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Abstract

We investigate internal stability, a stability notion that has ap-
plications in distributed hedonic coalition formation games.
We prove that internal stability and Nash stability are equiva-
lent in some classes of hedonic games and different in others.
We show that Price of Stability for internal stability is equal
to 1 in some cases, but unbounded in others.

Introduction
Many situations exist wherein individuals will choose to
act as a group, or coalition. Examples include social clubs,
political parties, marriage partner selection, and legislative
voting (Woeginger 2013; Bogomolnaia and Jackson 2002;
Gale and Shapley 1962). Coalition formation games are a
class of cooperative game where the goal is to partition a set
of agents into coalitions, according to some criteria. We are
interested in a subclass of coalition formation games, hedo-
nic games, which were first proposed by Drèze and Green-
berg (1980) and later formalized by Banerjee, Konishi, and
Sönmez (2001) and Bogomolnaia and Jackson (2002). He-
donic games are distinguished from general coalition for-
mation games by the requirement that each agent’s utility
is wholly derived from the members of their own coalition
(Drèze and Greenberg 1980; Banerjee, Konishi, and Sönmez
2001; Bogomolnaia and Jackson 2002).

A central problem in hedonic games research, and for
coalition formation games in general, is deciding whether
or not a proposed set of coalitions, or partition, is stable
(Woeginger 2013). Several concepts have been introduced
to characterize the ways in which a partition is or is not sta-
ble; Woeginger’s (2013) survey and book chapters by Aziz
and Savani (2016) and by Elkind and Rothe (2016) provide
overviews of these notions. One stability concept that is of
perennial interest in coalition formation games is core stabil-
ity (Guesnerie and Oddou 1979; Greenberg and Weber 1986;
1993; Demange 1994; Banerjee, Konishi, and Sönmez 2001;
Bogomolnaia and Jackson 2002; Dimitrov et al. 2006; Aziz,
Brandt, and Harrenstein 2014; Nguyen et al. 2016). Core sta-
bility is defined as the lack of agents who are incentivized to
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leave their assigned coalition(s) and form a blocking coali-
tion. This assumes that agents can easily identify others to
form a blocking coalition; however, this is not always realis-
tic. Consider the task of partitioning first-semester students
into project groups. Some of the assigned groups may find
that a subgroup would rather work together, abandoning the
rest of their group. Since the students were not acquainted
beforehand, they are less likely to coordinate across separate
groups. To address this possibility, we focus on the situation
where any new groups formed after the semester starts will
consist solely of subgroups of previously-existing groups.

Cases where blocking coalitions were confined to sub-
coalitions that split away from an existing coalition were
first considered in the context of hedonic games by Dimitrov
et al. (2006) and Alcalde and Romero-Medina (2006) who
referred to it as internal stability. We extend the notion of an
internally stable coalition to partitions, by defining that in-
ternal stability holds for a partition of agents into coalitions
when no subgroup of any assigned coalition is incentivized
to break away. This stability notion has appeared in other he-
donic games works (e.g., in Taywade, Goldsmith, and Har-
rison’s (2018) work on decentralized hedonic games, coali-
tions are only blocked by subcoalitions).

A natural question is what the relationship is between in-
ternal stability and Nash stability. We show that Nash sta-
bility implies internal stability in some classes of hedonic
games, but not in others. While communication channels
such as Slack have increased workers’ abilities to interact
with distant co-workers, the workers may still defect from
the larger group and form private sub-channels. In such my-
opic situations, internal stability seems a more realistic mea-
sure of the sustainability of a work-group assignment.

Stability notions focus on outcomes that are likely to oc-
cur due to agents’ selfish behavior. Stable outcomes may
provide the best individual outcomes for all agents, but this
is not always the case. The price of stability (PoS) provides
a metric to gauge the utility lost in order to achieve stability.

