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Abstract

Many machine learning models have to incorporate latent
variables to learn target concepts on training data. The vari-
ables are understood only statistically and optimize a statisti-
cal property such as likelihood, but usually they are not un-
derstood in human understandable semantical terms. An ex-
ample for such a situation is that of topics in the generative
Bayesian model called latent Dirichlet allocation, modelling
topics as word distributions from the vocabulary of docu-
ments. This paper proposes a framework of classifications
and theory interpretations to be used as a construction and
analysis tool for exactly such situations. As a proof of con-
cept an algorithm is considered that uses latent Dirichlet al-
location topics induced by a corpus to enrich the given sets
of RDF annotations on each text of the corpus. The general
framework of classifications is used to discuss the role of the
algorithm in finding representations of topics by RDF triples.

Introduction

The success of and interest in machine learning (ML) al-
gorithms is reflected in the research of the semantic web
community, and it is possible to observe fruitful and quite
diverse mutual influences between both communities. The
semantic community has profited from ML algorithms in
typical tasks of information or document retrieval for the
web. However, current ML algorithms—in particular those
developed in the area of explainable AI—use ontologies as
a means to make the results of an algorithm explainable to
humans (Ribeiro, Singh, and Guestrin 2016). A technical as-
pect associated with the aim of making ML results human
understandable is that of representation, motivated by the
need to make required latent features of a statistical model
learnable automatically (Schmidhuber 2014) and also under-
standable in qualitative semantical terms (Bengio, Courville,
and Vincent 2013). Furthermore, ML algorithms use ontolo-
gies as hard constraints to semantically enhance statistical
models (Deng et al. 2014) resulting in better performance.
The main problem in bridging the worlds of ML and RDF or
OWL ontologies are two main differences between models
usually used in ML and models used in the semantic web.
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The first is that ML models are usually statistical models,
whereas the models handled in RDF(S) are qualitative. Of
course, in RDF(S) one can handle also numbers as data types
but there is no probability integrated into the semantics. A
second difference is that statistical models usually adhere to
the closed world assumption (CWA), and many results of
ML can be accomplished only by a CWA, e.g., considering
independence between random variables in a Bayesian net-
work work. These considerations rest heavily on the CWA.
On the other hand, the semantics of RDF repositories ad-
heres to the open world assumption (OWA), according to
which the absence of a triple in a repository does not en-
tail the negation of the triple. All the aforementioned diverse
approaches, for bridging the quantitative world of ML algo-
rithms based on CWA and the qualitative logico-semantical
world of ontologies based on the OWA, exhibit a solution
for specific scenarios and usually take the standpoint of one
of the two worlds in order to incorporate some aspects of the
other world. Thereby, the approaches usually describe how
information from a model of one world can be used in the
other world—but not vice versa. However, in particular for
trending fields like internet of things (IoT) with many dis-
tributed entities producing heterogeneous data of both types,
quantitative and qualitative, a more general theory of infor-
mation flow is required: (i) coping with both types of models
and, (ii) explaining information flow in both directions. Such
a theory has to be built on a simple data structure captur-
ing both, quantitative and qualitative aspects. There has been
work around a structure which can take the role of such an
abstract data structure. In the theory of distributed logics of
(Barwise and Seligman 2008) this data structure is called a
classification—and we are going to follow this terminology,
as we will mainly refer to the general theory of (Barwise and
Seligman 2008). The same structure is discussed in different
terminology and different disguises as polarities (Birkhoff
1973) in lattice theory or as contexts in formal concept anal-
ysis (Ganter, Franzke, and Wille 2012), or as Chu spaces
(Barr 2006) in theoretical computer science. The idea is that
each model contains entities called tokens that can be clas-
sified as a type from a given set of types. Then, information
between the models flows due to some regularities assumed
to hold in the models.
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Though these approaches are known in research for quite
a time, they have not been considered for bridging the ML
and the world of ontologies. The observation on which the
contributions of this paper rest is that statistical models have
emergent qualitative properties that can be described as clas-
sifications in the sense mentioned above. Hence, the integra-
tion of quantitative and qualitative models aimed at can be
accomplished or at least analysed in a theory handling struc-
ture preserving mappings between classifications. There are
various structures associated with a classification, but the
main structure, describing regularities on the classification
is that of a theory. And the kind of structure preserving map-
ping is that of a theory interpretation. The classification by
itself is a “closed world” but the theory defined over the clas-
sification can be discussed w.r.t. other compatible classifi-
cations. So we have an integration of models based on the
CWA with models based on the OWA.

