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Abstract

Autonomous driving vehicles must have the ability to identify
and predict behaviors of surrounding moving objects (e.g.,
other vehicles, cyclists, and pedestrians) in real-time. This
is especially true in urban environments, where interactions
become more complex due to high volumes of traffic. The
work in this paper harnesses the Dempster-Shafer (DS) the-
oretic framework’s ability to capture and account for various
types of evidence uncertainty to develop a robust event detec-
tion and prediction model, which is appropriately calibrated
to account for the underlying uncertainty so that it may be
employed to arrive at a more informed decision.

Introduction

Advances in sensor and AI technologies have propelled
rapid developments in autonomous driving during the past
decade. Numerous research projects (DARPA 2014) aimed
at solving the autonomous driving challenges have accel-
erated these developments. Today, scientists are diligently
working at making fully self-driving cars a reality.

Fully driver-less cars, however, require effective method-
ologies for handling uncertainties and exceptions that may
arise from the behavior of nearby vehicles (e.g., sudden turns
at intersections and lane changes, mechanical breakdowns,
vehicles blocking the roadway, etc.), cyclists and pedestrians
(e.g., abrupt movement onto the road), navigating in highly
congested traffic situations, bad weather, and other unpre-
dictable and unanticipated situations. With the increased au-
tomation required by the next levels of autonomous driving
tasks as identified in the Society of Automotive Engineers
(SAE) taxonomy (SAE 2018), there is heightened interest in
how to manage these uncertain and exception conditions.

The lack of effective methods to handle such situations
is considered perhaps the most serious roadblock preventing
the development of fully autonomous vehicles (AVs) (Ottley
2019). Current exceptions and uncertainty handling mecha-
nisms rely heavily on the involvement of the human driver
(Burns 2018; Kaber 2018). Irrespective of whether a hu-
man is involved in the decision-making process, we believe
that the information provided should be properly calibrated
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to capture the underlying uncertainty so that the decision-
maker can make a fully informed decision. The DS theo-
retic (DST) (Dempster 1968; Shafer 1976) models are ide-
ally suited to capture and propagate these underlying uncer-
tainties throughout the decision-making pipeline.

We examine this supposition by developing a DST model
to capture the intended relative movements of other vehicles
and pedestrians. With the predicted behavior of a pedestrian
crossing the road or a vehicle making a turn, together with
the uncertainty associated with this prediction in hand, the
AV (or the human-in-the-loop) can arrive at a more informed
decision as to the action it could take. In turn, with an ap-
propriately calibrated model which captures the underlying
uncertainty as the basis on which better more informed de-
cisions are made, this work has the potential to significantly
contribute to reduce driver fatigue and the number of traf-
fic accidents, solve the problem of traffic congestion, allow
individuals who do not (or cannot) drive more freedom, as
well as make commuting easier and safer.

This paper is organized as follows: First, we provide key
terminology in common use for autonomous driving and
DST basic notions. This is followed by the proposed model
for lateral and longitudinal relative motion of surrounding
moving objects. The experimental results are provided next,
followed by concluding remarks.

Preliminaries

Levels in Autonomous Driving. The level of driver atten-
tion, and how much driver action is needed to perform the
driving task, are important factors to consider when attempt-
ing to define the level of autonomy. The SAE defines six lev-
els of driving automation (SAE 2018): 0 (no automation),
1 (driver assistance), 2 (partial automation), 3 (conditional
automation), 4 (high automation), and 5 (full automation).
These levels depend on whether the vehicle can perform all
or part of the dynamic driving task (DDT). In levels 1-2, the
human driver monitors the driving environment; in levels 3-
5, an automated driving system (ADS) performs all or part
of the DDT on a sustained basis.

The Driving Task. The driving task that an AV would
have to execute involves the following (SAE 2018): (a) Lat-
eral control: Turning left, right, tracking a turn. (b) Longi-
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tudinal control: Maintaining set speed and appropriate gap,
detecting preceding vehicle, appropriate braking (accelera-
tion/deceleration to maintain speed). (c) Object and Event
detection: Real-time environmental object and event detec-
tion, recognition, classification and response preparation,
i.e., first to identify the object (e.g: car, cyclist, pedestrian
etc), and second to understand the motion of the object and
see if we can infer what it will do next. (d) Planning: In-
formed decision-making aspect which follows the informa-
tion gathering via perception and behavior prediction. This
includes long and short term plans needed to travel to a
destination, maneuvers such as lane changes, intersection
crossings, and driving around other moving objects or traffic
participants. (e) Miscellaneous: Identifying actions such as
hand-waving, signaling, and interacting with drivers.