Related Work
Works published in 2006 by Dimitrov et al. (2006) and Al-
calde and Romero-Medina (2006) introduce internal stabil-
ity for coalitions, observing that a singleton coalition is al-
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ways internally stable. Alcalde and Romero-Medina (2006)
use internally stable coalitions as a tool to investigate con-
ditions that guarantee the existence of core stable partitions
in hedonic games. Dimitrov et al. (2006) use internal sta-
bility to define another stability notion, deviation stability,
which they use to prove the existence of core stable par-
titions in friend and enemy-oriented hedonic games. Since
its introduction, the only other paper that discusses internal
stability is a paper by Liu, Tang, and Fang (2014) which
adapts it to matching and exchange contexts. One can view
internal stability as relevant when agents are myopic, mean-
ing that their awareness of the desirability of other agents is
limited to those agents that are nearby, namely in the same
coalition. Another work that considered agents with limited
preference knowledge is Sliwinski and Zick’s (2017) notion
of PAC-stability, which could be understood as resistance to
random attempts by somewhat myopic agents to form block-
ing coalitions.

Contributions
We introduce here a natural and important extension of Dim-
itrov et al. (2006) and Alcalde and Romero-Medina’s (2006)
internal stability. We investigate the relationships of internal
stability to other, more common notions, and show that it
is distinct from core and Nash stability, for multiple types
of hedonic games. We investigate the prices of anarchy and
stability for internal stability with respect to several hedonic
games. This work gives us insight into a key stability notion
when agents are myopic.

Preliminaries
Hedonic coalition formation games are driven by agents’
preferences over coalitions. As there are exponentially more
coalitions than agents, these preferences need to be ex-
pressed succinctly, restricting the expressivity of representa-
tions. We review some ways preferences can be constrained,
which are relevant to our work.

Types of Hedonic Games
Below, we outline several classes of hedonic games. In each
class, a game G consists of a finite set of n agents N , with
preference set P = {Pi : i ∈ N}, where Pi is the pref-
erence of each agent i over partitions of N into coalitions.
Pi may exhaustively list the preferences of agent i or pro-
vide a succinct representation from which preferences are
derived. When preferences are given as utilities, we assume
that ui({i}) = 0: for each i, the utility of agent i for being
in a coalition of size 1 is 0.

Definition 1. Hedonic games (Banerjee, Konishi, and
Sönmez 2001; Bogomolnaia and Jackson 2002) are coali-
tion formation games with nontransferable utility wherein
players’ preferences are concerned only with their own
coalition. This inherently self-interested means of determin-
ing utility makes such games hedonic in nature.

Let Ni be the set of possible coalitions containing agent
i ∈ N . A preference ordering ofNi is derived from the pref-
erence set Pi ∈ P . A solution for a game is a partition π,
which is contained in the set of all distinct partitions Γ. Each

player i ∈ N has preferences over all partitions π ∈ Γ
based on their assigned coalition in each π.

Additively Separable Hedonic Games (ASHG) (Baner-
jee, Konishi, and Sönmez 2001) are a class of hedonic games
where each agent i ∈ N assigns values to each agent
j ∈ N , expressed as vi(j); vi(i) is always set to 0. The
utility an agent derives from each S ∈ Ni is defined as
ui(S) =

∑
j∈S vi(j).

Friend-oriented Hedonic Games (FOHGs) (Dimitrov et
al. 2006) are a subclass of ASHGs games where each agent
regards all other agents as either a friend or an enemy. FO-
HGs are often represented by graphs where an edge from
some agent i ∈ N to another agent j ∈ N indicates that i
regards j as a friend. Lack of an edge from i to j indicates
that i regards j as an enemy. Utility for each agent is the sum
of values they assign to other agents, friends being assigned
a value of n while enemies are valued at −1.

An Enemy-oriented Hedonic Game (EOHG) follows
the same basic principles of FOHGs, but gives friends a
value of 1 and enemies a value of −n.

We use “general ASHG” when we’re not restricting atten-
tion to special cases such as FOHGs or EOHGs.

Fractional Hedonic Games (FHGs) (Aziz, Brandt, and
Harrenstein 2014) are a class of Hedonic Games where
agents assign values to each other agent. In contrast to
ASHGs, Fractional Hedonic Games define utility as an av-
erage rather than a sum: ui(S) = (

∑
j∈S vi(j))/|S|.