We analyse a concrete representation task in topic anal-
ysis justifying our claim that an approach based on classi-
fications and their structure-preserving mappings presents
an adequate framework for constructing mappings between
models of ML and the qualitative models associated with
RDF repositories. In the setting of this paper we assume that
there are annotations of the documents with RDF triples, and
we consider a concrete EM-like algorithm that moves the
RDF annotations between the documents until some fixed
point is reached. We argue that this saturation easies the
construction of a structure preserving mapping that maps
topics—considered as types in a classification—and RDF
annotations—also considered as types in a classification.

The remainder of this paper is structured as follows. We
start with a look at related work. Then, we present back-
ground information about topic modelling and the algorithm
for the mutual enrichment of RDF annotations of documents
in a given corpus. We follow with an analysis of the repre-
sentation problem for topics using the framework of classi-
fications and theory interpretations. Then, we discusses re-
lated work and close with some general remarks on the role
of our approach and an outlook on future work.

Preliminaries

This section gives a brief overview of latent Dirichlet allo-
cation (LDA), annotation enrichment, and information flow.

Latent Dirichlet Allocation

(Blei, Ng, and Jordan 2003) have introduced the topic mod-
elling technique called LDA which assumes that documents
in a corpus D represent a mixture of topics where each topic
is characterized by a distribution of words from a vocabulary
V of words from the documents in D. LDA generates a topic
model from the documents in D, learning latent structures of
two forms, (i) a document-topic distribution θ representing
each document d ∈ D, i.e., the degree which the content of d
is about each topic of a set of K topics, and (ii) a topic-word
distribution φ describing the probability of each word from
V occurring in each of the K topics. Both the document-
topic distribution and the word-topic distribution depend on
the documents in D. The inputs for LDA are a corpus D of

documents as defined above, the number of topics K as well
as two hyperparameters α and β, where α conditions the per-
document topic distributions θd and β conditions the per-
corpus topic distributions φk, k ∈ {1, ...,K}. The hyper-
parameters trade off the following two goals to find groups
of tightly co-occurring words: (i) Allocate words of docu-
ments to as few topics as possible (α), and (ii) assign high
probability to as few terms as possible in each topic (β).

Formally, for each document d in corpus D, LDA learns
a discrete probability distribution θd that contains for each
topic k ∈ {1, . . . ,K} a value between 0 and 1 s.t. the sum of
all values is 1. Each word in a document is assumed to come
from one of the latent topics with a probability as given by
the probability distribution θd. LDA also learns a discrete
probability distribution φk for each topic k ∈ {1, . . . ,K}
that contains for each word w ∈ V a value between 0 and 1
s.t. the sum of all values is 1, too.

Annotation Enrichment of Documents

Annotations provide additional data for documents, support-
ing humans and machines to handle documents’ content.
The degree of added value of annotations for a document
depends on the benefit for applications such as query an-
swering. We consider the iterative algorithm from (Kuhr and
Möller 2019), enriching documents with annotations from
related documents. We analyse the algorithm in terms of
classification in the next section. The itertaive algorithm 1
proceeds by considering i) the composition of documents
in a given corpus, ii) the text of all documents in the cor-
pus, and iii) the RDF triples (annotations) in the reposito-
ries of documents. The idea is to consider a topic-related D-
similarity function (SimD) and a RDF-related G-similarity
function (SimG) to enrich documents with annotations. Al-
gorithm 1 alternates between an expectation step (E-step)
and a maximization step (M-step), estimating for each doc-
ument d ∈ D a subset of annotations t from the RDF repos-
itories of d-related documents having a high expected rel-
evance value for the document d. All d-related documents
must have high values for SimD and SimG with document
d, where SimD is a metric estimating a textual similarity
between two documents by comparing their topic distribu-
tions, and is defined by: SimD(di, dj) = 1 − H(θdi , θdj ),
and function H(θdi , θdj ) calculates the Hellinger distance
between the topic distributions θdi and θdj . The smaller the
distance between θdi and θdj , the higher the D-similarity be-
tween the documents di and dj . The second similarity mea-
sure, called G-similarity, compares the annotations between
two RDF repositories with each other, resulting in a similar-
ity value between both repositories. The similarity function
s(r(di)

