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Abstract

Hedonic games are coalition formation games in which
agents’ utility depends only on their own coalition. The intro-
duction of Altruistic Hedonic Games increased the expressive
potential of Hedonic Games by considering the utility of each
of the agent’s friends within the coalition. We introduce Su-
per Altruistic Hedonic Games (SAHGs), in which an agent’s
utility may depend on the utility of all other agents in the
coalition, weighted according to their distance in the friend-
ship graph. We establish the framework for this new model
and investigate the complexity of multiple notions of stabil-
ity. We show that SAHGs generalize Friend-oriented Hedo-
nic Games, Enemy-oriented Hedonic Games, and selfish-first
Altruistic Hedonic Games, inheriting the hardness results of
these games as minimum upper complexity bounds. We also
give SAHGs that have neither Nash stable nor strictly core
stable partitions.

Introduction
Consider the process of choosing where to live. Much has
been written (in the RecSys literature, preferences, etc.)
about how to choose the right house or apartment, even the
right roommates for a stable configuration. Let us consider
the choice of neighbors, perhaps in a setting where students
are choosing their dormitories/hostels. We can see the par-
titioning of students into living units (floors, buildings, etc.)
as an hedonic game. It is clear that we value our friends’
happiness with the living situation, as we will hear about it
from them; our enemies’ happiness could be assumed to also
affect how they treat us. (If we stopped there, we would be
modeling evaluation as a Altruistic Hedonic Game.) More
generally we can also argue that our friends’ friends’ hap-
piness will affect our friends’, and thus indirectly, our own,
and that this continues out friendship chains, with decreasing
(or at least, non-increasing) effect as we increase the social
distance from ourselves.

If we were building intranets, a node could evaluate the
quality of the local network in terms of the bandwidth to
reachable nodes. However, it would also need to take into
account the quality of more distant connections, if it hopes to
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have its packets relayed. There are many other applications
in which agents care not only about immediate connections,
but also those farther away. We introduce a family of hedonic
games that model such broad evaluations of coalitions: the
Super Altruistic Hedonic Games.

Related Work
SAHGs are a natural extension of Altruistic Hedonic Games
(AHGs) wherein agents consider the preferences of other
agents (Nguyen et al. 2016). In AHGs, agents only consider
the preferences of their friends. In SAHGS, agents consider
the preferences of all agents in their coalition. In AHGs,
friends are assigned fixed weights. In SAHGs, the weights
assigned to friends and enemies are not fixed, and the prefer-
ences of all agents in a coalition are considered, often taking
advantage of indirect relationships such as friends of friends
to adjust weights. (Note that friendship is not transitive: a
friend of a friend could be our enemy.)

Social Distance Games (SDGs) are a class of coalition
formation games wherein an agent’s utility is a measure of
their closeness, or social distance, from the other members
of their coalition (Brânzei and Larson 2011). SDGs have cer-
tain similarities to SAHGs, but we believe that SAHGs can
better model realistic human interactions by combining the
notion of social distance with the consideration of others’
preferences proposed in AHGs.

As we demonstrate later, SAHGs generalize Friends and
Enemies-oriented Hedonic Games (FHGs and EHGs) (Dim-
itrov et al. 2006). In the former, agents seek to find coalitions
that maximize the number of friends with a secondary goal
of minimizing the number of enemies. In the latter, mini-
mizing the number of enemies is the primary goal, while
maximizing the number of friends becomes secondary. Re-
cent work has investigated the impact that neutral agents
have on these games, defining a neutral agent as one that
is neither friend nor enemy (Ohta et al. 2017). It was shown
that permitting neutral agents in EHGs allows for games that
have no core stable partition (Ohta et al. 2017). Core stable
partitions are still guaranteed to exist in FHGs with neutral
agents; however, strict-core stable partitions are not (Ohta
et al. 2017). The proofs of these findings cannot be read-
ily translated to SAHGs, because SAHGs do not allow neu-
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tral agents. Neutral agents could be modeled as graph-based
games by labeling appropriate edges as neutral, but SAHGs
are focused on simple graph-based models, so the addition
of neutral edges is beyond the scope of this paper.