DST Basic Notions. In DS theory, the frame of discern-
ment (FoD) refers to the set of all possible mutually ex-
clusive and exhaustive propositions (Shafer 1976). We con-
sider the case where the FoD is finite and we denote it as
Θ = {θ0, θ1, . . . , θn−1}. Proposition {θi}, which is referred
to as a singleton, represents the lowest level of discernible
information. The power set of Θ, denoted by 2Θ, form all
the propositions of interest in DS theory. A proposition that
is not a singleton is referred to as a composite. The set A\B
denotes all singletons in A ⊆ Θ that are not included in
B ⊆ Θ, i.e., A\B = {θi ∈ Θ | θi ∈ A, θi /∈ B}. We use A
to denote Θ\A and |A| to denote the cardinality of A.

Definition 1. The mapping m : 2Θ �→ [0, 1] is said to be
a basic belief assignment (BBA) or a mass assignment if
m(∅) = 0 and

∑
A⊆Θ

m(A) = 1. The belief assigned to A ⊆

Θ is Bl : 2Θ �→ [0, 1] where Bl(A) =
∑
B⊆A

m(B).

So, the mass captures the ‘support’ that is strictly allo-
cated to a given proposition and the belief assigned to a
proposition takes into account the support for all of its sub-
sets. The mass of a composite proposition (a general focal
element) is free to move into its subsets (e.g., into individual
singletons), which allows one to model the notion of igno-
rance. Complete ignorance is captured via the vacuous BBA
1Θ: m(A) = 1 for A = Θ, and m(A) = 0 for A ⊂ Θ.
Propositions that possess non-zero mass are referred to as
focal elements; the set of all focal elements in an FoD is re-
ferred to as its core F, i.e., F = {A ⊆ Θ | m(A) > 0}. Note
that |F| is the number of focal elements. E = {Θ,F,m(·)}
is referred to as the body of evidence (BoE).

Relative Motion of Adjacent Moving Objects

DST Model. We now develop a DST model which captures
the uncertainties that are inherent in the evidence generated
by vehicles, pedestrians, cyclists, and other moving objects
in uncertain road situations. To this end, we consider the lat-
eral relative movement (as Left, Center, or Right) and the
longitudinal relative movement (as Away, Stationary, and To-
ward) relative to the AV. Fig. 1 illustrates these movements
when another car, a cyclist, and a pedestrian are present near
the AV. These categories will be further divided into slow

Figure 1: Lateral and longitudinal relative motion of moving
objects. Lateral motion: Left, Center, and Right; longitudinal
motion: Away, Stationary, and Toward.

and fast, giving ten categories of movement as Fast Left
(FL), Slow Left (SL), Center (C), Slow Right (SR), and Fast
Right (FR) for lateral movement and Fast Away (FA), Slow
Away (SA), Stationary (S), Slow Toward (ST), and Fast To-
ward (FT) for longitudinal movement.

Each moving object in the near vicinity of the AV is allo-
cated a pair of lateral and longitudinal DST BoEs with the
following two DST FoDs:

Lateral FoD: ΘU = {FL, SL,C, SR, FR};
Longitudinal FoD: ΘV = {FA, SA, S, ST, FT}. (1)

Initialization of the BoEs. Let us link track Ti which may
span several frames of a video signal, with object Oi. For
n objects of interest, we have the tracks {T0, T1, ..., Tn−1}.
We denote the object Oi in the previous and current frames
as O′i and O′′i , respectively. We denote the centroid of O′i as
{x′, y′}, and the width and height of the relevant bounding
box as w′ and h′, respectively. Similarly, the centroid of O′′i
is {x′′, y′′}, and the width and height of the relevant bound-
ing box are w′′ and h′′, respectively. See Fig. 2.