An Altruistic Hedonic Game (AHG) (Nguyen et al.
2016) is a hedonic game in which agents derive utility from
both their own basic preferences and those of any friends in
the same coalition.

Let each agent i ∈ N have utility ui, and let i partition
other agents into friends and enemies, given by Fi, Ei. Three
levels of altruism are considered in AHGs: selfish-first, equal
treatment, and altruistic first. The function used to deter-
mine an agent’s utility depends on their altruism level and on
pre-utility preference values calculated as the utility agents
would have from some coalition C in a FOHG based on the
same graph (n|C∩Fi|−|C∩Ei|). Two of these functions uti-
lize a weight parameter of M = n5 to ensure that one of the
terms in the equation dominates the other. This weight value
is the smallest whole number exponent of n which guaran-
tees this for both equations that make use of M .

Selfish-First: agents prioritize their own preferences, but
use the preferences of others to break ties. ui =

M(n|C ∩ Fi| − |C ∩ Ei|) +
∑

a∈C∩Fi

n|C∩Fa|−|C∩Ea|
|C∩Fi|

Equal Treatment: all preferences are treated equally. ui =∑
a∈C∩(Fi∪{i})

n|C∩Fa|−|C∩Ea|
|C∩(Fi∪{i})|

Altruistic First: agents prioritize the preferences of others,
but use their own preferences to break ties. ui = n|C∩Fi|−
|C ∩ Ei|+M ·∑a∈C∩Fi

n|C∩Fa|−|C∩Ea|
|C∩Fi|

Super Altruistic Hedonic Games (SAHGs) (Schlueter
and Goldsmith 2020) extend the central principle of AHGs
so agents consider the preferences of all agents in their coali-
tion. Agents weight their consideration of each other’s pref-
erences according to some polynomially computable value.

Let parameters (a, g,M,L) be non-negative weights
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where a and g represent the weights associated with
friends and enemies, respectively, while M and L repre-
sent the weights associated with personal preference and the
weighted average of others’ preferences. Next, let D(i, j)
be a polynomial-time computable function that is non-
increasing with the graph distance between i and j. Let the
number of other agents in coalition Ci be hi = |Ci \ {i}|.
For each agent i ∈ N , let that agent’s base preference
be bi = a|Ci ∩ Fi| − g|Ci ∩ Ei|, and let their utility be
ui =Mbi+L

∑
j∈Ci\{i}

D(i,j)·bj
hi

. If Ci = {i} then the sum
is set to 0. The default definition of D is the inverse graph
distance function: for any pair of agents i, j ∈ N : i �= j,
let dij be the shortest path distance between them, then let
D(i, j) = 1/dij . The total utility of a partition π is given
by UT =

∑
i∈N ui.

A Role Based Hedonic Game (RBHG) (Spradling and
Goldsmith 2015) instance consists of a population of agents
P , a set of roles A, a set of available team compositions C,
where a composition c ∈ C is a multiset (bag) of roles from
R, and U = P × R × C → Z define the utility function
ui(r, c) for each player pi. We assume that for all pi ∈ P
and for all r ∈ R, ui(r, {r}) = 0.

An instance of the Group Activity Selection Problem
(GASP) (Darmann et al. 2012) is given by a set of agents
N = {1, ..., n}, a set of activities A = A∗ ∪ {a∅}, where
A∗ = {a1, ..., ap}, and a profile P, which consists of n votes
(one for each agent): P = (V1, ..., Vn). The vote of agent i
describes their preferences over the set of alternatives X =
X∗ ∪ {a∅}, where X∗ = A∗ ×{1, ..., n}; alternative (a, k),
a ∈ A∗, is interpreted as “activity a with k participants,” and
a∅ is the void activity.

The vote Vi of an agent i ∈ N (also denoted by �i) is a
weak order over X∗; its induced strict preference and indif-
ference relations are denoted by �i and ∼i respectively. We
set Si = {(a, k) ∈ X∗|(a, k) �i a∅}; we say that voter i
approves of all alternatives in Si, and refer to the set Si as
the induced approval vote of voter i.