There are graph-related hedonic games that depend on
edge-weighted graphs. For instance, B and W games are a
category of hedonic games in which an agent’s utility is de-
fined by the agents in their coalition that they rate as the
best or the worst, respectively (Cechlárová and Romero-
Medina 2001). While these games fall into the category of
hedonic games, we don’t believe SAHGs can generalize B
or W games. Similarly, we do not believe that either B or
W games can generalize SAHGs. This is due to the differ-
ences between B andW games and SAHGS, such as the for-
mer two categories assuming each agent can assign a unique
value to each other agent, while SAHGs restrict agents to
placing others into one of two categories. Additionally, B
and W games do not consider the preferences of others as
SAHGs do.

Preliminaries
Below, we outline three types of cooperative games with
non-transferable utility, specifically coalition formation
games. In each type, a game G consists of

1. N , a finite set of n agents, with

2. preference set P = {Pi : i ∈ N}, where Pi is the prefer-
ence of each agent i over partitions of N into coalitions.

Depending on the type of game, P may exhaustively list
each individual’s preferences or provide a succinct represen-
tation from which preferences are derived.

Definition 1. (Banerjee, Konishi, and Sönmez 2001; Bogo-
molnaia and Jackson 2002) Hedonic games are coalition
formation games with nontransferable utility wherein play-
ers are concerned only with their own coalition. This inher-
ently self-interested means of determining utility makes such
games hedonic in nature.

Let Ni be the set of possible coalitions containing agent
i ∈ N . A preference ordering ofNi is derived from the pref-
erence set Pi ∈ P . A solution for a game is a partition π,
which is contained in the set of all distinct partitions Γ. Each
player i ∈ N ranks each partition π ∈ Γ based on the coali-
tion to which they belong.

Hedonic games are a broad category, so it can be use-
ful to define sub-categories that exhibit certain interesting or
useful properties. Friend and enemy-oriented hedonic games
are two categories.

Definition 2. A Friend-oriented Hedonic Game (FHG)
(Dimitrov et al. 2006) is characterized by agents assigned
values to each other based on whether they view each other
as a friend or an enemy. FHGs are often represented by
graphs where an edge from some agent i ∈ N to another
agent j ∈ N indicates that i regards j as a friend. Lack
of an edge from i to j indicates that i regards j as an en-
emy. Utility for each agent is the sum of values they assign
to other agents, friends being assigned a value of n while
enemies are valued at −1.

Enemy-oriented Hedonic Games (EHGs) are based on
the same principles as FHGs, but friends are instead as-
signed a value of 1, while enemies are assigned a value of
−n.

Altruistic hedonic games are another sub-category that
expands on the ideas in FHGs and EHGs and is a major in-
spiration for the work done in this paper.
Definition 3. (Nguyen et al. 2016) An altruistic hedonic
game (AHG) is a hedonic game in which agents derive util-
ity from both their own basic preferences and those of any
friends in the same coalition.

Let each agent i ∈ N have utility ui, and let i parti-
tion other agents into friends and enemies, given by Fi, Ei.
Three levels of altruism are considered in AHGs: selfish-
first, equal treatment, and altruistic first. The function used
to determine an agent’s utility depends on their altruism
level and on pre-utility preference values calculated as the
utility agents would have in a friends-oriented hedonic game
based on the same graph (n|C∩Fi|−|C∩Ei|). Two of these
functions utilize a weight parameter of M = n5 to ensure
that one of the terms in the equation dominates the other.
This weight value is the smallest whole number exponent of
n which guarantees this for both equations that make use of
M . Definitions for each altruism level and their utility func-
tions are outlined below:

1. Selfish-First: agents prioritize their own preferences, but
use the preferences of others to break ties.

ui =M(n|C ∩ Fi| − |C ∩ Ei|)

+
∑

a∈C∩Fi

n|C ∩ Fa| − |C ∩ Ea|
|C ∩ Fi|

2. Equal Treatment: all preferences are treated equally.

ui =
∑

a∈C∩(Fi∪{i})

n|C ∩ Fa| − |C ∩ Ea|
|C ∩ (Fi ∪ {i})|

3. Altruistic First: agents prioritize the preferences of oth-
ers, but use their own preferences to break ties.

ui = n|C ∩ Fi| − |C ∩ Ei|

+M ·
∑

a∈C∩Fi

n|C ∩ Fa| − |C ∩ Ea|
|C ∩ Fi|

We assume familiarity with the complexity classes P and
NP, but also reference two lesser-known complexity classes,
DP and Θp

2.
Definition 4. (Papadimitriou and Yannakakis 1982) The
complexity class DP contains languages defined as the dif-
ference between two languages in NP.