Consider the object Oi on track Ti. For convenience, we
will ignore the subscript i. The objects O′ and O′′, the object
O (again, we ignore the subscript i) in the previous and cur-
rent frames respectively, are endowed with two BoEs, one
defined on the lateral FoD ΘU and the other defined on the
longitudinal FoD ΘV (see (1)). Let us denote these BoEs
as E ′U = {ΘU ,F

′
U ,m

′
U (·)} and E ′V = {ΘV ,F

′
V ,m

′
V (·)}

for the previous frame and E ′′U = {ΘU ,F
′′
U ,m

′′
U (·)} and

E ′′V = {ΘV ,F
′′
V ,m

′′
V (·)} for the current frame.

The starting BoE (the BoE associated with the first frame
of track Ti) is taken to be vacuous, i.e.,

m(A) = 1ΘU
(or 1ΘV )) ≡

{
1, for A = ΘU (or ΘV );

0, for A ⊂ ΘU (or ΘV ).
(2)

Thus, the belief and plausibility of each proposition (except
the full FoD itself) is 0 and 1, respectively.
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Figure 2: Updating the lateral and longitudinal BoEs of ob-
ject Oi with CUE. E ′′ = (E ′ � ETR). Previous frame: cen-
troid {x′, y′}, width w′, height h′; current frame: centroid
{x′′, y′′}, width w′′, height h′′.

DST Modeling of New Evidence. New evidence is ex-
tracted by comparing the relative lateral and longitudi-
nal movement between O′ and O′′. Let us refer to these
BoEs as lateral and longitudinal transmit-BoEs, and iden-
tify them as ETR

U = {ΘU ,F
TR
U ,mTR

U (·)} and ETR
V =

{ΘV ,F
TR
V ,mTR

V (·)}, respectively.
The BBAs associated with ETR

U and ETR
V are determined

as follows. When an object is moving left or right, the value
of x will change; when an object is moving away or toward,
the value of y and also the area of the detected object will
change. We use these changes to allocate DST masses which
quantify the support the new evidence has for each proposi-
tion from the two FoDs ΘU and ΘV .

Algorithm 1 shows how these DST masses are computed.
We use two constant parameters in this algorithm: Π, Γ: Π
is used to classify the lateral focal element as either FL or
SL (or either FR or SR); and Γ is used to classify the longitu-
dinal focal element as either FA or SA (or either FT or ST).
The exact values of Π and Γ depend on the configurations
of the video input. Another parameter used in Algorithm 1
is the detection confidence score S which captures the con-
fidence of the new evidence generated from O′′i via the AV’s
pedestrian or vehicle detector.

The steps of Algorithm 1 are as follows: (a) Line #1
takes as inputs x′, y′, x′′, y′′, BBATR

U , BBATR
V ,Π,Γ, S.

The centroid of O′i is {x′, y′} and the centroid of O′′i is
{x′′, y′′}. We represent the BoEs BBATR

U and BBATR
V as

DS-Vectors (although one could also employ DS-Matrix or
DS-Tree structures) (Polpitiya et al. 2016; 2017). Π and Γ
values are constants for the entire run; the value S varies
with every new detection. (b) Lines #2–12 determine the lat-
eral focal element and assigning the mass. Mass of the lateral
focal element will be S. (c) Line #13 assigns value 1− S to
mTR

U (ΘU ). (d) Lines #14–24 determine the longitudinal fo-
cal element; its mass is S. (e) Line #25 assigns value 1 − S
to mTR

V (ΘV ). (f) Line #26 returns BBATR
U and BBATR

V

Algorithm 1 Determining the masses of ETR
U and ETR

V

1: procedure ASSIGNMASSES(x′, y′,
x′′, y′′, BBATR

U , BBATR
V ,Π,Γ, S)