k, r(dj)
l) estimates the similarity between the k-th

triple in r(di) and the l-th triple in r(dj) by comparing their
subjects, predicates, and objects, resp., with each other. The
more similar two triples, the higher their similarity value.
Function f(d, z) identifies for RDF repository r(d) the set
of repositories Gd such that the G-similarity between r(d)
and all repositories in Gd is greater than threshold z. The
function f(d, z) returns the set of repositories and is defined
by: f(d, z) = {Gd | SimG(r(d), r(di)) > z}|D|

i=1, For fur-
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Algorithm 1 Algorithm for RDF-Triple Enrichment of Texts
1: Input: d, r(d), D, h
2: Define: ε = 0.1 , Dd, D′d, Gr(d), r(d)′

3: Initialize: SimGr(d) = ε, Sim′
Gr(d) = SimGr(d) − ε,

Gr(d) = ∅, ervr(d)t = 0,
4: Output: r(d)′

5: while (SimGr(d) − Sim′
Gr(d)) ≥ ε do � E-Step

6: r(d)′ ← r(d)
7: Dd ← ∅
8: G′d ← f(d, (SimGr(d))
9: for each dk ∈ D \ {d} do

10: if SimD(d, dk)>h and r(dk) ∈ G′d then

11: Dd ← Dd ∪ dk
12: for each t ∈ Gr(d) do
13: erv

r(d)
t ← erv

r(d)
t + erv(dt)

14: for each t ∈ Gr(d) do
15: if erv

r(d)
t > ervr(d) then

16: r(d)′ ← r(d)′ ∪ {t}
� M-Step

17: Sim′
Gr(d) = SimGr(d)

18: SimGr(d) =
∑|Dd|

k=1
SimG(r(d),r(dk))

|Dd|
19: return r(d)′

ther details we refer to (Kuhr and Möller 2019).

Classifications and Theories

Classification are structures A = 〈tok(A), type(A), |=〉
consisting of a set of tokens tok(A), a set of types type(A),
and a binary satisfaction relation |=A between tokens as left
and types as right arguments. If the set of tokens and types is
finite, the satisfaction relation can be described with a clas-
sification table with rows standing for tokens and columns
for types and an entry 1 for token b and type τ meaning that
b |=A τ ; accordingly an entry 0 means that not b |=A τ .

A theory T over a set of types Σ is a pair T = 〈Σ,�〉
of types Σ = type(T ) and a binary consequence relation
�=�T where the left and right arguments are subsets of Σ.
Γ � Δ is called a sequent. The entailment relation is re-
quired to fulfill some basic constraints that one would expect
to be satisfied by a monotonic entailment relation. This leads
to the notion of a regular theory which is a theory where �T

fulfills the property of identity, that is τ � τ for all τ ∈ Σ,
weakening, i.e., if Γ � Δ then Γ,Γ′ � Δ,Δ′, and global cut,
i.e., if Γ,Σ0 � Δ,Σ1 for each partition Σ0 �Σ1 = Σ′ of Σ′.

For each classification A the associated theory Th(A) =
〈type(A),�〉 is defined to have the same types as A and
to have a consequence relations � given as follows: for all
Γ,Δ ⊆ type(A): Γ � Δ iff for all tokens b ∈ tok(A) it
holds that if b |=A τ for all τ ∈ Γ, then there is some τ ′ ∈ Δ
such that τ |=A τ ′. The definition immediately entails the
fact that Th(A) is a regular theory.

A regular theory interpretation f : T1 −→ T2 of theories
T1 and T2 is a function from type(T1) to type(T2) such that
for each Γ,Δ ⊆ type(T1) the following holds: If Γ �T1

Δ
then f [Γ] �T2

f [Δ]. Here, as usual, we used the notation
f [Γ] = {f(τ) | τ ∈ Γ} for the image of function f on set Γ.

