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Abstract

Bayesian inference is crucial to challenging scenarios that
involve complex probabilistic models, which are usually in-
tractable. In this work, we develop an expectation propaga-
tion approach to learn finite mixture models of EDCMs. The
EDCM (Elkan 2006) is an exponential-family approximation
to the widely used Dirichlet Compound Multinomial distri-
bution and has been shown to offer excellent modeling capa-
bilities in the case of sparse count data. Expectation propa-
gation is a deterministic approach that provides accurate ap-
proximations to the full posterior and allows to include prior
beliefs in the model as opposed to the maximum-likelihood
method, which provides point estimates only. We evaluate the
efficiency of our framework on several datasets for sentiment
analysis and shape recognition. Our proposed model shows
comparable to superior results to other approaches in the lit-
erature.

1 Introduction

Document clustering is widely considered in a variety of
applications, such as text retrieval. The words in text doc-
uments usually exhibit appearance dependencies, i.e., if a
word w appears once, it is more probable that the same
word w will appear again. This phenomenon is denomi-
nated as burstiness, which has shown to be addressed us-
ing Dirichlet Compound Multinomial (DCM) distribution
(Madsen, Kauchak, and Elkan 2005). Similarly, different
distributions had been used in order to model burstiness
while preserving conjugacy, but the estimation of their pa-
rameters of these models is considerably slow, especially in
high-dimensional spaces. Thus, taking into account the spar-
sity and high-dimensionality of text data, (Elkan 2006) pro-
posed the EDCM, which approximates the DCM as a mem-
ber of the exponential family. Indeed, EDCM has shown to
offer fast parameter learning and a helpful intuition for the
study of the burstiness phenomenon.

Parameter learning is one of the encountered challenges
in mixture models, and typically the maximum-likelihood
method via the expectation-maximization (EM) algorithm
has been used for learning the parameters of an EDCM
mixture model (Elkan 2006). Despite that the maximum-
likelihood method has shown fast parameter learning, this
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approach suffers from numerous inconveniences, such as
providing a point estimate, which impacts on the accuracy
of the learned model. Moreover, the appropriate number
of components has to be known in advance, which can be
approached by using information-theory based techniques
such as Minimum Message Length criterion (MML) (Za-
mzami and Bouguila 2019). Deterministic Bayesian infer-
ence techniques (e.g. variational inference or expectation
propagation) allow good approximation of the full poste-
rior. Recently, (Najar, Zamzami, and Bouguila 2019) pro-
posed the use of a sampling method, i.e., Markov Chain
Monte Carlo (MCMC), for learning an EDCM mixture and
have shown the importance of having priors, outperforming
previous results. However, sampling methods are computa-
tionally expensive. This work studies the application of the
Bayesian framework for learning the EDCM mixture model.
In particular, we propose an approach for learning a finite
EDCM mixture model parameters using Expectation Propa-
gation (EP) (Minka 2001). EP, a deterministic approximate
inference framework, has shown to be more accurate than
methods such as variational inference and MCMC.

The rest of this paper is organized as follows. First, Sec-
tion 2 revisits the Exponential-family Approximation to
DCM Distribution (EDCM) model upon which our work
is built on. Next, in Section 3, we outline the EDCM mix-
ture model, describe the expectation propagation approach,
and derive the complete learning framework. Section 4 de-
scribes our experimental setup and evaluation of our pro-
posed method. Finally, we conclude the paper in Section 5.

2 The Exponential-family Approximation to

DCM Distribution

We are given a dataset X with D samples X = {xi}Di=1,
each xi is a vector of count data (e.g. a document or an im-
age, represented as a vector of word frequencies or visual
words respectively). In (Madsen, Kauchak, and Elkan 2005),
the authors proposed a generative model to deal with bursti-
ness phnomenon by introducing a prior Dirichlet distribu-
tion with parameters α to the Multinomial model. They de-
fine a new marginal distribution by integrating out θ, obtain-
ing a discrete distribution known as the Dirichlet Compound
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Multinomial (DCM) or multivariate Polya distribution.

DCM(x | α) =
n!∏V

w=1 xw!