For example, let C be an NP-complete language, and let
L = {〈c1, c2〉 : c1 ∈ C ∧ c2 /∈ C}. Then L = {C × Σ∗} \
{Σ∗×C} (whereΣ∗ is the set of all strings over the alphabet
used to define C).
Definition 5. Complexity class Θp

2 is an alternative name
for PNP [log] (Hemachandra 1987). Games in this class are
solvable by a P machine that can make O(log n) queries to
an NP oracle.
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Stability and Optimality
One of the major topics of hedonic games is stability, the
idea that a partition will not be disrupted by individuals re-
jecting their assigned coalitions and moving to other coali-
tions. There are many sets of constraints placed on such dis-
ruptions, such as the number of agents that can move simul-
taneously; whether all moving agents must see an increase in
utility; whether agents left behind by movers must see their
utility increase, or whether agents being joined by movers
must see their utility improve.

Optimality, the notion of finding a utility-maximizing par-
tition, is another major topic of hedonic games. Notions
of optimality are subject to constraints which clarify what
is being optimized, such as whether individual or collec-
tive (egalitarian or utilitarian) utility is being optimized, or
whether there is a solution that improves or holds fixed ev-
eryone’s utility — if not, the solution is Pareto efficient.

We next define notions related to stability that are ref-
erenced in the rest of the paper. In these definitions π
is a partition composed of a set of k disjoint coalitions
{C1, C2, ...Ck}.
• Nash Stability (Bogomolnaia and Jackson 2002): ∀i ∈ N

and ∀C ∈ π : C 	= π(i) we have π(i) 
i C ∪ {i}.
• Individual Stability (Bogomolnaia and Jackson 2002):
∀i ∈ N and ∀C ∈ π ∪ {∅} : C 	= π(i):
π(i) 
i C ∪ {i} or ∃j : C 
j C ∪ {i}. Permission must
be received from all existing coalition members before a
new agent can join.

• Contractual Individual Stability (Bogomolnaia and Jack-
son 2002): ∀i ∈ N and ∀C ∈ π ∪ {∅} : C 	= π(i):

π(i) 
i C ∪ {i}, ∃j : C 
j C ∪ {i}, or
∃k : π(i) 
k π(i) \ {i}.

• Wonderful Stability (Woeginger 2013): ∀C ∈ π : C is a
maximal (non-extendable) clique.

• Strictly Popular (Nguyen et al. 2016): partition π beats all
other π′ 	= π in pairwise comparisons

|{i ∈ N |π(i) 
i π
′(i)}| > |{i ∈ N |π′(i) 
i π(i)}|

• Blocking coalition (Rothe 2016): A coalition C blocks
partition π if ∀i ∈ C : C 
i π(i).

• Weakly blocking coalition (Rothe 2016): A coalition C
weakly blocks partition π if ∀i ∈ C : C 
i π(i) and
∃j : C 
j π(j).

• (Strict) Core Stability (Rothe 2016): no (weakly) blocking
coalition exists.

Super Altruistic Hedonic Games
AHGs introduce some interesting ideas by incorporating the
preferences of others into utility computations in a polyno-
mially computable fashion. The three levels of altruism pro-
vide a means to vary the degree to which agents consider
the preferences of others, while also providing bounds on
the weights needed to ensure the dominance of one term in
the utility equation. However, only considering the prefer-
ences of friends and three variations of altruism limits the

preferences and degrees of altruism that can be represented.
We introduce Super Altruistic Hedonic Games in order to
broaden the scope of representation.

Super Altruistic Hedonic Games(SAHGs) are a family
of extensions to AHGs, parameterized by the ratio of self-
ishness and others’ preferences, and by the relative weight
of the preferences of friends, friends of friends, etc.
Definition 6. A SAHG instance is defined by a set of agents
N and a preference set P . Let (a, g,M,L) be non-negative
weights. The values a and g are the weights associated with
friends and enemies, respectively. The values M and L are
the weights associated with personal preference and others’
preferences. The function D(i, j), representing the weight
i gives to j’s preferences, is a polynomial-time computable,
non-increasing function of the graph distance dG(i, j) in the
friendship graph G.

Let the number of other agents in coalition Ci be hi =
|Ci \ {i}|. For each agent i ∈ N , let that agent’s base pref-
erence be bi = a|Ci ∩ Fi| − g|Ci ∩ Ei|, and let their utility
be

ui =Mbi + L
∑

j∈Ci\{i}

D(i, j) · bj
hi

.

