the bottom-ups, ARC allows
much larger datasets since it starts the search from an empty
conjunction (rather than a conjunction of all the conditions,
as in the bottom-ups). Compared to the top-downs, on the

66

Table 1: Statistics of 12 UCI datasets used in the experiment.
Here # S and # F denote the number of samples and features.

.

No. Name # S # F
1 balloon (adult-stretch) 20 4
2 balloon (adult+stretch) 20 4
3 balloon (yellow-small) 20 4
4 balloon (yellow-small+adult-stretch) 16 4
5 breast-cancer-wisconsin 699 10
6 king-rook-vs-king-pawn 3196 36
7 monks-problems (1) 556 7
8 monks-problems (2) 601 7
9 monks-problems (3) 554 7
10 mushroom 8124 22
11 tic-tac-toe endgame 958 9
12 voting-records 435 16

other hand, ARC enables to remove irrelevant conditions
not only after the search (as in the top-downs) but also dur-
ing the search, which can make room for necessary condi-
tions. Thus the rules detected by ARC could be more accu-
rate. This claim will later be experimentally demonstrated
by comparing the rules detected by ARC and Decision Tree.

It is worth noting that there are other methods that, like
ARC, also allow searching for rules in both directions (by
alternating between adding and removing conditions). One
such work is JoJo (Fensel and Wiese 1993), which searches
for rules using both specialization (adding the best condi-
tion) and generalization (removing the worst). However, un-
like ARC (but similar to most of the existing methods),
the heuristics used by JoJo (named s-preference and g-
preference) for determining the best and worst conditions
do not consider the decrease of predictive power when a
new condition is not met. That is, the second probability in
eqs. (6) and (7), which can help us separate necessary con-
ditions from irrelevant ones (see below eq. (5)) are ignored.

Empirical Results

The main goal here is to experimentally demonstrate what
we theoretically proved. That is, when paired with a base
classifier, ARC should almost never degrade the accuracy of
the base and, more importantly, usually improve the accu-
racy. This was illustrated by the empirical results of the en-
semble of ARC and 9 leading classifiers on 12 UCI datasets.
The code, data, and full results are publicly available in our
github repository1. The results are reproducible by simply
using one command.

Data and Method

Since ARC is a classifier that requires categorical data, we
used 12 UCI datasets under category Classification + Cate-
gorical, summarized in table 1.

We paired ARC with 9 leading sklearn classifiers: Ad-
aBoost (AB for short), Decision Tree (DT), Gaussian Naive
Bayes (GNB), Gaussian Process (GP), K-Nearest Neighbors
(KNN), Logistic Regression (LR), Multi-layer Perceptron

1https://github.com/yuxiaohuang/research/tree/master/gwu/
accepted/flairs 2020/arc

(MLP), Random Forest (RF), and Support Vector Machine
(SVC). The default settings (in sklearn) were used for each
classifier.

Results

The average classification accuracy (obtained by cross-
validation) on each of the 12 UCI datasets are summarized
in table 2. The first column is the identifier of the datasets
(whose name can be seen in column Name in table 1). The
remaining columns are the accuracy. The results show that,
ARC never degraded the accuracy of any base classifier in
any dataset. Further, symbols � (denoting increase of ac-
curacy) and � (denoting significant increase, with p-value
< 0.05) show that, ARC improved the accuracy of each of
the 9 bases in many datasets, where some of the increases
are significant. For example, when paired with GNB, ARC
improved the accuracy in 8 out of 12 datasets (with 4 in-
creases being significant). This is also the case for KNN (8
increases with 3 being significant), AB (6 increases with 2
being significant), GP (5 increases with 2 being significant),
DT (4 increases with 2 being significant), LR and SVC (4
increases with 1 being significant), MLP (3 increases with 1
being significant), and RF (5 increases). These results exper-
imentally demonstrated what we theoretically proved. That
is, when using the detected important rules to assist the base
classifier (in classification), ARC should almost never de-
grade the accuracy of the base and, more importantly, often
improve the accuracy.