Γ(s)

Γ(s+ n)

V∏
w=1

Γ(xw + αw)

Γ(αw)

(1)
where s =

∑V
w=1 αw is the sum of the Dirichlet distribution

parameters.
Given that text documents representation is very sparse

because not every word appears in most of the documents, in
(Elkan 2006), the authors noted that using only the non-zero
values of x is computationally efficient. Moreover, the pa-
rameter αw of the DCM distribution is small for most words,
αw � 1. Thus, replacing Γ(xw+αw)

Γ(αw) by Γ(xw)αw and using
the fact that Γ(xw) = (xw−1)! leads to an approximation of
the DCM distribution known as EDCM. We replace α with
β in order to follow the same notation as in (Elkan 2006):

EDCM(x | β) = n!
Γ(s)

Γ(s+ n)

∏
w:xw≥1

βw

xw
(2)

3 The proposed framework

3.1 Expectation Propagation Approach

Expectation Propagation (EP) (Minka 2001) EP handles
partitioned data and combines partitions iteratively through
message passing. Having the latent variable Θ, EP approxi-
mates a target distribution p(Θ | X ), which is commonly the
posterior, with a global approximation q(Θ) that belongs to
the exponential family. The choice of q depends on the prob-
lem but it has to be a simple approximating distribution that
can be fitted using small refinements. To apply EP, first split
the posterior in D sites p(Θ | X ) ∝ p0(Θ)

∏D
i pi(xi |

Θ); the initial site t0 is commonly represented with the
prior distribution and the remaining pi sites represent the
contribution of each term to the likelihood. The approxi-
mating distribution must admit a similar factorization, i.e.
q(Θ) ∝ ∏D

i p̃i(Θ). Therefore, the goal of EP is to refine
each of the approximating sites such that they capture the
contribution of each of the likelihood sites to the posterior,
i.e. p̃i(Θ) ≈ pi(x | Θ). Each approximating site has to
be initialized and belong to the exponential family. Conse-
quently, each site is refined to create a cavity distribution,
q\i(Θ) ∝ q(Θ)/p̃i(Θ), by dividing the global approxima-
tion over the current approximate site.

Additionally, in order to approximate each site, we intro-
duce a new tilted distribution which consists in the prod-
uct of the cavity distribution and the current site q∗i (Θ) ∝
pi(Θ)q\i(Θ). Subsequently, a new posterior is found by
minimizing the Kullback Leibler divergence DKL(q

∗
i (Θ) ||

qnew(Θ)) such that p̃i(Θ) ≈ pi(x | Θ). This minimiza-
tion is equivalent to match the moments of those distribu-
tions We can also notice that this updating scheme creates a
coupling for the approximating factors, so updates must be
iterated. Finally, the revised approximate site is updated by
removing the remaining terms from the current approxima-
tion p̃i(Θ) ∝ qnew(Θ)/q\i(Θ).

3.2 Mixture-based Clustering Model

Here, we state the settings for a finite EDCM mixture model
and develop a mathematical framework for learning the mix-
ture using expectation propagation. We assume that we are
given D documents drawn from an EDCM distribution, and
each xi document is composed of V words. K ≥ 1 repre-
sents the number of mixture components or clusters. Thus, a
document is drawn from its respective component j as fol-
lows: xi ∼ EDCM(βj).

Consequently, a latent variable Z = {zi}Di=1 is intro-
duced for each xi document in order to represent the compo-
nent assignment. We posit a Multinomial distribution for the
component assignment such that zi ∼ Mult(1,π) where
π = {πj}Kj=1 represents the mixing weights, and they are
subject to the constraints 0 < πj < 1 and

∑
j πj = 1. In

other words, zi is a K-dimensional indicator vector con-
taining a value of one when document xi belongs to the
component j, and zero otherwise. Note that in this setting
the value of zij = 1 acts as the selector of the compo-
nent that generates xi document with parameter βj ; hence,
p(zi | π) = πj . The full posterior can be written as
p(π,β | X ) ∝ p(π)p(β)

∏D
i

∑K
j πjp(xi | βj)

3.3 Parameters Learning

In this section, we describe the learning approach using EP
algorithm. We partition the likelihood in D sites and start
by defining an ith approximating site for each of the latent
variables (π and β). First, we assign a Dirichlet distribution
with parameter α = (α1, . . . , αK) as a prior for the mixing
weights since it fits properly the constraints imposed by the
model and works as a nice prior for the mixing weights π
that holds conjugacy properties.

p̃i(π | αi) ∝
K∏
j=1

π
αij−1
j (3)

For the β variable of the EDCM mixture, we adopt a
Gaussian distribution, which leads to an intractable distri-
bution since p̃(π) is a Dirichlet distribution. However, this
setting has been used successfully to approximate a Beta
and Dirichlet distribution (Ma and Leijon 2010; Fan and
Bouguila 2014). Additionally, a Gaussian distribution not
only allows analytically tractable calculations but also cap-
ture correlation for the values of βj . Hence, we select for the
approximating site of βj a Gaussian distribution with mean
mij and precision matrix Λ−1

ij for each j component.

p̃i(β) ∝
K∏
j=1

exp

(
−1

2
(βj −mij)

ᵀΛij(βj −mij)

)
(4)

The EDCM mixture model posterior p(π,β) can be fac-
torized in D sites, one for each document i with priors
p(π) and p(β). Additionally, after defining the approxi-
mate sites, we compute the approximate posterior q(π,β |
α′,m′,Λ

′−1) by getting the product of D approximate
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sites, where α′, m′, and Λ′ are the parameters of the poste-
rior distribution and can be calculated using Eq. 5.