(If Ci = {i} then the sum is set to 0.) The default definition
of D is the inverse graph distance function: for any pair of
agents i, j ∈ N : i 	= j, let dij be the shortest path distance
between them, then let D(i, j) = 1/dij . The total utility of
a partition π is given by UT =

∑
i∈N ui.

Proposition 1 follows from the definition of SAHGs.
Proposition 1. SAHGs generalize several graph-based he-
donic games.
• A Friends-oriented Hedonic Game (FHG) is a SAHG with

parameters (a, g,M,L) = (n, 1, 1, 0), and an Enemies-
oriented Hedonic Game (EHG) is a SAHG with parame-
ters (1, n, 1, 0). (Because L = 0, it does not matter how
we define D.) Thus, SAHGs inherit all hardness results
for FHGs and EHGs as lower bounds on hardness.

• SAHGs also model Altruistic Hedonic Games under the
selfish-first criterion ((a, g,M,L) = (n, 1, n5, 1) and
D(i, j) = 1 if j ∈ Fi and D(i, j) = 0 if j /∈ Fi).

• If D ≡ 1 and (a, g,M,L) = (n, 1, 1, 1) then we cap-
ture the notion of a friend-oriented hedonic game on the
transitive closure of the friendship graph.

Proposition 2. If a coalition comprises a single clique, C,
then individual utilities are given by a linear function of the
number of agents and coalition utility is defined by a poly-
nomial function of the number of agents.

Proof. We first recall that the base preference of each agent
i ∈ N is given by bi = a|Ci ∩ Fi| − g|Ci ∩Ei| where Ci is
the coalition to which i belongs, and that hi = |Ci ∩ Fi| +
|Ci∩Ei| defines the number of agents in Ci\{i}. Next recall
that each agent i ∈ N has utility given by

ui =Mbi + L
∑

j∈Ci\{i}

D(i, j) · bj
hi

.

The total utility of a partition is defined by UT =
∑

i∈N ui.
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Figure 1: Unequal Cliques

Now we define the total utility of a coalition as UC =∑
i∈C ui. Because C is a clique, we know that ∀i, j ∈

C, i 	= j D(i, j) = 1. We also know that all i ∈ C have
hi = |C| − 1 and bi = a(|C| − 1). We use this to calculate

ui =M · a(|C| − 1) + L
∑

j∈Ci\{i}

a(|C| − 1)

1(|C| − 1)
,

which simplifies to ui = (M + L) · a(|C| − 1).
The total utility of the coalition is UC =

∑
i∈C ui, which

simplifies to UC = (M +L)(a(|C|2−|C|)). Thus, we have
demonstrated that, given a coalition C comprised of a single
clique, the individual utility is a linear function of |C| and
the coalition utility is a polynomial function of |C|.
Proposition 3. Different partitions of a set of agents into
cliques may have different utilities.

Proof. Consider a game based on Figure with parameters
(a, g,M,L) = (1, 1, 1, 1). For each i ∈ N we have:

• bi = |Ci ∩ Fi| − |Ci ∩ Ei|
• ui = bi +

∑
j∈Ci\{i}

D(i,j)·bj
hi

.

Consider two partitions:
π1 = {{A,B,C}, {D}} and π2 = {{A,B}, {C,D}}.

In π1, we have bA = bB = bC = 2 and bD = 0. We also
have uA = uB = uC = 4 and uD = 0 and UT (π1) = 12.
In π2, we have bA = bB = bC = bD = 1 and uA = uB =
uC = uD = 2. Thus, UT (π2) = 8.

Since we have two partitions into cliques with different
total utility values, we can conclude that partitioning agents
into cliques does not ensure a consistent total utility. How-
ever, given partitions π3 and π4 dividing agents into equal
numbers of cliques of each size, the total utilities of the two
partitions will be the same.

Proposition 4. For all parameter values, for all stability no-
tions considered in this paper, there exist SAHGs with stable
partitions.

Proof. Let G be the SAHG with structure given by a graph
with n nodes and no edges with parameters (a, g,M,L). For
the partition of singletons, each agent i has utility ui = 0.
Since there are no edges in the graph, no agent would ben-
efit from forming a coalition with any other agent or set of
agents, so the partition of singletons is stable.

Theorem 1. Not all SAHGs have strictly core stable par-
titions, even when friend and enemy relationships are sym-
metric.