2: if x′ > Π+ x′′ then
3: mTR

U (FL) ← S
4: else if x′ > x′′ then
5: mTR

U (SL) ← S
6: else if x′ +Π < x′′ then
7: mTR

U (FR) ← S
8: else if x′ < x′′ then
9: mTR

U (SR) ← S
10: else
11: mTR

U (C) ← S
12: end if
13: mTR

U (ΘU ) ← 1− S
14: if y′ > Γ + y′′ then
15: mTR

V (FA) ← S
16: else if y′ > y′′ then
17: mTR

V (SA) ← S
18: else if y′ + Γ < y′′ then
19: mTR

V (FT ) ← S
20: else if y′ < y′′ then
21: mTR

V (ST ) ← S
22: else
23: mTR

V (S) ← S
24: end if
25: mTR

V (ΘV ) ← 1− S
26: Return BBATR

U , BBATR
V

27: end procedure

DS-Vectors.
Evidence Updating. For updating the BoEs, we use the

conditional update equation (CUE) and conditional fusion
equation (CFE):
Definition 2 (CUE). (Premaratne et al. 2009) Suppose
the receive-BoE E ′ = {Θ,F′,m′(·)} is presented with
the evidence provided by the transmit-BoE ETR =
{Θ,FTR,mTR(·)}. Then, the CUE-based BBA update of
the receive-BoE E ′′ is

m′′(B) = αm′(B) + (1− α)
∑

A∈FTR

β(A)mTR(B|A),

for all B ⊆ Θ. Here, the CUE parameters {α, β(·)} are
non-negative real and satisfy

α+ (1− α)
∑

A∈FTR

β(A) = 1, ∀k ∈ N+.

We denote this operation as E ′′ = (E ′ � ETR).
Definition 3 (CFE). (Wickramarathne, Premaratne, and
Murthi 2012) The CFE that fuses the evidence of ETR1 =
{Θ,FTR1,mTR1(·)} and ETR2 = {Θ,FTR2,mTR2(·)} is

mTR(B) = KTR1
∑

A∈FTR1

βTR1(A)mTR1(B|A)

+KTR2
∑

A∈FTR2

βTR2(A)mTR2(B|A),

138



Figure 3: Updating the lateral and longitudinal BoEs of ob-
ject Oi. ETR = (ETR1 �� ETR2), E ′′ = (E ′ � ETR).

for all B ⊆ Θ. The parameters {KTR1,KTR2, β(·)} are
non-negative real and satisfy

KTR1
∑

A∈FTR1

βTR1(A) +KTR2
∑

A∈FTR2

βTR2(A) = 1.

We denote this operation as ETR = (ETR1 �� ETR2).
The CUE is used to update a given BoE when it confronts

a new incoming BoE (see Experiment 1 below). Fig. 2, illus-
trates the CUE update operation, E ′′ = (E ′�ETR). We deter-
mine the CUE parameters {α, β(·)} via the following strat-
egy: (a) Selecting α: We use a constant value for α so that
the incoming evidence is given the same weight throughout
the update process. The value of this constant α is a func-
tion of the fidelity of the input (e.g., the resolution and frame
rate of the video input) and the particular domain of appli-
cation. (b) Selecting β(·): These are selected according to
the receptive update strategy (Premaratne et al. 2009), i.e.,
β(A) = mTR(A), ∀A ∈ FTR. In essence, receptive updat-
ing ‘weighs’ the incoming evidence according to the support
each focal element receives from ETR. In the special case of
probability mass functions, this receptive strategy reduces
to a weighted average of probability mass functions corre-
sponding to E ′ and ETR.

The CFE is used to generate a new BoE by fusing
two (or more) incoming BoEs (see Experiment 2 be-
low). Fig. 3, illustrates the CFE fusion operation, ETR =
(ETR1 �� ETR2). We determine the CFE parameters
{KTR1,KTR2, β(·)} via the following strategy: (a) Select-
ing KTR1 and KTR2: We use constant values for KTR1

and KTR2 so that the fusing evidences are given the same
weight throughout the fusion process. The values of these
constants KTR1 and KTR2 are a function of the prop-
erties of the sensor inputs. (b) Selecting β(·): These are
also selected according to the receptive update strategy, i.e.,
β(A) = mTR1(A), ∀A ∈ FTR1. The receptive updating
‘weighs’ the incoming evidence according to the support
each focal element receives from the BoEs ETR1 and ETR2.

Experiments

We conducted experiments of these models of evidence and
updating on two AV navigation tasks: pedestrian navigation

and vehicle lane change. These experiments were carried
out with the help of the following MATLAB toolboxes:
Automated Driving, Computer Vision, and Deep Learn-
ing (https://www.mathworks.com/products/automated-
driving.html, computer-vision.html, deep-learning.html).

