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Abstract

Most graph-based anomaly detection work uses structural
graph connectivity or node information for discovering
anomalies in a graph. Approaches solely relying on node in-
formation for detecting anomalies do not exploit the struc-
tural information, and approaches relying on just the struc-
tural connectivity information do not exploit node label val-
ues, or attribute information. In this work, in order to pre-
serve the closeness information of numeric node attributes,
we consider the similarities in node values using not only
single attributes, but also multiple attributes. In order to dis-
cover the similarity between the attribute values, we use a dis-
cretization method, distance-based similarity measures, and
a k-means clustering approach. After discovering nodes with
similar label values, we use revised labels together with struc-
tural properties for discovering anomalies in a graph. Our hy-
pothesis is that if we use node label similarity information
together with structural properties of the graph, we can detect
anomalies which would be missed by approaches only rely-
ing on either structural connectivity or node attribute informa-
tion. Experimental results on real world as well as synthetic
datasets show that the proposed approach is able to detect
both structural and attribute anomalies. We also compare the
results of the proposed approach with an existing structural
anomaly detection tool and show that the proposed approach
can detect anomalies where traditional structural techniques
cannot.

Introduction

Most existing graph-based anomaly detection work either
uses the structural graph properties or the node information.
The structural approaches focus on the connectivity of the
graph and explores frequent substructures to discover devi-
ations from normal substructures. While these approaches
use the relationships between entities for structural oddi-
ties, they do not incorporate the entities’ attributes infor-
mation, which is also an important part of the data. The
approaches which use node information for anomaly de-
tection tend to form communities in the graph based on
the node attributes. Then they identify anomalies as a by-
product of community formation. There has been some re-
cent research in the area of unifying structural informa-
tion with node attribute information (Yang et al. 2009;
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Figure 1: An example graph of members of a fitness center

Muller et al. 2013), however, they mostly use the informa-
tion for forming communities and thus finding community
outliers while still missing the structural anomalies.

Figure 1 demonstrates an example graph of groups of peo-
ple that are members of a school fitness center. The attributes
age, sports, and study are the age of the person, average
weekly hours spent by the person in sports, and average
weekly hours spent by the person in study (as if they are
a student) respectively. First, notice the anomaly labelled
with a 1. The attribute values of this node are not unusual
themselves, but they are different from it’s neighbor nodes.
Anomaly detection approaches which use node attribute in-
formation are able to detect anomaly 1 because it’s attribute
values deviate from it’s neighbor nodes. Approaches using
structural approaches are not able to discover this anomaly
because they only use structural connectivity information
and do not exploit node attribute values. Anomaly 1 is not
structurally unusual, and thus not detected by structural ap-
proaches. Second, notice the structural anomaly labelled
with a 2. The attribute values of this anomalous node is sim-
ilar to that of it’s connected node. Thus, approaches relying
on solely node attribute information are not able to discover
this structural anomaly (i.e., the presence of an extra node).

In this work, we focus on discovering anomalies in at-
tributed graphs, combining node attribute information with
the structure of the graph. Existing structure based meth-
ods attempt to discover substructures in the graph which are



connectivity-wise rare. While doing this, they treat all at-
tribute values as discrete, and thus, when the attribute are nu-
meric values, they lose their measure of similarity, or close-
ness (Akoglu, Tong, and Koutra 2015). Previous work has
attempted to preserve the closeness information (Eberle and
Holder 2009; Davis et al. 2011), but they do not take into
account multiple attributes, and the attribute values which
individually perhaps are normal, but when taken in combi-
nation are in fact rare.

In order to achieve this, the first step is to discover the sim-
ilarity between attribute values of nodes in the graph. Then,
we label nodes whose attributes are discovered as similar
with identical labels. This new label is then representative
of all the original attributes present in the graph’s nodes. Fi-
nally, we create a new graph using these revised node labels
from the original graph, allowing us to then apply structural
anomaly detection on the new graph.