Figure 2: Game with no strictly core partition

Figure 3: Game with no Nash stable partition

Proof. Consider a game based on Figure with parameters
(a, g,M,L) = (1, 1, 1, 1). For each agent i ∈ N , we have:

• bi = |Ci ∩ Fi| − |Ci ∩ Ei|
• ui = bi +

∑
j∈Ci\i

D(i,j)·bj
hi

.

This game contains two equal-sized cliques connected by
a single intermediate agent, C. The grand coalition is weakly
blocked by each of {A,B,C} and {C,D,E}. If one of these
weakly blocking coalitions splits off from the grand coali-
tion, we either have

π1 = {A,B,C}, {D,E} or π2 = {A,B}, {C,D,E}.
π1 is weakly blocked by {C,D,E} and π2 is weakly
blocked by {A,B,C}.

The utility of A and B is maximized in {A,B,C}, while
{C,D,E} maximizes the utility of C and D. The utility
of agent C is maximized by the grand coalition and by
{A,B,C} and {C,D,E}. As such, all possible partitions
are weakly blocked by {A,B,C}, {C,D,E}, or both. Thus
there is no strictly core stable partition.

Theorem 2. Not all SAHGs have Nash stable partitions,
even when friend and enemy relationships are symmetric.

Proof. Let G be the SAHG with structure given in Figure ,
and weight parameters (a, g,M,L) = (1, 1, 1, 3). This gives
us:

• bi = |Ci ∩ Fi| − |Ci ∩ Ei|
• ui = bi + 3

∑
j∈Ci\i

D(i,j)·bj
hi

.

This game has two equal-sized cliques which are con-
nected to each other through two intermediate agents. The
first connecting agent, agent 1, is connected to all agents in
both cliques. The second connecting agent, agent 10, is con-
nected to a single agent in each clique and is not connected
to agent 1. The first clique is composed of agents 1–5 and
the second of agents 1, 6–9.

Because the only member common to both cliques is
agent 1, it is reasonable to expect that no stable coalition
containing one clique will contain any members from the
other, except for agent 1. If members from two cliques form
into coalitions which do not include agents 1 and 10, then
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these two remaining agents would prefer to remain as sin-
gletons rather than forming a two-person coalition with each
other. In this case, the utility of an agent in one of the two
clique coalitions is 12, while the utility of agents 1 and 10
are zero since they are singletons. This describes partition
π1 = {{1}, {2, 3, 4, 5}, {6, 7, 8, 9}, {10}} with total utility
UT = 96.

The partition π1 is unstable, because agent 1 can improve
their utility by joining one of the two clique coalitions. Since
agent 1 is connected to all agents in both cliques, its join-
ing either coalition will increase the size of the clique by 1,
increasing the utility of all agents in the coalition from 12
to 16. Agent 1 is indifferent between the two cliques. This
presents two possible partitions
π2 = {{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10}} and
π3 = {{2, 3, 4, 5}, {1, 6, 7, 8, 9}, {10}},
each of which has total utility UT = 128.

Both π2 and π3 are also unstable because agent 10 can
also improve its own utility by joining a coalition. If agent
10 chooses to join the coalition that agent 1 did not, it de-
rives utility u10 = 3.25, while it derives utility u10 = 3.6
if it joins the same coalition as agent 1. Thus, agent 10
prefers to join whichever coalition agent 1 joined, which
results in either π4 = {{1, 2, 3, 4, 5, 10}, {6, 7, 8, 9}} or
π5 = {{2, 3, 4, 5}, {1, 6, 7, 8, 9, 10}}. The total utility of
this new partition is UT = 104.

Still, π4 and π5 are unstable because agent 1 can im-
prove its utility by leaving the current coalition to join
the other clique, thereby restoring its utility to 16. This
gives either π6 = {{2, 3, 4, 5, 10}, {1, 6, 7, 8, 9}} or π7 =
{{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}. In these partitions, the total
utility is UT = 110.5. However, π6 and π7 are unstable since
agent 10 can improve its utility by following agent 1, which
creates a cycle of four partitions, none of which are Nash
stable. Thus we conclude that there is no Nash stable parti-
tion for this game, and, by extension, that not all SAHGs are
guaranteed to have Nash stable partitions.

Theorem 2 contrasts with existing results for AHGs,
which always have Nash stable partitions (Nguyen et al.
2016), and FHGs, which always have strictly core stable par-
titions (Dimitrov et al. 2006).