Given a regular theory T = 〈Σ,�〉, a sequent 〈Γ,Δ〉 is

type(B)

type(A) type(C)

g

h

f

Figure 1: Commuting diagram for Prop. 3

called T -consistent iff not Γ � Δ. It is possible to specify
a theory by its consistent partitions. This due to the result
expressed in the following proposition.
Proposition 1 (Prop. 14 of (Barwise and Seligman 2008)).
Every set P of partitions of Σ is the set of consistent parti-
tions of a unique regular theory on Σ.

Given an arbitrary function f : Σ1 −→ Σ2 between sets
of types Σ1 and Σ2 and a theory T over Σ1 it is possible
to define a corresponding theory over Σ2. More concretely,
let T = 〈Σ1,�T 〉 be a regular theory. Then the image of
T under f , for short f [T ], is the theory whose type set is
Σ2 and whose consequence relation �f [T ] is defined by con-
sistent partitions as follows: a partition 〈Γ,Δ of Σ2 is f [T ]-
consistent iff 〈f−1[Γ], f−1[Δ]〉 is T-consistent. Actually, the
theory produced in that way is the one making f a theory in-
terpretation.
Proposition 2 (Prop. 10.15 of (Barwise and Seligman
2008)). Let T be a regular theory and consider a function
f : type(T ) −→ Σ2. Then f [T ] is the smallest regular the-
ory T ′ on Σ2 such that f is a theory interpretation.

A stronger notion of structure-preserving mapping be-
tween classifications is that of an infomorphism. Given clas-
sifications A and B an infomorphism f : A � B is
a pair of contravariant functions f = 〈f∧, f∨〉 such that
f∧ : type(A) −→ type(B) is a function mapping types of
A to types of B and f∨ : tok(B) −→ tok(A) is a func-
tion mapping (in the reverse direction) the tokens of B to
tokens of A and such that the following fundamental prop-
erty of infomorphisms is fulfilled for all b ∈ tok(B) and
types τ ∈ tok(A): f∨(b) |=A τ iff b |=B f∧(τ).

Infomorphisms can be composed to get new infomor-
phisms. A proposition relevant for our results is part of
Lemma 4.17 in (Barwise and Seligman 2008).
Proposition 3 (Lemma 4.17(2) of (Barwise and Seligman
2008)). Assume there are contravariant pairs of functions
f : A � B, g : B � C, and h : A � C such that the
diagram in Fig. 1 commutes. Then: if g and h are infomor-
phisms and g∨ is surjective, then f is an infomorphism.

Topic Representations via Theory

Interpretations

The current success of ML algorithms has lead to discus-
sions on the understanding and interpretation of their out-
comes in human understandable terms, which is the heart of
the explainable AI. The motivation for investigating repre-
sentations for deep learning algorithms is similar: in many
state-of-the art algorithms the algorithm is allowed to adhere
to latent structures whose meaning is usually not in formal
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qualitative logico-semantical let alone human understand-
able terms, e.g., topic models, we use as the main example
in this paper. In LDA, we can compare documents with each
other w.r.t. their topic mixtures and as such allow a conve-
nient method for information and document retrieval. How-
ever, the concrete “semantics” of the topics is not unveiled
by LDA. When humans talk about topics of a text they talk
about it in qualitative terms which can, to some degree, be
represented as RDF triples. But how to bridge both worlds?