Related Work

In literature, most of the work in anomaly detection on at-
tributed graphs are based on community detection. Commu-
nity based methods tend to detect communities in graphs and
detect anomalies as a by-product. (Gao et al. 2010) partition
graph nodes into clusters and then use the object informa-
tion to discover outliers. (Muller et al. 2013) propose an ap-
proach which ranks graph nodes according to their deviation
in both graph and attribute properties. However, this work
only considers outlier nodes, and does not consider anoma-
lous edges, or irregular subgraphs. ConSub (Sdnchez et al.
2013) and ConOut (Sanchez et al. 2014) extract important
attributes from the graph for detecting community outliers.
(Boden et al. 2012) and (Shah et al. 2016) use edge attribute
information instead of node attribute information for detect-
ing anomalous nodes.

There are some structural anomaly detection techniques
which exploit subgraph patterns to spot anomalies. (Noble
and Cook 2003) use SUBDUE for anomaly detection whose
main intuition is to look for the structures that occur infre-
quently in the graph. (Eberle and Holder 2007) hypothesize
anomalies as an unexpected deviation to a normative pat-
tern. A normative pattern is the substructure that compresses
the graph the best. They formulate three types of anoma-
lies based on modifications, insertions, and deletions to the
graph. Structural anomaly detection approaches treat nu-
meric attributes as discrete values. (Eberle and Holder 2009)
extend their approach to detect anomalies in graphs with
continuous labels by including the numeric values into a
probability calculation. However, this work does not handle
anomalies involving multiple numeric attributes which indi-
vidually are not anomalous, but together are rare. (Romero,
Gonzalez, and Holder 2010) propose a numerical range
generation algorithm based on frequency histograms. Af-
ter finding the suitable ranges for numeric labels, they use
SUBDUE for the task of anomaly detection. (Davis et al.
2011) propose discretizing the numerical attributes before
running SUBDUE for the task of anomaly detection. How-
ever, they experiment with graph data containing only a sin-
gle numeric attribute. (Ramesh Paudel and Talbert 2017;
Ramesh Paudel and Holder 2018) are other works which use
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Figure 2: Proposed Architecture

discretization of numeric attributes as a pre-processing step
before using a graph based anomaly detection tool.

Methodology

The architecture of our proposed approach is shown in Fig-
ure 2. First, the input dataset is parsed into graph objects.
Second, we discover the similarity between attribute values
of nodes in the graph. Third, we label nodes whose attributes
are discovered as similar with identical labels. This new
label is representative of all the original attributes present
in the nodes. Then, we create a new graph using just the
newly added labels in lieu of the original node labels, and
edge information from the original graph. Finally, we run
an anomaly detection tool on this transformed graph. To
discover the similarity between attribute values of nodes,
we implement three different approaches. Each of the ap-
proaches is described in Node Labeling Reviser subsections.

Node Labeling Reviser

We attempt to discover the similarity between graph nodes
based on their attribute values so that nodes with similar at-
tribute values are treated as similar when discovering norma-
tive patterns and anomalous graph substructures. The closer
the attribute values between two nodes, the more similar the
nodes. As is the case in the example graph shown in Figure
1, often times, there are multiple attributes associated with a
node. Thus, we need to handle multiple attributes to discover
the similarity between node objects.

We implement three different approaches for determin-
ing the similarity of nodes, and then label the nodes that are
deemed to be similar with identical labels.



Discretization We discretize all the numeric attributes of
nodes using the unsupervised discretization technique de-
scribed in (Biba et al. 2007). This approach uses non-
parametric density estimators to automatically adapt sub-
interval dimensions to the data. The algorithm searches for
the next two sub-intervals, evaluating the best cut-point on
the basis of the density induced in the sub-intervals by the
current cut and the density given by the kernel density es-
timator for each sub-interval. After discretizing numeric at-
tributes, we can then compare each attribute. While com-
paring two nodes, if all the discrete attribute values of both
nodes are the same, we consider such nodes as similar, and
label them with single, identical labels. For example, say a
node A has attribute values 1, y1, and z1, and another node
B has attribute values z2, y2, and z2. After discretizing each
attribute, say the discrete labels for node A are x,, y,, and
Zq, and the discrete labels for node B are x, yp, and 2. We
can now make a one-on-one comparison between attributes,
and both nodes A and B will get the same single label if
Tq = Ty Ya = Yb, and zq = 2y,

Distance Based Similarity Measure This approach uses
a distance-based similarity measure to discover the similar-
ity between nodes with numeric attributes. We use a nor-
malized euclidean distance for finding the similarity score
between node objects. Since the higher the distance the more
dissimilar the objects, we use the inverse of the distance as
the similarity score between the objects.
1

Normalized Euclidean Distance

Our goal is to find similar entities based on the similarity
score between each pair of nodes. We use the grouping al-
gorithm defined by (Caceres 2013) for this purpose. In this
algorithm, we sort the entity pairs according to the similar-
ity score from greatest to least. We then use this sorted list
of entity pairs for forming suitable groups of entities.