Notice that the game in the proof of Theorem 2 has
core stable partitions: {{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10}} and
{{2, 3, 4, 5}, {1, 6, 7, 8, 9}, {10}}. The 5-member cliques
weakly block the opposing partition, but there are no coali-
tions that block either partition. Additionally, agent 10
would not be accepted in either coalition, since its presence
decreases the utility of every other member in the coalition.

Proposition 5 follows from previous work by Ballester
(2004) proving that all hedonic games have contractually in-
dividually stable partitions.

Proposition 5. Contractually individually stable partitions
are guaranteed to exist for SAHGs.

Computational Complexity
Proposition 6. Computing the utility of a partition for a
SAHG is in P.

Proof. Consider a partition π of some game G. The steps to
evaluate the partition are:

1. ∀i ∈ N and ∀j ∈ π(i) compute D(i, j)

2. ∀i ∈ N compute hi and bi

3. ∀i ∈ N compute ui

4. compute UT (π).

We assume that intermediate values are computed once and
stored.

In the default case where D(i, j) is the graph distance be-
tween i and j, we can use the Floyd-Warshall algorithm to
compute this distance for all (i, j) ∈ N ×N in time O(n3)
(Cormen et al. 2009), otherwise, it isO(n2)t(n), where t(n)
is the time needed to compute any D(i, j) for a SAHG of
size n. We compute hi and bi in time O(n2) by checking
each entry in π(i) against the lists Fi and Ei. Computing
hi and bi for all i ∈ N requires time O(n3). Calculating
ui requires time Θ(|π(i)|) < O(n). So the time required to
compute ui for all i ∈ N isO(n2). UT (π) can then be com-
puted in time O(n). The overall time required to evaluate
a partition is O(n3). Thus a partition of a Super Altruistic
Hedonic Game can be evaluated in polynomial time.

Proposition 7. Deciding whether a partition is Nash sta-
ble is in time O(n2e(n)), where e(n) is the time needed to
evaluate the utility of a coalition.

Proof. Consider a partition π of some game G. To determine
if π is Nash stable, ∀i ∈ N and ∀C ∈ π : C 	= π(i) we
compare ui(π(i)) with ui(C ∪ {i}). If there exists no (i, C)
such that ui(C ∪ {i}) > ui(π(i)), then π is Nash stable.

There are at most n coalitions in π in the case of the parti-
tion of singletons, and for each C ∈ π, n utility values must
be computed. At most n2 utility values must be computed to
determine if π is Nash stable. Determining if a partition π is
Nash stable requires timeO(n2e(n)) where e(n) is the time
needed to compute the utility of a coalition.

We have previously demonstrated that FHGs, EHGs, and
selfish-first AHGs are generalized by SAHGs. As a result,
SAHGs inherit the complexity results of these games as
lower bounds. These results are outlined in Corollary 1.

Corollary 1.

• Determining if strictly popular partitions exist in SAHGS
is coNP-hard (Nguyen et al. 2016).

• Verifying a partition is strictly popular is coNP-hard
(Nguyen et al. 2016).

• Determining if strictly core stable partitions exist is DP-
hard (Rey 2016; Rey et al. 2016).

• Verifying a partition is (strictly) core stable is coNP-hard
(Woeginger 2013).

• Determining if wonderfully stable partitions exist is DP-
hard (Rey 2016; Rey et al. 2016).
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Conclusions and Open Questions
We introduce SAHGs as an extension of the ideas be-
hind AHGs, introduced by Nguyen et al. (2016). We show
that SAHGs generalize several graph-based hedonic games:
FHGs, EHGs, and AHGs under the selfish-first criterion in
proposition 1. What distinguishes SAHGs from the games
they generalize is the consideration of the preferences of
all other agents in one’s coalition. This difference allows
SAHGs to better model partitioning problems with a larger
scope than roommate assignment problems.

We examine several properties of SAHGs in propositions
2–4. We prove that stable partitions may not exist, even
when friendship relations are symmetric in theorems 1 and
2. We show that the total utility of a partition can be com-
puted in polynomial time in proposition 6. Proposition 7
demonstrates how Nash stability can be verified in polyno-
mial time. Corollary 1 clarifies lower bounds on complexity
that SAHGs inherit from games they generalize.

A Probably Approximately Correct (PAC) learning model
is intended to find good function approximations. This
model has previously been applied to several varieties of
hedonic games (Sliwinski and Zick 2017), for instance, to
PAC learn stability. We conjecture that SAHGs are also PAC
learnable.

Future work will address the complexity of optimal parti-
tion algorithms for SAHGs, and algorithms for finding stable
partitions when they exist.
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