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Abstract

The Natural Language Inference (NLI) task is an important
task in modern NLP, as it asks a broad question to which
many other tasks may be reducible: Given a pair of sentences,
does the first entail the second? Although the state-of-the-art
on current benchmark datasets for NLI are deep learning-
based, it is worthwhile to use other techniques to examine
the logical structure of the NLI task. We do so by testing
how well a machine-oriented controlled natural language (At-
tempto Controlled English) can be used to parse NLI sen-
tences, and how well automated theorem provers can reason
over the resulting formulae. To improve performance, we de-
velop a set of syntactic and semantic transformation rules. We
report their performance, and discuss implications for NLI
and logic-based NLP.

Introduction
Natural Language Inference (NLI) is the task of characteriz-
ing semantic relationships between sentences. Given a nat-
ural language sentence, called a premise, what sort of rela-
tionship does it have with another sentence (called the hy-
pothesis)? For example, consider the premise: “Two dogs
are running through a field.”.
• Entailment: Given the premise, the hypothesis is certainly

true (Bowman et al. 2015). “There are animals outdoors.”
• Contradiction: Given the premise, the hypothesis is cer-

tainly false (Bowman et al. 2015). “The dogs are sitting
on the couch.”

• Neutral: Identification of any of the above two relation-
ships requires more information, and therefore given the
premise, the hypothesis may or may not be true (Bowman
et al. 2015). “Some puppies are running to catch a stick.”

Current state-of-the-art results on datasets for the NLI task
(e.g., (Zhang et al. 2018; 2019; Liu et al. 2019)) rely almost
exclusively on deep neural networks. As a reasoning task, it
would seem that a logic-based approach could be useful—
even if only to provide insights about the nature of the NLI
task. In this paper, we implement and report our results using
transformation rules to convert natural language into formal
expressions that can be fed into automated theorem provers.
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SNLI

The Stanford Natural Language Inference (SNLI) (Bowman
et al. 2015) dataset is a collection of labeled sentence pairs
designed for the NLI task. It features 570,152 sentence pairs,
which is twice as large as other datasets for the NLI task. It
is entirely written by humans in a grounded and naturalis-
tic context which enabled it to achieve high inter-annotator
agreement: 98% of the sentences selected for validation had
at least 3 out of 5 independent raters agreeing on their clas-
sification. Unlike others, the SNLI dataset does not contain
any sentences that are automatically generated or annotated.

Since all premises in the SNLI dataset were written by
Amazon Mechanical Turk workers to describe a scenario in
a picture, sentences tend to be more grammatical, making it
ideal for our present task. In comparison, alternatives such
as MultiNLI (Williams, Nangia, and Bowman 2017) have
a large number of ungrammatical or loosely structured sen-
tences extracted from conversational or informal sources.

ACE and APE

Attempto Controlled English (ACE) is an English-based
Controlled Natural Language (CNL), originally used for
software specifications, whose focus eventually shifted to
knowledge representation (Kuhn 2014). We chose ACE over
other CNLs primarily for the following reasons:

1. Unlike many other CNLs, ACE is not domain-specific.

2. The syntax is purposely loosely-defined, thus providing
more expressiveness (Kuhn and Hess 2010).

3. All valid ACE sentences can be translated directly to
First-Order Logic (FOL) (Fuchs, Kaljurand, and Kuhn
2008; Fuchs, Kaljurand, and Schneider 2006; Kuhn
2014). The ACE parser can output valid TPTP formulae
directly, which we use in our prover.

4. A strength of ACE is the abundance of related tools
created by the Attempto1 group. Among these is the
Attempto Parsing Engine (APE), a free tool to parse
ACE and generate Discourse Representation Structures
(DRS) (Fuchs, Kaljurand, and Kuhn 2011), TPTP (Sut-
cliffe 2009), First-Order Logic (FOL), and parse trees.
1http://attempto.ifi.uzh.ch
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Experiment Setup

In order to study how well ACE can apply to the SNLI task,
we set up a simple experiment.2 First, given a premise and
hypothesis, we use APE to convert them into TPTP formu-
lae. If this fails for either sentence, we apply a set of syntac-
tic transformation rules (described below), and attempt the
APE parse again. If it fails again, then we move on to the
next pair, recording the percentage of premise or hypothesis
sentences that successfully parse as the “coverage level.”