α′
j =

D∑
i

αi,j −D

Λ′
j =

D∑
i

Λi,j ; m′
j = Λ

′−1
j

(
D∑
i

Λi,jmi,j

)
(5)

In order to create a refinement for the approximate site
pi(π,β), we introduce a cavity distribution q\i(π,β) by
deleting the contribution of the ith site. Thus, the cavity
distribution has parameters α\i, Λ\i, and m\i as shown in
Eq. 6, and it is calculated as follows: q(π,β)/p̃i(π,β).

α
\i
j = α′

j − αi,j + 1; Λ
\i
j = Λ′

j −Λi,j

m
\i
j = Λ

\i−1
j

(
Λ

′
jm

′
j −Λi,jmi,j

)
(6)

Then, we incorporate the contribution of the ith site to the
cavity distribution, resulting in a tilted distribution q∗(π,β)
that is an updated posterior. We normalize this new poste-
rior using a normalizing factor Zi to guarantee that it is a
proper distribution. The normalizing factor can be then cal-
culated by integrating out π and β. However, the integra-
tion of the normalization factor is not possible since the in-
tegral is intractable. Thus, we propose to solve this integral
via Monte Carlo sampling, where we take S samples from
βs ∼ N (m\i,Λ\i−1). Therefore, after rewriting the nor-
malization factor, the following expression is obtained:

Zi(α
\i,m\i

j ,Λ
\i
j ) =

∑K
j

α
\i
j

∑K
j α

\i
j

Ep(βj) [EDCM(xi | βj)] (7)

Finally, we minimize the KL divergence between
the tilted distribution and the approximate posterior
DKL(q

∗
i (π,β) || qnew(π,β)). This minimization is

achieved by calculating the partial derivative of logZi with
respect to the parameters of the model and matching its re-
spective moments. After matching the sufficient statistics of
Eq∗(π,β)

[
∇

α
\i
j
logDir(π)

]
, Eq∗(π,β)

[
∇

m
\i
j
logN (βj)

]
,

and Eq∗(π,β)

[
∇

Λ
\i
j
logN (βj)

]
, we update the parameters

of the approximate posterior qnew(π,β) using Eqs. (8-10).

Ψ(α
′
j)−Ψ(

∑K
j α

′
j) = ∇

α
\i
j
logZi −Ψ(

∑K
j α

\i
j ) + Ψ(α

\i
j ) (8)

m′
j = Λ

\i−1
j (∇

m
\i
j
logZi +Λ

\i
j m

\i
j ) (9)

Λ
′
j = −2∇

Λ
\i
j
logZi +Λ

\i
j −m

′
jm

′ᵀ
j + 2m

′
jm

\iᵀ
j −m

\i
j m

\iᵀ
j (10)

The gradient of logZi, can be calculated analytically us-
ing Eq. (7). Finally, we reuse the updated approximate pos-
terior and remove the cavity distribution in order to obtain
the update for the current approximate site p̃i, where the ith
site have the following parameters:

αi,j = α′
j − α

\i
j + 1; Λi,j = Λ′

j −Λ
\i
j (11)

mi,j =
(
Λ

′−1
j −Λ

\i−1
j

)(
Λ

′
jm

′
j −Λ

\i
j m

\i
j

)
(12)

This procedure is repeated for all the D documents and
iterated until a certain level of convergence is reached. The
values of the mixing weights can be approximated by cal-
culating its expectation with respect to the approximating
posterior Eq [πj ] = α

′
j/
∑K

j=1 α
′
j .

3.4 A Note on Initialization and Learning
Algorithm

We initialize each approximate site such that p̃i(π,β) → 1.
The approximate posterior is initialized with the values of
the prior q(π,β) = p̃0(π,β). For instance, we initialize
the mixing weights uniformly, thus we consider a symmet-
ric Dirichlet prior p̃0(π) with parameter value 1/K. Con-
sequently, for the prior p(β), we follow an adaptation of the
method of moments (MoM) described in (Bouguila and Ziou
2007). We compute an initial βj and calculate its statistics as
follows: 1) apply K-means clustering; 2) apply MoM for the
EDCM distribution to each j component found; 3) calculate
m0,j and Λ0,j . It is possible to encode any prior information
in the mixing weights (i.e. the means of the k-means clus-
ters). Nevertheless, for the EDCM parameter β, we find that
the MoM restricts the values of β to be small and positive
while sampling from a Gaussian distribution. This initializa-
tion scheme helps the proposed framework to stabilize while
fitting the values of βj,w � 1.