We assume topic mixtures to be of Boolean nature
and that we have a corpus containing set of documents
d1, . . . , dn which are our tokens, and a set of topics Σ1 =
{τ1, . . . , τm}. Each document di is represented as an inci-
dence vector of length m, where a 1 at position j indicates
that document di contains topic j and a 0 indicates the ab-
sence of that topic leading to a classification table termed
DTM (document topic matrix) with types being all topics
and tokens being all documents. We can consider the clas-
sification as emergent, qualitative properties resulting from
a probabilistic model. Such a classification contains a log-
ical structure we are using to represent the topics in a log-
ical framework such as RDF(S). As defined in the prelimi-
naries, for each classification A one can define a canonical
theory Th(A) which describes the entailments. Considering
the classification of documents an example sequent Γ � Δ
would be τ1, τ2 � τ3, τ4 where Γ = {τ1, τ2} is the an-
tecedent consisting of topics τ1 and τ2, where Δ is the succe-
dent consisting of the topics τ3, τ4. Such a sequent holds in
the classification if for each document of type τ1 and type τ2
it is the case that it is of type τ3 or type τ4. (Note that being
of type τ3 or of type τ4 may be different for each document.)
There are some sequents that one expects to hold purely due
to “logical reasons”—independent of the classification, e.g.,
in any classification, any sequent containing a type both in
the antecedent and the succedent holds in the classification.
This and two other properties lead to the notion of a regular
theory (see preliminaries). And in fact, any theory induced
by a classification can be easily shown to be regular. The
reason to consider not only theories induced by classifica-
tions is that we consider to move theories from one clas-
sification to another. Along this movement the theory may
possibly not be represented as the canonical theory induced
by a classification. This notion of a theory still does not talk
about logical constructors but it is a logical theory in the
sense that it treats the comma in the antecedent of a sequent
as conjunction and the comma in the succedent as a disjunc-
tion. Moreover, with the regularity property the notion of a
theory reflects some intuitive properties from an entailment
relation �. As for the logical constructors, we note that in
the closed environment given by the classification one can
check whether such a classification is rich enough to pro-
vide, say, Boolean operators—and if not, one can close up
the classification so that it does. The classification with top-
ics has proved very useful for typical tasks of document and
information retrieval. The main problem is that topics are
given only as distributions of words resulting from an opti-
mization process on a Bayesian network. Such a description
is only of marginal use for humans which would rather profit
from characterizing each topic by a simple label, say an RDF

type(DT ) type(RNT )

type(DAM)

g

f

(by EM)
f ′

Figure 2: The general situation

type such as DBpedia : car, denoting the topic of cars or
DBpedia : dog denoting the dog topic. Let us denote the
classification consisting of a set of topic RDF descriptions as
types Σ3 and the same set of documents as tokens for DT by
RNT for RDF named topic. For each topic label tl we may
assume a corresponding RDF database f ′(tl) which exactly
circumscribes the topic. For example, for DBpedia : car
we may have RDF triples stating that a car has wheels.

An annotation of documents with topic labels is either
not given, not known or not complete. But usually, there are
other annotations describing some facts in the document the
annotations are associated with. We assume that for all doc-
uments di ∈ D, we may have annotations as RDF triples,
and that for each document there is an associated annota-
tion RDF repository. As the annotations may be of differ-
ent nature we allow the annotations to refer to the sub-graph
mechanism to distinguish between them. So, we have a clas-
sification matrix DAM (document annotation matrix) with
the same set of documents but with a different set of types
Σ3 = {g1, . . . , gk}, where gi denotes the repository of di.

We only know about the function f ′ mentioned above.
The main function g, we are interested in, is the function
g : Σ1 −→ Σ2 which assigns each topic an RDF type and
we would need at least a clue on the function f : Σ1 −→ Σ3

to find g. We are going to argue that the EM algorithm gives
the necessary support in finding f . Having f and f ′, one can
find the representation function g one is aiming for. Figure 2
describes the general situation.

But, what kind of further constraints functions f, f ′, g
have to fulfill to guide the construction? In the setting of
(Barwise and Seligman 2008) the strongest constraint is an
infomorphism between classifications. Below, we consider
this strong constraint and why it is not the first choice to
follow. Here, we rather follow the idea of moving theories
from one classification to another—though we note that each
theory interpretation induces also an infomorphism between
canonical classifications associated with them. Each such
adapting the theory of the annotation classification to the
theory induced by the topic classification. The main task is to
find an interpretation g by trying to construct an appropriate
theory interpretation f assuming that f ′ can be constructed
as a theory interpretation and the EM algorithm presented in
Section easies the construction of f .