Next, given TPTP formulae P,H corresponding to the
premise and hypothesis, we feed them into a first-order
resolution-based prover to determine whether H or its nega-
tion follow from P . If the prover outputs an affirmative an-
swer to either of these (to keep run-times manageable, we
automatically stop processing when 1500 clauses are cre-
ated), then we give this as our classification. If not, then in-
stead of outputting a classification of ‘neutral,’ we apply a
set of semantic transformation rules which produce a set of
additional first-order formulas A, capturing semantic infor-
mation that may be of use to the prover. If A ∪ {P,¬H}
resolves, output ‘entailment’; if A ∪ {P,H} resolves, out-
put ‘contradiction’; Finally, we generate a set of semantic
rules based on the closed-world assumption (Mueller 2015),
yielding another set of first-order formulae N. If the result
is still inconclusive, output is ‘neutral’. Pseudocode for this
algorithm is shown in Algorithm 1.

Syntactic Rewrite Rules

Abdelaal (Abdelaal 2019) proposed leveraging controlled
natural languages (CNLs) to improve knowledge extraction.
There are two major types of CNLs: human-oriented and
machine-oriented. Human-oriented CNLs are usually devel-
oped as style-guides with the aim of avoiding complex gram-
matical structure and reducing potential ambiguity. On the
other hand, machine-oriented CNLs aim to provide a user-
friendly machine-processable format. They tend to be much
more restricted compared to human-oriented CNLs. ACE is
a machine-oriented CNL, while Basic English (the CNL that
is adopted by Simple English Wikipedia (SEW)) is a human-
oriented CNL. Abdelaal’s thesis explores the possibility of
extracting knowledge from SEW articles by converting the
human-oriented CNL of SEW into a machine-oriented CNL,
namely ACE. The proposed solution is to rewrite sentences
by following rules such that they become valid ACE sen-
tences. The thesis proposed 10 rewriting rules, along with
psuedocode implementations.

In this paper, our goal is to leverage automated reasoning
tools for the NLI task. Our hypothesis is that we can convert
SNLI sentences to ACE using rewrite rules, and use FOL
theorem provers to detect entailment and contradiction rela-
tionships in a non-trivial portion of the SNLI dataset. There-
fore, we used the rules described in (Abdelaal 2019) as a
starting point, and implemented our own versions in Python.
These rules, which we call syntactic rewrite rules, are meant
only to change the syntax of the sentences (and not their se-
mantics, whenever possible) so that they can be ACE. How-
ever, after initial experimentation, we found that the specific

2Code: https://github.com/AMHRLab/NLIwithACE/

needs of SNLI required significant changes. High-level de-
scriptions of the final versions of all syntactic rewrite rules
we implemented are as follows:
R1: Noun/adjective phrases. For each sentence pair, the
SNLI dataset provides part-of-speech tags and constituency
parses, which we use directly. If there is a NP consisting
of a sequence of JJs followed by a NN or NNS, then we
attach POS markers ‘a:’ to each JJ and ‘n:’ to the noun.
POS markers are used by APE to identify words that may
not be in its vocabulary. If there are multiple JJs, we make
them an adjective phrase using conjunctions, so that (NP
[(DT d)] (JJ adj1) (JJ adj2) ... (JJ
adjn) (NN[S] n)) transforms into (NP [(DT d)]
(ADJP (JJ adj1) (CC and) (JJ adj2) (CC
and) ... (JJ adjn)) (NN[S] n)). In contrast,
(Abdelaal 2019) used hyphens to conjoin adjective phrases,
making it difficult to reason about individual adjectives.
R2: Co-reference resolution. ACE does not allow pro-
nouns. We use Stanford’s CoreNLP server to identify coref-
erence chains within each sentence. If the chain contains a
proper noun, that noun is considered the chain’s name; oth-
erwise, a default and unique name is used. All words in that
chain are replaced with the chain’s name. The POS prefix
“p:” is then added to all names.

