
An Ensemble Neural Network for the Emotional Classification of Text

Oscar Youngquist
Department of Computer Science

and Software Engineering
Rose-Hulman Institute of Technology

youngqom@rose-hulman.edu

Abstract

In this work, we propose a novel ensemble neural network
design that is capable of classifying the emotional con-
text of short sentences. Our model consists of three distinct
branches, each of which is composed of a combination of
recurrent, convolutional, and pooling layers to capture the
emotional context of text. Our unique combination of con-
volutional and recurrent layers enables our network to ex-
tract more emotionally salient information from text than
formerly possible. Using this network, experiments classify-
ing the emotional context of short sequences of texts from
five distinct datasets, were conducted. Results show that the
novel method outperforms all historical approaches across all
datasets by 8.31 percentage points on average. Additionally,
the proposed work produces results that are on average as ac-
curate as state of the art methods, while using two orders of
magnitude less training data. The contribution of this paper
is a novel ensemble recurrent convolutional neural network
capable of detecting and classifying the emotional context of
short sentences.

Introduction and Related Work

We introduce, implement, and evaluate a novel ensemble re-
current convolutional neural network for the purpose of clas-
sifying the emotional context of text. The model uses convo-
lutional features to seed recurrent layers with a prior knowl-
edge of the text’s most significant time invariant features in
order to better identify the latent emotional semantic context
of the text.

The emotional classification of text is a sub-topic of text
classification and therefore, has been solved historically
by using traditional machine learning techniques and fea-
ture engineering (Strapparava and Mihalcea 2008; Creed
and Beale 2008; Li and Xu 2014). However, recently pro-
posed models have also seen significant advances in perfor-
mance using artificial neural networks (Poria et al. 2016b;
2016a). The work done by Muhammad Abdul-Mageed and
Lyle Ungar in their 2017 paper “EmoNet” represents the cur-
rent state of the art work in this area and is based on a gated
recurrent neural network (GRNN) (Abdul-Mageed and Un-
gar 2017).
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GRNN’s and recurrent neural networks (RNN) in gen-
eral have proven to be excellent at text classification tasks
(Pal, Ghosh, and Nag 2018; Zolkepli 2018; Zhang, Wang,
and Liu 2018). Additionally, while convolutional neural net-
works (CNN) have largely been reserved for image recogni-
tion/classification tasks, several successful text classification
architectures based on CNN have been proposed (Kim 2014;
Severyn and Moschitti 2015; Jaderberg, Vedaldi, and Zis-
serman 2014). Most recent work in this field attempts to
find combinations of CNN’s and RNN’s that take advantage
of the strengths of both network architectures (Sosa 2017;
Bouazizi and Ohtsuki 2017; Chen et al. 2017; Yin et al.
2017; Lai et al. 2015).

Network Architecture

One of the key aspects of this architecture is its three dis-
tinct parallel branches. The three branches process compli-
mentary inputs, namely the left-shifted text, the right-shifted
text and the current text, in order to provide context for emo-
tional classification and was inspired by the work of (Lai et
al. 2015). Furthermore, the flow of information through the
network can be broken down into four main stages: inputs,
word embedding, left and right context convolutional feature
extraction, and recurrent/merge layers. Figure 1 illustrates
the network architecture of our system.

Inputs

Each of the inputs described in the following passage is a
vector of plain text words that have been parsed to remove all
non-alphanumeric characters. The input for the first branch
of the model - which can be seen as the top branch in the
Figure 1 -– is the left-shifted context of the input word vec-
tor. Left-shifted means that the input vector to this branch is
the same as the unmodified text input vector, but with each
word in the sentence being shifted one position to the left: so
the second word in the sentence becomes the first, the third
the second, and so on. The input to the middle branch is sim-
ply the unmodified text input vector. The input to the bottom
branch is the right-shifted context vector. The right-shifted
input is created the same way as the left-shifted input, but
with each word being shifted one position to the right in-
stead of the left.
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Figure 1: The architecture of our network. The arrows represent the flow of data from one layer to another. Concat. is short for
concatenate and I.S. are the initials for Initial State. The convolutional layers have filter sizes of 2, 3, 4, 5, 10.

Both of the shifted inputs are kept the same length as the
unmodified input by placing a ‘’ PAD ’ token in the last
and first position of the left and right shifted arrays, respec-
tively. By splitting the input in this way, and then generating
contextualized representations of the left and right-shifted
text via recurrent layers, we are in effect able to take into
consideration the full left and right context for each word
in the sentence that is being processed. This allows us to
take advantage of the spatial-temporal relationships of the
semantics of the input text forwards (right context), back-
wards (left context), and centered (non-shifted text) in time.