It is worth noting that the claim above not only applies to
base classifiers that are not rule-based, but also to ones that
are actually rule-based. This can be seen from the number of
accuracy increase (4 with 2 being significant) and decrease
(0) for DT (Decision Tree), as reported above. Such results
unveil an interesting insight: the important rules detected by
ARC are not simply a subset of the rules detected by DT.
This is because if that were the case, classes predicted by im-
portant rules of ARC would be the same as those predicted
by DT, and we would not see any change in DT’s accuracy.

The claim above is echoed in the tic-tac-toe endgame
dataset (No. 11 in table 2). There are 9 features in the dataset,
representing the 9 cells on the game board. Each feature has
3 values, x, o, b, where x means the cell is taken by player x,
o means the cell is taken by player o, and b means the cell is
blank. The goal here is to predict whether player x will win
(class label Positive) or not (Negative). In one training set,
ARC found 8 rules with respect to class Positive, where each
rule has 3 conditions. These rules represent 8 cases (3 rows,
3 columns, and 2 diagonals) where player x has a “three-in-
a-row” so that player o will definitely lose (class Positive).
In the same training set, ARC found 6 rules representing 6
cases (3 rows, 1 column, and 2 diagonals) where player o has
a “three-in-a-row” so that player x will definitely lose (class
Negative). However, from the same training set DT found
rules containing up to 11 conditions, and some of these rules
lead to wrong classification. This is the reason why the accu-
racy of DT in the corresponding testing set is 0.72, whereas
the accuracy of the ensemble (of DT and ARC) is 0.98. This
is also part of the reason why on this dataset the improve-
ment of accuracy for DT (brought about by ARC) is signif-

67

Table 2: The average classification accuracy (obtained by cross-validation) on each of the 12 UCI datasets shown in table 1.
For each entry, the number on the left-hand side of + sign is the average accuracy of the base classifier (denoted by the column
name) in the dataset (denoted by the row number), and the number on the right-hand side of + is the average increase of
accuracy when pairing the base with ARC (no decrease was found for any base in any dataset). Further, symbol � means that
ARC increased the accuracy of the base but the change is not significant, and � denotes significant increase (p-value < 0.05).

No. AB DT GNB GP KNN LR MLP RF SVC
1 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00
2 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00
3 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00
4 0.67 + 0.33 � 0.78 + 0.22 � 0.56 + 0.33 � 0.72 + 0.28 � 0.72 + 0.28 � 0.67 + 0.33 � 0.67 + 0.33 � 0.72 + 0.17 � 0.56 + 0.33 �
5 0.97 + 0.00 0.96 + 0.01 � 0.96 + 0.01 � 0.98 + 0.00 0.96 + 0.01 � 0.97 + 0.00 0.98 + 0.00 0.98 + 0.00 0.97 + 0.00
6 0.95 + 0.01 � 0.99 + 0.00 0.59 + 0.33 � 0.88 + 0.07 � 0.83 + 0.11 � 0.95 + 0.01 � 0.95 + 0.02 � 0.96 + 0.01 � 0.92 + 0.03 �
7 0.67 + 0.12 � 1.00 + 0.00 0.75 + 0.11 � 0.86 + 0.03 � 0.79 + 0.08 � 0.73 + 0.11 � 1.00 + 0.00 0.95 + 0.01 � 0.75 + 0.11 �
8 0.40 + 0.01 � 0.93 + 0.00 0.40 + 0.01 � 0.70 + 0.00 0.60 + 0.01 � 0.41 + 0.00 1.00 + 0.00 0.88 + 0.00 0.51 + 0.00
9 0.94 + 0.01 � 0.96 + 0.00 0.96 + 0.01 � 0.97 + 0.00 0.85 + 0.06 � 0.97 + 0.00 0.98 + 0.00 0.98 + 0.00 0.97 + 0.00
10 1.00 + 0.00 0.99 + 0.00 0.94 + 0.05 � 1.00 + 0.00 0.99 + 0.00 0.98 + 0.00 1.00 + 0.00 1.00 + 0.00 0.96 + 0.00
11 0.77 + 0.15 � 0.86 + 0.09 � 0.56 + 0.31 � 0.90 + 0.06 � 0.70 + 0.22 � 0.97 + 0.01 � 0.97 + 0.02 � 0.89 + 0.06 � 0.89 + 0.05 �
12 0.96 + 0.00 0.96 + 0.01 � 0.94 + 0.00 0.95 + 0.01 � 0.93 + 0.02 � 0.96 + 0.00 0.97 + 0.00 0.97 + 0.01 � 0.96 + 0.00

icant (as indicated by the � symbol in entry (row No. 11,
column DT) of table 2).