In some cases, we consider both symmetric and asym-
metric games, where the (a)symmetry refers to preferences.
Note that we exclusively consider symmetric FOHGs and
EOHGs. In some hedonic games, including GASPs and RB-
HGs, players do not express preferences over other individ-
uals, so the distinction does not apply.

Stability
One of the major topics of hedonic games is stability, the
idea that a partition will not be disrupted by individuals de-
viating from their assigned coalitions. There are many sets
of constraints placed on such disruptions such as the number
of agents that can move simultaneously, whether all moving
agents must see an increase in utility, whether agents left be-
hind must see their utility increase, or whether agents being
joined must not see their utility decrease.

We next define stability notions used here. In these defi-
nitions π is a partition composed of a set of k disjoint coali-
tions {C1, C2, ...Ck}. The term π(i) refers to the coalition
C ∈ π such that i ∈ C.

Definition 2. A partition is individually rational if no indi-

vidual agent can improve their utility by leaving their cur-
rent coalition to become a singleton.

Individual rationality is a precondition for many other sta-
bility notions, such as Nash stability.
Definition 3. (Bogomolnaia and Jackson 2002) A partition
is Nash stable if no individual agent can improve their util-
ity by deviating from their current coalition to join another
coalition or to become a singleton.

Nash stability focuses only on the selfish behavior of an
individual. Bogomolnaia and Jackson (2002) build on work
by Greenberg and Weber (1993), and by Demange (1994),
proposing blocking coalitions and core stability to examine
whether groups can benefit from cooperative deviation.
Definition 4. (Bogomolnaia and Jackson 2002) A coali-
tion blocks a partition if all agents in the coalition prefer
it over their current coalitions; formally, given coalition C
and blocking coalition Cb, ∀i ∈ Cb ⊂ C : Cb �i C.

A partition is core stable if no coalition blocks it.
Internal stability considers group deviations where all de-

viating agents must come from the same coalition.
Definition 5. A coalition C is internally stable if there is not
subset D ⊂ C such that all of the agents of D are better off
leaving C and forming a new coalition (Dimitrov et al. 2006;
Alcalde and Romero-Medina 2006).

A partition π is internally stable if all coalitions C ∈ π
are internally stable.

Price of Stability
Notions of stability are useful tools for predicting outcomes.
However, there may be costs that result from the imposition
of a given stability notion. Further, a given stability notion
may admit good outcomes, but may also permit particularly
subpar outcomes as well. The notions of price of stability
and price of anarchy formally define these ideas.
Definition 6. For stability notion X , the price of stability
(PoSX ) is the ratio between the overall utility-maximizing
partition and the utility-maximizing X-stable partition. For
internal stability, we use the representation PoSIS.

Relationship to Core and Nash Stability
It might seem, at first, that internal stability is very similar to
Nash stability, or perhaps to core stability. We investigate the
relationship of internal stability to Nash stability and core
stability for a variety of hedonic games.

Observation 1 immediately follows from Dimitrov et al.’s
(2006) observation that all coalitions in a core stable parti-
tion are internally stable.
Observation 1. Core stability implies internal stability for
all classes of hedonic games.

Note that all singleton partitions (i.e., each agent in a
coalition of size 1) are trivially internally stable. However,
in most instances of most hedonic games, a singleton parti-
tion will neither be core stable nor Nash stable. Thus, inter-
nal stability does not, generally, imply core stability or Nash
stability. Theorem 1 shows our first step in analyzing the re-
lationship between Nash stability and internal stability.
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Figure 1: Nash stable, not internally stable

Theorem 1. Nash stability does not guarantee internal sta-
bility in FOHGs.

Proof. Consider a graph G = (V,E) with V =
{A,B,C,D} and E = {(A,B), (C,D)}. (See Figure 1.)
Consider a FOHG based on this graph such that the set of
agents N = V and each edge (i, j) ∈ E defines a mutual
friendship. All pairs (i, j) /∈ E indicate mutual enmity.