Finding a Theory Interpretation f

(Barwise and Seligman 2008) assumes the existence of in-
fomorphisms or interpretations f to develop their whole
theory. But in many cases, the function f is unknown but
only some classifications as domain and range of the func-
tion are known. We construct such an infomorphism using
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these classifications and the other knowledge on the do-
mains. In our case, we assume that the classification given
by the classification with topics (DT) is trustworthy and
complete, but the classification with the RDF annotations
is rather not complete. So we will allow ourselves changing
the classifications w.r.t. the RDF annotations when search-
ing for an appropriate function f . We are seeking a function
f : type(DT ) −→ type(DAM) that is a theory interpre-
tation w.r.t. the canonical theory Th(DT ) over the classi-
fication and some regular theory T over the classification
DAM , which has its own canonical theory Th(DAM) but
due to the incompleteness of the annotations we do not nec-
essarily expect this theory to be exactly one allowing to
define f as theory interpretation. Thus, we allow a change
of a set of tokens of DAM to change its associated the-
ory. We note, that our assumptions give rise to a special
asymmetrical scenario but the framework allows to consider
the case where classification DT is incomplete, too. In that
case one would consider moving the canonical theory of
DAM to DT in the inverse direction leading to the theory
f−1[Th(DAM)]. The idea of the EM algorithm in terms
of theory interpretation approach is to consider a similar-
ity function between the documents ∼DT based on a dis-
tance function. The distance function is defined on the base
of types such that it depends monotonically on the Hamming
distance of the documents. A similar assumption is made for
the similarity relation ∼DAM over the classification DAM .

The main idea of the iterative algorithm 1 is to make
those documents that are similar w.r.t. ∼DT and also sim-
ilar w.r.t. ∼DAM even more similar w.r.t. ∼DAM . This is
justified w.r.t. the general aim of constructing a theory inter-
pretation. The less different documents are the less counter
models exist for sequents, and making documents more sim-
ilar leads to more sequents not being falsified in classifica-
tion DAM . Of course, the general strategy of considering a
smaller set of tokens leads to more theories being accepted.
But algorithm 1 considers only documents that are justified
to be made similar in the sense that they are similar w.r.t. the
categorization DT .

Proposition 4. Algorithm 1 changes the category DAM
such that the probability of finding a function f :
type(DT ) −→ type(DAM) considered as theory interpre-
tation between Th(DT ) and Th(DAM) is increased.

For the resulting saturated classification DAM there may
stil be many different potential candidates f for a theory
interpretation or, still, further changes on DAM ′ may be
required. We follow a general Occam’s razor principle and
require the additional changes, resulting in DAM ′′, to be
minimal, i.e., a candidate theory interpretation f has to be
such that f = argminf ′ | DAM ′ − DAM ′′ |. We used
Hamming weight | A | for a matrix A: it is the number of
ones in A.

Finding an Infomorphism f

When searching for functions f , f ′, and g we chose to con-
sider a constraint on the functions that requires them to be
theory interpretations. A stronger notion is that of an info-
morphism, which is based on a contravariant pair of func-

tions and has to fulfill the fundamental property of info-
morphisms. We discuss here what it would mean to require
the functions f , f ′, and g to be infomorphism by illustrat-
ing it for f . As we work with the same set of documents
we assume that the token-relating function f∨ of the info-
morphism is the identity function. So, function f between
types that we seek is the function f : Σ1 −→ Σ2 such that
for all tokens b and types τ ∈ Σ1 it holds that b |= τ iff
b |= f(τ). The fundamental property says that the topic clas-
sification must be contained in the classification table w.r.t.
the RDF annotation—after applying possibly some permu-
tation of the columns. This, may be rather seldom due to the
incompleteness and incorrectness of the annotations. Thus,
some changes must be allowed, but we require these changes
to be minimal, following a general Occam’s razor principle.

For a subset of types S ⊆ Σ2, let DAMS denote the sub-
matrix where the columns of DAM are restricted to those
appearing in S. So, what we are seeking is a function f such
that f = argminf ′ | DTM −DAMf ′[Σ1] |.

In the topic scenario, the constraints associated with info-
morphisms seem too strong. Though there seems to be cor-
respondence between the topics and the RDF annotations we
do not expect this correlation be in such a way that a docu-
ment fulfills a topic if and only if it fulfills some annotation.
Rather, there is a more holistic correspondence which was
the main theme of the section before, namely, the preserva-
tion of relations between sets of topic types Γ,Δ (in form
of sequents Γ � Δ of Th(DT )) as relations between their
images (as sequents f(Γ) � f(Δ) in Th(DAM)).