If the comparison score between two entities is within a
given threshold, a group containing the two entities is cre-
ated. Afterwards, for each pair, if the comparison score is
within the given threshold, and both entities are not present
in any existing group, a new group is formed containing
the two entities. If the entities are in different groups, it is
checked if the similarity score for all pairs for both groups
is within the threshold. If all pairs for both groups are within
the threshold, the two groups are merged into a single group.
Similarly, if only one of the entities in the pair is in a group,
then it is checked whether the similarity score between the
ungrouped entity and all the entities existing in the group is
within the given threshold. If that is the case, then the un-
grouped entity is added to the group. In the end, a singleton
group is created for each ungrouped entity.

After we form groups, we label all the nodes falling within
a group with an identical label. This new label is used by the
next component (i.e., the Graph Transformer) to transform
the graph. While we used normalized euclidean distance as
similarity metric, the approach does not prohibit other ap-
proaches, like cosine similarity, from being used.

Similarity Score =

Clustering In order to discover similar nodes based on the
attribute information, we use an unsupervised, k-means clus-
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tering algorithm, with the number of clusters based upon the
visual elbow method. The idea is to start with k=2, and keep
increasing the value of k by 1, discovering the clusters and
the sum of squared errors. At some value of k, the sum of
squared error drops significantly, and reaches a plateau by
increasing it further, leaving us with a chosen value for k.
Once we have clusters, we label all the nodes falling within
a cluster with an identical label.

Graph Transformer

Finally, we create a new graph with revised, single node la-
bels, and the edge labels from the original graph.

Figure 3 shows an example of a transformed graph. The
nodes with similar attribute values are given the same label
from the Node Label Reviser component. The graph trans-
former then creates a new graph with the revised node label
and edges from the original graph. The anomaly detection
tool operates on the transformed graphs. Since the graph
transformer creates a new graph with single node labels,
some node attribute information from the original graph is
lost. However, the label helps to identify similar nodes in
the graph.

Graph-Based Anomaly Detection

An advantage of graph-based anomaly detection is that it
is able to identify structural oddities by analyzing relation-
ships between entities. To analyze relationships between en-
tities, structural graph based anomaly detection methods ex-
amine the graph structure and exploit patterns to discover
anomalies. The purpose of a structural anomaly detection
approach is to identify infrequent substructures in the graph
or find substructures which are deviating from a frequent
substructure in the graph. For more information about graph-
based anomaly detection, the reader can refer to Akoglu et
al. (Akoglu, Tong, and Koutra 2015).

In order to test our approach, we will use the publicly
available GBAD test suite'. It should be noted that while
GBAD is used for evaluation, the proposed approach has
been designed to work with any other graph based anomaly
detection tool. The design of the proposed approach does not
limit it to be just used with GBAD.

Data

In order to evaluate the performance of the proposed ap-
proach, we experiment with three synthetic datasets varying
in size, and two real world datasets from different domains.

"http://www.gbad.info/



Synthetic Dataset

For our synthetically generated dataset, we use an artificial
graph generation tool subgen®. Through the subgen tool,
we specify the number of vertices and edges, and a norma-
tive substructure of the graph to be generated. We experi-
ment with three different synthetic datasets varying in size.
The normative substructure for these synthetic graphs con-
tain 20 nodes and 20 edges. The three datasets consist of
5,020 nodes and 5,020 edges, 100,400 nodes and 100,400
edges, and, 401,600 nodes and 401,600 edges respectively.
For each of the datasets, we inject different types of anoma-
lies like random node insertions, the random removal of
nodes, and the random modification of attribute values. A vi-
sualization of a normative substructure in the graph is shown
in Figure 4.