Now consider the grand coalition for this FOHG. Each
agent i ∈ N gains 4 utility from the presence of their mutual
friend, but also loses 2 utility due to the 2 enemies present.
This gives each agent i a net utility of 2, making the grand
coalition individually rational. The only deviation a single
agent can make to the grand coalition is to leave the coali-
tion and become a singleton, thereby earning 0 utility. Thus,
the grand coalition is Nash stable. If we view the grand coali-
tion from the viewpoint of internal stability, however, we see
that for pairs of agents (A,B) and (C,D), each agent pair
can leave the grand coalition and increase the utility of both
agents from 2 to 4. Thus, the grand coalition is not internally
stable and we conclude that not all Nash stable partitions are
internally stable.

Since FOHGs are a subclass of ASHGs, Corollary 1 im-
mediately follows from Theorem 1.

Corollary 1. Nash stability does not imply internal stability
for ASHGs.

While internal stability is not implied by Nash stability
in general case ASHGs, there are subclasses where Nash
stability does imply internal stability. We show that enemy-
oriented hedonic games are one such subclass; in particular,
we show that not only does Nash stability imply internal sta-
bility, but individual rationality is sufficient to imply internal
stability.

Lemma 1. Individual rationality guarantees internal stabil-
ity in EOHGs.

Proof. By the definition of EOHGs the only individually ra-
tional coalitions for some agent i ∈ N are those which con-
tain none of i’s enemies. Equivalently, all individually ra-
tional coalitions can be described by cliques in a graph of
friendship relations.

Since all agents in an individually rational coalition are
friends with each other, no subset of agents in such a coali-
tion can increase their utility by leaving. Therefore, all indi-
vidually rational coalitions are internally stable. A partition
is only individually rational if all its coalitions are individu-
ally rational and, therefore, internally stable. Thus, all indi-
vidually rational partitions are internally stable.

Theorem 2. Nash stability guarantees internal stability for
EOHGs.

Proof. Because all Nash stable partitions are individually
rational, it follows from Lemma 1 that Nash stability implies
internal stability.

Theorems 1 and 2 show that the relationship between
Nash and internal stability varies between subclasses of
ASHGs. We expand our understanding of the relation-
ship between Nash and internal stability beyond the scope
of ASHGs in Theorem 3 by analyzing fractional hedonic
games.

Theorem 3. Nash stability does not guarantee internal sta-
bility in fractional hedonic games.

Proof. Construct a fractional hedonic game, G, with agents
{A,B,C,D} with uA(B) = uB(A) = 4 and uX(Y ) = 1
for all other X �= Y . Consider the grand coalition, S. Then
uA(S) = uB(S) =

4+1+1
4 = 6

4 and uC(S) = uD(S) =
1+1+1

4 = 3
4 . This coalition is individually rational, since

each agent has positive utility. It is also Nash Stable, since an
agent’s only defection option is to leave S and form a single-
ton coalition, with utility 0. However, the coalition {A,B}
provides utility 2 for each of A and B, so S is not internally
stable. Therefore, for FHGs, Nash stability does not imply
internal stability.

In Theorem 4 we clarify the relationship between Nash
and internal stability in altruistic hedonic games.

Theorem 4. Nash stability does not guarantee internal sta-
bility for any of the three altruism levels of altruistic hedonic
games (AHGs).

Proof. Consider an AHG based with agents {A,B,C,D}.
Let {A,B} and {C,D} be mutual friends that regard all
other agents as enemies. Since there are 4 agents in this
game, we set M = n5 = 45 = 1024.

In the grand coalition all agents achieve a utility of 2050
in the Selfish-First and Altruistic First paradigms and 2 in
Equal Treatment. Individual agents can only deviate by be-
coming a singleton, so the grand coalition is Nash stable for
all three paradigms.

Now consider if {A,B} or {C,D} broke away; the agents
breaking away derive a utility of 5000 in the Selfish-First
and Altruistic First paradigms and 4 in the Equal Treatment
paradigm. The grand coalition is not internally stable for any
of the three paradigms, because both {A,B} and {C,D}
have incentive to break away.

Because Schlueter and Goldsmith (2020) showed that
selfish-first AHGs are special cases of Super Altruistic He-
donic Games, Corollary 2 follows from Theorem 4.

Corollary 2. Nash stability does not imply internal stability
in Super Altruistic Hedonic Games.