Related Work

Our approach is couched in the framework of distributed
logics (Barwise and Seligman 2008), which shares its main
ideas with the theory of Chu spaces (Barr 2006). We have
touched only a small part of the framework from Barwise
and Seligman and much more of this work is relevant for
our analysis of topics. We note here only that the notion
of theory we used is part of the notion of a local logic,
for which—next to a classification and a theory—one has
to specify a set of so-called normal tokens. This additional
structure allows to handle exceptions in a similar way as
done in non-monotonic logics, which is also helpful in our
scenario where there may be accidental or exceptional anno-
tations which one wants to account for. (Barwise and Selig-
man 2008) use the notion of a logic very general, but this
generality is appropriate because very diverse systems, as in
our scenario of text analysed in LDA and RDF terms, have
to be accounted for. A precursor to a very general approach
to logics can be found under the term institutions as devel-
oped by (Goguen and Burstall 1984). Barwise and Seligman
also discuss a general approach for representation, referring
in particular to the results of Shimojima’s PhD thesis (Shi-
mojima 1996). The notion of representation underling our
approach is just that of a theory interpretation. As we gave
only rough descriptions by two classifications (without go-
ing onto the word level of each text in the corpus) there was
no further requirement to refer to the fine-grained notion of
representation according to (Barwise and Seligman 2008).
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A further class of related approaches are those based on
RDF vector space embeddings, such as RDF2vec (Ristoski
and Paulheim 2016) or its global variant as described in
(Cochez et al. 2017), having the idea to project RDF reposi-
tories to a low-dimensional domain and thereby to provide a
data structure that can serve as an input for ML algorithms.
The exact connections of our framework to that of (Ristoski
and Paulheim 2016) and (Cochez et al. 2017) still have to
be worked out, but, on the first sight, the kind of integra-
tion we propose is symmetrical, allowing information flow
in both directions, whereas in (Ristoski and Paulheim 2016)
and (Cochez et al. 2017) the integration is one-sided—the
RDF world serving the ML world. Moreover, the framework
we propose to use has a notion of a theory, whereas that of
(Ristoski and Paulheim 2016) and (Cochez et al. 2017) is not
intended to do.

Somehow related to our approach are approaches that deal
with ontology mappings and multi-context systems. We re-
fer the reader to (Kalfoglou and Schorlemmer 2003) for a
ontology mappings and to (Brewka and Eiter 2007) for
multi-context systems. Multi-context systems interlinking
heterogeneous knowledge sources by modelling the flow of
information among different contexts. The aim of ontology
mapping is similar to the aim as illustrated in our LDA sce-
nario: one has to find a mapping between the possibly very
heterogeneous ontologies. There is still much interest in on-
tology mappings also in the semantic web community as,
e.g., the ontology alignment initiative.

Conclusion and Outlook

We propose to use classifications as the lowest common de-
nominator for statistical models developed in ML on the one
hand and logical models used in the semantic web commu-
nity, on the other hand. Working with such a data structure
and additional concepts definable over them allows a sym-
metric form of semantic integration that many upcoming ap-
plications in the intersection of ML and the semantic web are
aiming at. We considered a concrete application (annotation
enrichment) in the intersection of information retrieval and
the semantic web and showed that it can be analysed in the
framework of classifications. There are still some points that
call for further investigations. For example, the exact inter-
play of similarity relations and the notion of a theory has to
be worked out in more detail. Moreover, we think that our
analysis based on the notion of a theory on a classification
is not the whole story, though it is surely the core of it: the
notion of local logics and the stronger notion of infomor-
phisms would also have to be accounted for. But, we think
that the observations and ideas of this paper could be of in-
terest for other researchers in the AI community who work
in the intersection of ML and the semantic web.
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F.; and Gil, Y., eds., The Semantic Web - ISWC 2016 - 15th
International Semantic Web Conference, Kobe, Japan, Octo-
ber 17-21, 2016, Proceedings, Part I, volume 9981 of Lec-
ture Notes in Computer Science, 498–514.
Schmidhuber, J. 2014. Deep Learning in Neural Networks:
An Overview. ArXiv e-prints.
Shimojima, A. 1996. On the Efficacy of Representation.
Ph.D. Dissertation, Indiana University, Bloomington, IN.

93