Besides DT, ARC also improved the accuracy of all the
other 8 base classifiers in the tic-tac-toe endgame dataset,
where the improvement for AB, GNB, and KNN are signifi-
cant. The increase of accuracy is due to the fact that the rules
detected by ARC are more accurate than the patterns iden-
tified by others. This is also the reason for the improvement
of accuracy in the balloon dataset (No. 4 in table 2), with 9
increases (8 being significant), the king-rook-vs-king-pawn
dataset (No. 6), with 8 increases (3 being significant), and
monks-problems datasets, with 7 increases for monks 1 (No.
7), and 3 increases for monks 2 and 3 (Nos. 8 and 9).

It is worth noting that ARC did not improve the accuracy
of any base classifier in the first 3 datasets in table 2. This
is because these data were generated by simply rules which
can be well captured by each of the 9 bases.

Conclusion

We proposed an Add-on Rule-based Classifier, ARC, which
can be paired with any existing classifier (base). The idea
of ARC is improving the base’s accuracy by detecting de-
terministic and frequent rules. We theoretically proved that
ARC will almost never degrade the accuracy of the base, and
more importantly, usually improve the accuracy. This claim
was demonstrated by empirical results of 9 leading classi-
fiers on 12 UCI datasets, where ARC never lowers the accu-
racy of the base, but instead, usually increases it (with some
of the increases being statistically significant). In the future
we will extend ARC to allow both continuous features and
nondeterministic rules.

References

Agrawal, R., and Srikant, R. 1994. Fast Algorithms for
Mining Association Rules. In VLDB.
Breiman, L.; Friedman, J.; Olshen, R.; and Stone, C.
1984. Classification and Regression Trees. Monterey, CA:
Wadsworth and Brooks.
Cendrowska, J. 1987. PRISM: An Algorithm for Induc-

ing Modular Rules. International Journal of Man-Machine
Studies 27(4):349–370.
Ding, W.; Eick, C. F.; Wang, J.; and Yuan, X. 2006. A
Framework for Regional Association Rule Mining in Spatial
Datasets. In ICDM.
Fanizzi, N.; d’Amato, C.; and Esposito, F. 2008. DL-FOIL
Concept Learning in Description Logics. In ILP.
Fensel, D., and Wiese, M. 1993. Refinement of Rule Sets
with JoJo. In ECML.
Fürnkranz, J., and Widmer, G. 1994. Incremental Reduced
Error Pruning. In Machine Learning Proceedings 1994. El-
sevier. 70–77.
Landwehr, N.; Kersting, K.; and De Raedt, L. 2005. nFOIL:
Integrating Naıve Bayes and FOIL. In AAAI.
Li, W.; Han, J.; and J., P. 2001. CMAR: Accurate and
Efficient Classification based on Multiple Class-Association
Rules. In ICDM.
Liu, B.; Hsu, W.; and Ma, Y. 1998. Integrating Classification
and Association Rule Mining. In KDD.
Michalski, R. S.; Mozetic, I.; Hong, J.; and Lavrac, N. 1986.
The Multi-purpose Incremental Learning System AQ15 and
its Testing Application to Three Medical Domains. In AAAI.
Michalski, R. S. 1983. A Theory and Methodology of In-
ductive Learning. Artificial Intelligence 20(2):111–161.
Quinlan, J. R. 1986. Induction of Decision Trees. Machine
Learning 1(1):81–106.
Quinlan, J. R. 1990. Learning Logical Definitions from
Relations. Machine Learning 5(3):239–266.
Quinlan, J. R. 2014. C4. 5: Programs for Machine Learning.
Elsevier.
Valiant, L. G. 1984. A Theory of the Learnable. Communi-
cations of the ACM 27(11):1134–1142.
Wu, X.; Zhang, C.; and Zhang, S. 2002. Mining both Posi-
tive and Negative Association Rules. In ICML.

68