The proofs for Theorems 1–4 also give Observation 2.

Observation 2. If there exists an instance of a coalition for-
mation game such that the grand coalition is individually
rational, but not internally stable, then Nash stability does
not imply internal stability for that class of games.
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The games we have examined thus far assume that agents’
utility is based directly on the other agents in their coalition.
In Role Based Hedonic Games, utility is based instead on an
agent’s assigned role and the team’s role composition.

Theorem 5. Nash stability does not imply internal stability
in RBHGs.

Proof. Consider an RBHG instance with the following
setup: P = {p1, p2, p3, p4}, R = {r1, r2}, C =
{{r1, r2}, {r1, r1, r1, r1}, {r1}, {r2}}. Now ∀i ∈ P let
ui(r1, {r1, r1, r1, r1}) = 1 and ∀(r, c) ∈ R × C let
up1(r, c) = up3(r, c) and let up2(r, c) = up4(r, c). Let
up1

(r1, {r1, r2}) = 2 and up1
(r2, {r1, r2}) = −1. Let

up2
(r1, {r1, r2}) = −1 and up2

(r2, {r1, r2}) = 2. As usual
for singletons, ∀i ∈ P let ui(x, {x}) = 0 for x = r1, r2.

Now let a partition π form where all four agents are put
in the grand coalition with the composition {r1, r1, r1, r1}.
Since every role in the composition is r1, all agents derive
a utility of 1 from this partition. The only way an individ-
ual can deviate from this partition is to leave to become a
singleton of either role r1 or r2; in either case, agents derive
zero utility as a singleton. Since the only deviations available
to individuals will reduce their utility from 1 to 0, the par-
tition of all agents in the grand coalition with composition
{r1, r1, r1, r1} is Nash stable.

While the grand coalition with composition
{r1, r1, r1, r1} is Nash stable, it is not internally sta-
ble. Either agent p1 or p3 could join agent p2 or p4 and split
away to form a new coalition with composition {r1, r2}
with p1 or p3 taking role r1 and p2 or p4 taking role r2;
doing this would increase the utility of both deviating agents
from 1 to 2. Thus, Nash stability does not imply internal
stability in RBHGs.

Roles and Teams Hedonic Games (Spradling et al. 2013)
are a subclass of RBHGs that impose a strict team size rule
that makes it impossible for a subset of a valid existing team
to break away to form a new, valid team.

Observation 3. All valid partitions are internally stable in
RTHGs.

In instances of the Group Activity Selection Problem,
agents derive utility from the selected activity and the size
of their coalition.

Theorem 6. Nash stability does not imply internal stability
in GASPs.

Proof. Consider a GASP instance where there are n agents,
and activity set A = {a1, a∅} and ∀i ∈ N (a1, n − 2) �i

(a1, n) �i a∅; all alternatives not included in the preference
profile are seen as worse than the void activity.

Now consider the case where all n agents form a single
coalition to participate in activity a1. We can see from the
preference profile shared by all agents that this outcome is
preferable to the void activity and to participating in activity
a1 alone. Since the only way for an individual to deviate
from this outcome is to leave and do nothing, or participate
in a1 by themselves, no individual agent has incentive to
deviate from this outcome. Thus, the outcome is Nash stable.

From the perspective of internal stability, we see that any
subset of n− 2 agents could break away and achieve a more
favorable outcome. Thus, the grand coalition participating in
a1 is not a internally stable outcome.

Price of Stability (PoS)
Theorem 7. PoSIS(G) is unbounded in hedonic games
where agents assign asymmetric values to each other. This
includes general case ASHGs and FHGs.

Proof. Consider a hedonic game with the following setup:
N = {1, 2, 3}, v1(2) = 10, v1(3) = −1, v2(1) = −1,
v2(3) = −1, v3(1) = −1, v3(2) = 10. In both ASHGs
and FHGs, the utility is maximized by the grand coalition,
but the only stable partition is the partition of singletons.
Since the partition of singletons has a sum utility of zero,
PoS=∞. This scenario can be adapted to any hedonic game
where agents derive utility from potentially asymmetric val-
ues assigned to each other.