Experimental Setup.
Video Input. We used a 30 frames/s (FPS) video input with

(640×480)-pixel (480p) resolution. The video input was ob-
tained using a Canon EOS Rebel T3i Digital Single Lens Re-
flex (DSLR) camera with a EF-S 18-55mm f/3.5-5.6 IS STM
standard zooming lens. Following are the other camera in-
trinsic parameters: Focal length: [2.3814e+03, 1.8671e+03],
Principal point: [283.7174, 282.2949], and Radial distortion:
[7.1048, -95.8961]. Video inputs were collected in urban en-
vironments and highways in Florida during the day time.

Object Identification and Detection. We used the follow-
ing pre-trained detectors: (a) For detection of vehicles,
vehicleDetectorACF(’full-view’) and
vehicleDetectorFasterRCNN(’full-view’).
from the Automated Driving Toolbox and the Deep Learning
Toolbox. These ‘full-view’ models have been trained with
images that contain unoccluded views from the front, rear,
left, and right sides of vehicles. (b) For detection of pedes-
trians and cyclists,
peopleDetectorACF(’caltech’)
from the Computer Vision Toolbox. It has been trained us-
ing the Caltech Pedestrian data set which contains approxi-
mately 10 hours of 640x480 30Hz video taken from a vehi-
cle driving through regular traffic in an urban environment
and includes 350,000 pedestrian bounding boxes labeled in
250,000 frames (Dollar et al. 2012).

Object Tracking. We implemented a multiple object
tracker using the Computer Vision Toolbox. It keeps an ar-
ray of tracks, where each track is a structure representing
a pedestrian or a vehicle in the video. The purpose of the
structure is to maintain the state of a tracked moving object.
The tracker estimates the state vector and state vector co-
variance matrix for each track using a Kalman filter. These
state vectors are used to predict a track’s location in new
frames and to calculate the likelihood of each detection be-
ing assigned to each track.

Modeling and Updating of Evidence. Both DST and
probability models were employed to capture evidence. We
updated the belief, plausibility, and probability values for
each object as each frame was received.

DST Model. The FoDs associated with the lateral and lon-
gitudinal movements are ΘU and ΘV , respectively. With the
initial BoEs taken as vacuous, each BoE was updated using
the CUE, for which after calibration and a series of experi-
ments, we used the parameter value α = 0.66; the receptive
update strategy was employed to select the β values.

The fusion operations were carried out with the CFE,
for which we used the parameter values, KTR1 = 0.5
and KTR2 = 0.5; the receptive update strategy was uti-
lized to select the β values. Data structures, algorithms,
DS-Conditional-One model and DS-Conditional-All model
present in (Polpitiya et al. 2016; 2017; Polpitiya 2019) were
utilized for DST implementations.

Probability Model. The sample spaces used were the
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Figure 4: One frame of a video stream corresponding to a
pedestrian crossing the road from left to right.

same, viz., ΘU and ΘV . Initially, having no evidence to use
as a basis, we assumed that the probabilities are uniformly
distributed, i.e., a probability of 1.0/5 = 0.2 was used for
each singleton. Probability updating was carried out in the
following manner: Consider the object O′i in the frame and
its corresponding object O′′i in the current frame. Suppose
the lateral and longitudinal probability distributions associ-
ated with O′i and O′′i are P ′U (·), P ′V (·) and P ′′U (·), P ′′V (·),
respectively. We get the lateral and longitudinal new proba-
bility distributions, which we receive as new evidence upon
comparing the relative positions of O′i and O′′i . Suppose
these new probability distributions are PTR

U (·) and PTR
V (·).

Using an update mechanism analogous to CUE, we generate
the masses of PTR

U (·) and PTR
V (·) via

P ′′(·) = αP ′(·) + (1− α)PTR(·), with α = 0.66. (3)

We analyzed several scenarios under different driving and
road conditions. Results of the scenarios being presented are
the following: (a) Experiment 1: Pedestrian road crossing;
(c) Experiment 2: Pedestrian road crossing with an addi-
tional fictitious sensor input incorporated to the video input.

Experiment 1

Fig. 4 shows one frame of the analyzed video of a pedes-
trian, starting from the middle of the road, crossing the road
from left to right. The vehicle, whose passenger was video-
ing, was turning left inside a roundabout.