Figure 4: Basic Substructure of Synthetic Graph

Amazon Co-purchase Dataset

The Amazon Co-purchase Network (Muller et al. 2013) is
a publicly available benchmark dataset for community out-
lier detection. This dataset is a co-purchase network of 124
Disney movies available on Amazon. This dataset consists
of 124 nodes and 335 edges, where each node contains 30
attributes like price, review, rating, etc. The anomalies in
this dataset are products with high prices, unusual reviews,
unusual ratings, etc. This benchmark dataset consists of six
known anomalies. Among the six anomalies, three of them
are anomalies because of their high prices. Two of them are
anomalies because of unusual reviews and poor ratings, and
one is an anomaly because of low price.

Enron Email Dataset

The Enron Corpus Dataset (Klimt and Yang 2004) consists
of over 500,000 emails generated by 150 employees of the
Enron Corporation. We use a MySQI database dump 3 of
the Enron Corpus Dataset for our experiments. While graph
based approaches have known complexities in terms of time
and memory, the purpose of this work is to use multiple node
attribute information together with structural properties of
the graph to detect anomalies. Thus, we pulled a random

2http://ailab.wsu.edu/subdue/datasets/subgen.tar.gz
*http://www.ahschulz.de/enron-email-data/
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Figure 5: Graph Representation of Enron Email

sample of about 17,000 emails from the MySQL dump to
evaluate our approach. We then parsed the email bodies in
order to find the number of attachments in each email. Fi-
nally, we created a graph whose (partial) structure is shown
in Figure 5. The graph contains 98,740 vertices, and 93,239
edges.

Results and Evaluation

In this section, we discuss the results obtained from our ex-
periments and evaluate the performance of the proposed ap-
proach.

Results

Synthetic Dataset We experimented with three different
synthetic datasets varying in size but having the same ba-
sic substructure. We ran 20 experiments for each approach
on all three datasets. On average, the discretization based
approach was able to detect 5 out of 10 injected attribute
anomalies. Similarly, the distance-based similarity measure
approach was able to detect 8 out of 10 injected attribute
anomalies, and the clustering-based approach was able to
detect 7 out of 10 injected attribute anomalies. All three ap-
proaches were able to detect all three types of injected struc-
tural anomalies.

Amazon Co-purchase Dataset In this dataset, we used
price, number of reviews, and average rating of the Disney
movies as attributes. While we did not run any experiments
for feature selection, the choice of the attributes are based on
the features highlighted in literature (Sdnchez et al. 2014).

By running GBAD on the transformed graph obtained by
using the distance-based similarity measure, we are able to
discover anomalies whose price deviate significantly from
the co-purchased products. While we are able to detect 4 out
of 6 known outliers, 4 products are also reported as false pos-
itives. The products obtained as false positives are because
these products had higher prices than their co-purchased
products but are not as expensive as the ones in the given
outliers. The normative pattern and anomaly detected are
shown in Figure 6. The attribute values shown in the Fig-
ure 6 are the average values of attributes for the revised la-
bels. Both discretization- and clustering-based approaches,
however, are only able to detect 2 outliers and report 6 false
positives.

Enron Email Dataset In this dataset, all three approaches
reported the same structural anomalies as well as the anoma-



AV Rating: 4.45

Avg_Rating: 4.18 Avg_Rating: 4.18 AVg_Rating: .18

Figure 6: Normative pattern(left) and Anomalous In-
stance(right) in Amazon Co-purchase Dataset

to_count: 1
cc_count: 0
bec_count: 0
attachments: 0

received_by

Receiver

Figure 7: Normative Pattern of Enron Graph

lies based on attribute values. The normative pattern for the
Enron email graph is shown in Figure 7.

By using the normative pattern as shown in Figure 7, the
two types of anomalies detected by all three proposed ap-
proaches are shown in Figure 8. Both anomalies obtained
are unusual communication behaviours. The one on the left
of Figure 8, shows an email with an attribute anomaly of an
unusually high number of attachments. Since we parsed the
email bodies to count the number of attachments, we also
discovered that those 57 attachments were all ~.exe” files.
Email communication with such a high number of ”.exe”
files are unusual in nature.