4 Results

4.1 Sentiment Analysis

We evaluate the proposed framework in a Sentiment Analy-
sis task, using three benchmark datasets: 1) Amazon Review
Polarity; 2) Yelp review Polarity; 3) IMDB Movie Reviews.

Experimental setup For each j component, at inference
time, we set all values to zero except the diagonal ones from
the precision matrix Λ−1

∗j for computational simplicity. Ad-
ditionally, we take S = 100 samples from N (m\i,Λ\i−1)
and force all values to be positive. For every dataset, we an-
alyze the effect of pre-processing. In other words, we exam-
ine whether pre-processing helps the mixture to fit the data
better. We performed the following pre-processing for all
datasets: 1) lowercase all text; 2) remove non-alphabetical
characters; 3) remove stop words; 4) lemmatize text.

Results We apply the proposed framework to all the
datasets described in the above section. We compare our
approach with an EDCM mixture model using maximum-
likelihood (ML) for learning its parameters as reported in
(Elkan 2006). Additionally, we evaluate the effect of pre-
processing text documents when using the proposed method
since in latent models (such as LDA), it has been shown
that common pre-processing steps have no impact on the
obtained results.Thus, we evaluate our parameter learning
method where pre-processing is involved (EP-P) and raw
text (EP-NP). We evaluate our results in terms of precision
and recall as shown in Table 1.

Amazon Review Polarity dataset our framework com-
pletely outperforms the maximum-likelihood estimation by
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Table 1: Results on the three text datasets. Comparison us-
ing precision and recall for every inference method. ML:
maximum-likelihood; EP-P: expectation propagation + pre-
processing; EP-NP: expectation propagation + raw text.

Dataset

Metrics Amazon Yelp IMDB

Precision
ML 80.65 89.25 78.54
EP-P 84.84 74.26 78.60
EP-NP 86.91 80.50 86.36

Recall
ML 80.88 89.28 89.33
EP-P 81.23 93.83 78.45
EP-NP 84.82 78.60 85.94

∼6% and ∼4% improvement for precision and recall respec-
tively, and thus, achieving 86.91% and 84.82%. Addition-
ally, we notice that pre-processing causes a bad effect on the
model instead of helping infer the right cluster assignments.
For Yelp Review Polarity dataset our approach outperforms
the maximum-likelihood approach in terms of recall, mean-
ing that the EP model is more confident at assigning the right
clusters. Finally, for the IMDB movie review EP surpasses
ML in terms of precision by a large margin ∼9%.

4.2 Shape recognition

For Shape recognition, we use the Swedish leaf dataset
(Söderkvist 2001) that contains 15 different types of leaves.
We evaluate with 26 and 39 clusters (i.e. K = 26,K = 39).
Mixture components πj with very small values are ignored.

Experimental setup The leaf dataset contains 585 im-
ages, each corresponding to a specific Swedish specie. Each
image size is 128×128. For each image, we extracted 200
discrete features. In order to extract features from the leaves
images, we use shape context in which an object is assumed
to be essentially captured by a finite set of its N points sam-
pled from the internal or external contours on the object. A
shape context is a descriptor for each point, which captures
the distribution of the remaining points relative to the cur-
rent one. We sample 200 points from internal and external
image boundaries and create a vector of visual words.

Results We compare the mixture of EDCM model with
both ML and EP inference methods and report performance
in terms of accuracy (see Table 2) using the leaf dataset. The
proposed model improves the accuracy of the leaf dataset.
The EDCM mixture with ML gets an accuracy of 94.45
while results with EP improves accuracy by 3.67%, obtain-
ing 98.12 when using 26 components. On the other hand,
we obtain a lower accuracy with a greater number of com-
ponents K = 39. Consequently, with a number of clusters
smaller than 26 we get an average accuracy of ∼ 78.

5 Conclusions

In this paper, we propose the use of Expectation Propaga-
tion (EP) to learn a finite EDCM mixture model instead of

Table 2: Results for shape recognition in the leaf dataset.
Comparison using accuracy for every inference method.
ML: maximum-likelihood; EP: expectation propagation.

Inference Accuracy

ML 94.45
EP (K = 26) 98.12
EP (K = 39) 88.76

the maximum-likelihood (ML), and as a result, incorporat-
ing some advantages that the Bayesian framework provides.
EP is used to learn the model parameters, and additionally,
we notice that the number of clusters can be determined by
ignoring or merging components with very small values of
the expected mixing weights. Moreover, we propose a sim-
ple but optimal initialization scheme in order to meet the
restrictions that the approximation of the DCM distribution
is subject to. Given that we use the Bayesian framework,
some other sources of prior information can be encoded in
the model. Finally, we demonstrate the efficacy of our frame-
work by evaluating it in sentiment analysis and shape recog-
nition tasks. Results show the validity of our framework and
obtaining comparable and superior results as opposed to us-
ing ML estimation in terms of clustering performance.
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