Fig. 5 shows the quantities Bl(), Pl(), and P () versus the
frame number. Consider the 4 segments 1©- 4©.

1© Bl() values start from 0, Pl() values start from 1, and
P () values are in between. With incoming evidence, the un-
certainty intervals Un() ≡ Pl()− Bl() are narrowed. Note
how the DST model allows us to start with total ignorance
(i.e., Un() = 1) instead of a point probability.

2© Evidence received being of high confidence, Bl(),
Pl(), and P () values converge. The pedestrian motion pre-
diction is SL (which is the ground-truth).

3© Here we receive evidence with low confidence, and
while Bl(SR) and P (SR) values stay equal, the Pl(SR)

Figure 5: Bl(), Pl() and P () values when a pedestrian is
crossing the road from left to right.

value is at 1. The ground-truth is contained within Un(SR).
The P (SR) value gets lower and moves away from the
ground-truth; the other P () values are increasing.

4© At the end of the object detection, Un() increases
while Bl(SR) and P (SR) values stay equal. Eventually
P (SR) reaches a near zero value which contradicts the
ground-truth (the pedestrian is moving to the right and out of
the frame). While the other P () values are also increasing,
Bl() and Pl() values correctly represent the uncertainty.

Experiment 2

This experiment uses the evidence from the same video
stream utilized above (denoted by the BoE ETR1) together
with the evidence from an extra fictitious sensor input (de-
noted by the BoE ETR2). The CFE is first applied to fuse
ETR1 and ETR2; then the CUE is applied as before the up-
date the evidence (see Fig. 3).

The BoEs for the two sensor streams are generated as fol-
lows: (a) ETR1: Here we apply Algorithm 1. The constant
value Π classifies the lateral focal element as either FL or
SL (or either FR or SR) and it depends on the video input
configuration. The constant Γ classifies the longitudinal fo-
cal element. (b) ETR2: Here we employ an algorithm similar
to Algorithm 1. The constant Π is used to discriminate the
lateral focal element as either Slow or Fast (not as FL, SL,
C, FR, SR). Focal elements are not discriminated as Right or
Left when using the fictitious sensor. This ensures that the
BoEs generated are not necessarily consonant.

Fig. 6 shows the quantities Bl() and Pl() versus the frame
number. Results of Experiment 1 are also provided in the
figure for comparison purposes. Note that the results are ob-
tained in real-time. Each fusion and updating operation is
completed within 33 (ms).

140



Figure 6: Bl() and Pl() values when a pedestrian is crossing
the road from left to right. Simulation results with two sensor
inputs.

Concluding Remarks

The absence of effective mechanisms to handle uncertain
and exception conditions is perhaps the most serious hin-
drance toward the development of fully autonomous vehi-
cles (Ottley 2019). The current approach of using deep learn-
ing methods to improve decision-making must rely on ‘ex-
perience’ captured via training data. However, most traf-
fic accidents are due to exceptions (e.g., bad weather, traf-
fic violations, sudden movement of other moving objects
and pedestrians, mechanical breakdowns, etc.). Achieving
full autonomy calls for appropriate mechanisms for handling
data/evidence uncertainty and exceptions. Currently, excep-
tion handling relies on the human driver, and it is not prac-
tical to assume that a driver is always receptive to take over
when an AV issues a request to intervene. Irrespective of
whether it is the AV itself or a human driver who has to
take control of the situation, the decision-maker will be bet-
ter served if a fully informed decision which accounts for
the underlying uncertainty can be made.

We explore the utility of DST models as a way to capture
the uncertainty in intended relative movements of other vehi-
cles and pedestrians. The calibrated information that such a
model generates may allow an AV (or a human-in-the-loop)
to make more informed decisions. To ensure real-time op-
eration, we have made use of the data structures and algo-
rithms in (Polpitiya et al. 2016; 2017; Polpitiya 2019).

We believe that the proposed model is a significant step
toward addressing the current challenges involving levels 4-
5 autonomous driving tasks. DST models are ideal to cap-
ture and propagate the uncertainties throughout the decision-
making pipeline and provide an interval-valued measure of
the uncertainty underlying any inference it makes.
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