Similarly, the one on the right of the Figure 8 shows an
email communication between the employees at an unusual
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Figure 8: Attribute Anomaly (left) and Structural Anomaly
(right) in Email Communication
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time. It shows an email being sent by the ”Vice President”
to the ”In House Lawyer” late at night, around three in the
morning. That is an unusual time to send a professional
email, and given what we know happened with Enron, that
is certainly suspicious.

Evaluation

Comparison with GBAD We compare the results ob-
tained from the proposed approach with the results obtained
by running the publicly available GBAD tool (Eberle and
Holder 2007) on the original graph.

On all of the three datasets, the results obtained from
the proposed approach was better than running GBAD on
the original graph both in terms of recall and precision.
In the synthetic datasets and Amazon Co-purchase network
dataset, GBAD was not able to detect the attribute anoma-
lies. Since GBAD treats all attribute values as discrete, it
loses the measure of similarity between values, thus cannot
detect an attribute anomaly. In the Enron dataset, GBAD was
able to detect the same outliers that our proposed approach
detected. In summary, the proposed approach outperforms
GBAD on two datasets, while GBAD provides similar re-
sults on the Enron e-mail dataset, where structure was the
primary anomaly.

Discussion Even though we also use GBAD as the inte-
grated anomaly detection tool, the proposed approach per-
forms better than the standalone GBAD tool because GBAD
loses the measure of similarity when the attributes are nu-
meric. Particularly, in the Amazon co-purchase network
dataset, GBAD can not perform well because of the numeric
attributes. However, the proposed approach is able to iden-
tify 4 out of 6 anomalies. The proposed approach adds the
measure of similarity between the attributes when the at-
tributes are numeric, precisely what the existing structural
anomaly detection approaches like GBAD lack. Thus, struc-
tural anomaly detection techniques can benefit from the pro-
posed approach.

All three approaches perform almost identically on
the Enron e-mail dataset. Clustering- and distance-based
method performed similar on the synthetic dataset by dis-
covering, on average, 7 out of 10 and 8 out of 10 anomalies
respectively, while the discretization-based approach is able
to discover 5 out of 10 anomalies on average. However, the
performance of the distance-based similarity measure is bet-
ter in the case of the Amazon co-purchase network.

Among the three approaches used, the discretization-
based approach could not perform on par with the other
two approaches. Particularly when the values of features
are skewed, the discretization approach produces too many
unique labels causing issues with the anomaly detection tool.
The distance-based approach allows the user to input a con-
tinuous threshold between a value of 0 and 1, which gives
flexibility to the user to tune the performance of the ap-
proach. However, the clustering-based approach requires the
user to specify the number of clusters, which is difficult to
determine. So, among the three approaches used in our ex-
periments, the distance-based approach is effective as well
as easy to tune.



Conclusion and Future Work

In this work, we proposed an approach which is able to iden-
tify structural anomalies as well as anomalies in attribute
values. We compared the performance of the proposed ap-
proach with an existing structural anomaly detection tool
and showed that the proposed technique can detect anoma-
lies where the traditional structural techniques cannot. We
conclude that using node label similarity information to-
gether with structural properties of the graph, we can de-
tect both structural anomalies and attributed anomalies in a
graph.

Although our research shows some good results, because
of the known complexities of the graph-based anomaly de-
tection approaches, we were limited to small-to-medium
sized graphs. In the future, we will test the scalability of the
proposed approach on larger, ’big data” datasets. Also, we
only experimented with sparse synthetic graphs. Since, we
only use the attribute value information for discovering sim-
ilarity between nodes, the labelling algorithms used are not
affected by the topology of the graph. However, in future,
we would like test our approach against denser graphs.

Similarly in this work, we only focused on the numeri-
cal attributes and left the categorical attributes as distinct.
However, in some real world scenarios, categorical attributes
could also be similar. For example, the proposed approach
treats ‘river’ and ’stream’ as completely different, but in
general they could be considered as similar. One potential
way to figure out similarity between categorical attributes is
by using an ontology. In the previous example, ’river’ and
’stream’ both belong to the type 'body of water’. So, we
could use "body of water’ for both ‘river’ and ’stream’. Also,
extracting an ontology for entities that share common struc-
ture provides added knowledge about those entities (Paudel,
Kandel, and Eberle 2019). This would allow us to extend our
work to categorical attributes, resulting in the discovery of
more interesting anomalies.
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