Theorem 8. PoSIS for symmetric ASHGs is 1.

Proof. Consider a symmetric ASHG. Consider an opti-
mal coalition A and suppose that it contains a block-
ing subcoalition B ⊂ A. Note that the total util-
ity for A is the sum of utilities of agents within B,
agents in A \ B, and utilities (in each direction) between
B and A \ B:

∑
x∈B ux(B) +

∑
y∈A\B uy(A \ B) +

2 · ∑x∈B,y∈A\B ux(y). Since B is a blocking subcoali-
tion

∑
x∈B ux(B) >

∑
x∈B ux(A) =

∑
x∈B ux(B) +∑

x∈B,y∈A\B ux(y). Therefore,
∑

x∈B,y∈A\B ux(y) < 0.

Thus, the total utility for the partition B,A \ B has util-
ity

∑
x∈B ux(B) +

∑
y∈A\B uy(A \B) >

∑
x∈B ux(B) +∑

y∈A\B uy(A\B)+2 ·
∑

x∈B,y∈A\B ux(y), contradicting
the optimality of A.

Thus, any optimal coalition has maximum utility
over sub-partitions, and is internally stable. Therefore,
PoSIS(G) = 1 for all symmetric ASHGs.

Theorem 9. PoSIS for symmetric FHGs is bounded by 2.

Proof. We define an FHG, G, which maximizes the ra-
tio between the utility-maximizing partition and the utility-
maximizing internally stable partition. If PoSIS(G) > 1,
then the utility-maximizing partition is not internally sta-
ble. Without loss of generality, we consider a single coali-
tion. (The maximum PoS will occur when each coalition is
split; since we take the average utility over all agents, it suf-
fices to consider a single coalition A to find the maximum
PoS as if that were the grand coalition.) Let B ⊂ A be a
blocking coalition. We also assign a = |A|, b = |B|, and
r = a− b. Keep in mind that, for an agent in B, its average
utility in B is higher than its average utility in A. Because,
for FHGs, agents’ utilities for other agents in their coalition
are averaged, and agent’s utilities for others need only dis-
tinguish three cases. We define vb as the value agents in B
assign to each other; ∀i, j ∈ B, vi(j) = vj(i) = vb. We
define vr as the value agents in A \ B assign to each other;
∀i, j ∈ A \ B, vi(j) = vj(i) = vr. We define va as the
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value agents in B assign to agents in A \ B and vice-versa;
∀i ∈ B, j ∈ A \B, vi(j) = vj(i) = va.

In order for agents in B to be incentivized to break away
from the rest of A, the value each agent in B receives in
B (which approaches vb as |B| grows) is greater than the
value it receives in A, which is (b−1)vb+rvr

b+r . This implies
that vb > vr. We see that the grand coalition maximizes the
sum of agents’ utilities when vb− 1

b +vr− 1
r < 2va. We are

able to show that the ratio between vb : 2va is a hard upper
bound on the ratio between the sum utilities of the grand
coalition and {A\B,B}, allowing us to construct examples
G where the the PoSIS(G) is arbitrarily close to 2.

Related to PoS is the price of anarchy (PoA), which
gauges the potential loss of utility caused by agents’ selfish
behavior; PoA is defined as the ratio of the highest-utility
partition over the lowest-utility stable partition. Since the
partition into singletons is vacuously internally stable, we
have PoAIS(G) =∞ for any game where singletons derive
zero utility.

Conclusions
We have extended the notion of internal stability for coali-
tions (Dimitrov et al. 2006; Alcalde and Romero-Medina
2006) to a partition stability notion. Internal stability is im-
portant whenever agents have a local view of their prefer-
ences. The relationship of internal stability to other, more
commonly investigated notions turns out to depend on the
particularity of preference representation used in the hedonic
game. For instance, any individually rational hedonic game
has an internally stable partition of singletons; finding others
is expected to be more difficult computationally.

We showed that internal stability is, in some hedonic
game types, not equivalent to Nash or core stability. We have
seen instances where the price of stability for internal stabil-
ity is bounded, and where it is unbounded. We predict that
this notion will continue to generate interesting insight into
locally-aware coalition formation games.
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