However, this will lose some information. For example,
the sentence “John loves his wife and she is laughing at
him.” will be replaced with “p:John loves p:John’s wife and
p:DefaultName0 is laughing at p:John.” But we no longer
will know that ‘p:DefaultName0’ is John’s wife. Thus, all
words in the chain marked as singular NOMINAL are con-
verted into additional sentences. In the above example, the
sentence “p:DefaultName0 is p:John’s wife.” is appended.
R3: Past Tense Verbs: Since ACE does not parse past tense,
replace past tense verbs (VBD/VBN) with present tense, us-
ing pattern.en.3

R4: Cardinals and Ordinals. Any occurrences of numbers
1, ..., 10 are replaced with the words ‘one,’ ..., ‘ten.’ Ordinals
‘1st,’ ..., ‘10th’ are replaced with ‘first,’ ..., ‘tenth.’
R5: Predeterminers. All predeterminers (as identified by
SNLI-provided POS tags) are removed.
R6: Adverb phrase ordering. If a VP has an ADVP pre-
ceding a verb, swap their order.
R7: Adverb conjunctions. If an ADVP has multiple ad-
verbs joined by ’but’ or ’yet’, join them instead with ’and’.
R8: Removing Present Continuous. Present and past con-
tinuous form (“is/are/was/were Verb-ing”) are replaced
with simple present tense. This helps to simplify formulae;
e.g., APE transforms “Nobody is working” into a TPTP for-
mula with a superfluous equality subformula, whereas “No-
body works” does not.

Semantic Rules

After applying the syntactic rules, we apply a small set of se-
mantic rules, which are meant to enhance the sentences with
semantic information in a way that preserves the entailment
relationship, and otherwise aids the inference step, but does

3https://www.clips.uantwerpen.be/pages/pattern
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not necessarily preserve the meaning of the individual sen-
tences. They also differ from syntactic rewrite rules in that
they consider both the premise and hypothesis, rather than
each separately. They are not expected to affect coverage.
S1: Noun Hypernyms. Knowing that certain types of nouns
are hypernyms of others is necessary for the SNLI task, but
rewriting the premise and hypothesis to include this infor-
mation can be highly inefficient. For example, consider the
sentence pair “A woman hugs a boy”/“A person hugs a boy”.
It would not be immediately clear how to rewrite the sen-
tences to ensure that the relationship between the two is pre-
served. We might detect that ‘person’ is a hypernym of both
‘woman’ and ‘boy,’ and this might cause us to overshoot
and replace the premise with “A person hugs a person.” This
would cause the entailment between the premise and con-
clusion to no longer hold.

Instead, we keep the premise and hypothesis the same,
and use hypernym information to construct additional first-
order formulae that are included in the set A that is used in
the first-order resolution step. Given a sentence pair, we scan
the premise and conclusion for all nouns, and save their sin-
gular forms S. For any two n1, n2 ∈ S, we use WordNet
(Miller et al. 1990) to check if n2 is a hypernym of n1. For
every such hypernym pair found, we add the following for-
mula to A:

∀xn1(x) → n2(x) (1)
When APE parses singular nouns, it will typically introduce
a predicate corresponding to the noun itself, which would
align with the formula above. For any two nouns such that
we can not show that one is a hypernym of the other, we add
the following formula to the set N:

∀xn1(x) ↔ ¬n2(x) (2)

S2: Verb hypernyms. We want to be able to capture the
entailment in sentence pairs such as “A young boy sprints by
the beach”/“A boy runs.” Like with S1, we collect all pairs
of verbs v1, v2 and compare them in their infinitive forms, as
determined by pattern.en. Because we are not aware whether
the verb is transitive or not, we add multiple formulas into A
for each verb where v2 is a hypernym of v1:

∀a,b,c predicate2(a, v1, b, c) →
predicate2(a, v2, b, c)

(3)

Here, predicate2 is the formula APE uses to encode transi-
tive verbs with one object; we also create analogous formu-
lae for predicate1 (intransitive verbs). Likewise, we create
analogous formulae in N for all verb pairs v1, v2 when we
determine neither is a hypernym of the other according to
WordNet:

∀a,b,c predicate2(a, v1, b, c) ↔
¬predicate2(a, v2, b, c) (4)

Results and Analysis

To begin our evaluation, we first determined the coverage
level and classification accuracies for the SNLI develop-
ment set (10,000 sentence pairs) without any rewrite rules
applied. After applying the syntactic rewrite rules, coverage

Algorithm 1: Algorithm Used to Process SNLI
1 Load the SNLI sentence pair (P,H);
2 (Pt, Ht) = attempted APE conversion of (P,H) into

TPTP;
3 if P or H fails to parse then
4 Apply syntactic rewrite rules and try again;
5 if one of them fails to parse then
6 Abandon and go to next sentence pair
7 Feed (Pt, Ht) into prover;
8 if prover guessed ‘entailment’ or ‘contradiction’

then
9 Assess guess and go to next sentence pair

10 else
11 Apply semantic rules to (Pt, Ht);
12 Store additional formulae produced as a result of

those rules in A and N;
13 Feed (Pt, Ht,A) into prover;
14 if prover guessed ’entailment’ or ’contradiction’

then
15 Assess guess and go to next sentence pair
16 else
17 Feed (Pt, Ht,A,N) into prover;
18 Assess guess and go to next sentence pair
19 end

20 end

increased dramatically, going from 0.06% (before rule ap-
plication) to 8.035%.

The classification accuracies, considering only sentence
pairs which APE was able to parse after syntactic rules but
without semantic rules, are presented in Table 1. As ex-
pected, the overall classification accuracy alone (roughly
28.7%) is not comparable to current state-of-the-art systems,
and is not above random baseline. However, it is worthwhile
to note that the top-left cell in Table 1 is 100%; this means
that when a pair of SNLI sentences are ACE, if an automated
theorem prover guessed that the pair was an entailment, it
was correct every single time.

We expect similar results for predictions of contradiction;
however, prior to the application of semantic rules, none
were made. This is due to the fact that the ACE parses alone
of the largely descriptive sentences extremely rarely pro-
duced formulae containing negations. In other words, SNLI
sentences are overwhelmingly descriptions of what is true,
and almost never about what is not true. It was our hope
this limitation would be addressed by the semantic rules.
However, the results (Table 2) are disappointing: Contradic-
tion predictions are indeed more common, but the accuracy
(37.5%) is barely better than random baseline.

In the process of reviewing the output of our algorithm,
we found that some sentence pairs in the SNLI dataset were
mislabeled. For example, the sentence pair “Two young girls
hug.” and “The girls are happy.” is classified as entailment
in the dataset, but our algorithm guessed neutral, due to not
making the assumption that individuals who hug are happy.
Whether such assumptions are warranted is an interesting
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Predicted
E N C

A
ct

u
a

l E 1.0 0.36 0.0
N 0.0 0.256 0.0
C 0.0 0.384 0.0

Table 1: Confusion matrix without semantic transformations

Predicted
E N C

A
ct

u
a

l E 0.383 0.439 0.406
N 0.228 0.341 0.219
C 0.389 0.22 0.375

Table 2: Confusion matrix with semantic transformations

question, but it is interesting to think that such assumptions
can be brought to light by logic-based approaches.

Conclusions and Future Work

This short paper presents work-in-progress, and represents
exciting research possibilities. Although the approach used
here does not obtain higher accuracy on the NLI task than
current exclusively deep learning-based approaches, this
preliminary work showed how the coverage of SNLI sen-
tences can be dramatically improved with simple, semantics-
preserving, syntactic rewrite rules.

Further research into how to improve the rewriting rules
described here can offer interesting insights into future de-
velopments of CNLs, automated reasoning, and the NLI task
itself (e.g., the simple logic-based approach in this paper
showed that a non-insignificant number of mislabeled ex-
amples exist in the SNLI dataset). One potential future di-
rection would be to compare the approach presented in this
paper to other logic-based approaches, such as natural logic
(e.g. LangPro (Abzianidze 2017), Monalog (Hu et al. 2019),
or NaturalLI (Angeli and Manning 2014)), and explore the
potential of combining different approaches into a consoli-
dated solution. We hope to use the present work as a baseline
against which future work can compare.
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