Splitting the input text in this manner enables the net-
work to learn the more distributed and complex aspects of
the semantics of the written word and was inspired by the
work of (Lai et al. 2015). The intent of this design is to use
the three inputs, recurrent layers, and time distributed dense
layer to replicate the functionality of a sliding-window op-
eration over the text. However, unlike the sliding-window
operations found in convolutional layers, this arrangement
allows the full context of the utterance to the left and right
of any given word to be taken into consideration. This is be-
cause the data being used in the sliding-window operation
in this model consists of the word embeddings of the non-
shifted text input and the context vectors (as generated by
the left and right-shifted branches respective LSTM layers)
of the words that precede and follow each word in the input.
By replicating a sliding-window operation in this way, using
this data, the network is able to better capture the “long-
distance” contextual relationships of an utterance than a tra-
ditional convolutional layer which only operates on partial
information from the text (Lai et al. 2015).

Word Embedding

Each branch begins by taking the text as input and produc-
ing a contextualized word-vector representation of the input
using an ELMo embedding layer; an embedding layer pro-
posed by (Peters et al. 2018). The ELMo layers calculate
word vectors through a pre-trained deep bidirectional lan-
guage model which aims to capture both the complex char-

acteristics of word use and how these characteristics vary
across linguistic contexts. This embedding strategy was se-
lected in order to further facilitate the identification and in-
corporation of the emotional semantic context of the input
in the classification process.

Left and Right Context Convolutional Feature
Extraction

The word embeddings for the left and right context vectors
are fed to five parallel convolutional layers as can be seen in
the top and bottom branches in Figure 1. Each of these layers
has a different window size: 2, 3, 4, 5, and 10 but are other-
wise identical with 128 filters a piece and using the RELU
activation function. Additionally, each convolutional layer is
followed by a max pooling layer with a window size of two.
The five convolutional layer’s are separately concatenated
together as can also be seen in the top and bottom branches
in Figure 1. The purpose of these convolutional layers is the
extraction and composition of temporally invariant features
that might otherwise be missed or underemphasized by a re-
current network alone and was inspired by the work of (Chen
et al. 2017).

While the convolutional features are not themselves fed to
the subsequent recurrent layers of this model, they are used
to initialize the state or “prior knowledge” of those layers.
This is done by first normalizing the concatenated output
of the pooling layers via batch renormalization, a technique
proposed by (Ioffe 2017), and then flattening the result and
sending it through a fully connected layer. The fully con-
nected layer uses the softmax activation function and pro-
duces a vector which is used to initialize the recurrent layers
state as in the work (Chen et al. 2017). Using this vector to
initialize the recurrent state provides the subsequent recur-
rent layers with a prior knowledge of the most significant
temporally-invariant features from the text; allowing the re-
current layers to develop a more comprehensive representa-
tion of the text.
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Recurrent/Merge Layers

The left and right-shifted text word embeddings are each
fed to a bidirectional LSTM layer which has been initial-
ized using their respective left and right convolutional fea-
tures, as described above. The output of the LSTM layers
are concatenated together along with the non-shifted embed-
ded word vector. The concatenated vector is then fed to a
time distributed fully connected layer which uses the tanh
activation function and has 250 outputs. This output is then
processed by two parallel, Siamese style max pooling lay-
ers. The output of each pooling layer is then concatenated
together and sent through a fully-connected layer, the out-
put of which is sent through a batch renormalization layer.
While this particular arrangement of pooling layers might
seem counter-intuitive, it was found experimentally that this
configuration consistently improved the overall accuracy of
the model. Lastly, the renormalized output is fed to the soft-
max activated fully connected output layer. The design of
these last few layers were inspired by the work of (Lai et
al. 2015). However, by initializing the state of the recurrent
layers with context independent features from convolutional
layers, as in the work of (Chen et al. 2017), the recurrent
layers in the RCNN architecture can better identify and em-
phasize the most emotionally salient features.

Experimental Setup

We now detail the experimental design used to evaluate the
performance of our network.

Datasets

The validation experiments performed in this work are con-
ducted using the following five datasets:

• Twitter Emotion Corpus (TEC): published by Saif Mo-
hammad, is a dataset containing 21,051 tweets; each la-
beled by a single emotion (2012b). The emotion labels
present in this set are the six basic Ekman emotions:
anger, disgust, fear, happiness, sadness, and surprise. La-
beling the tweets was accomplished through the appli-
cation of distant supervision. Tweets which contained a
single emotional hashtag, such as #happy, at the end of
the tweet were labeled with the emotion that is conveyed
by the hashtag. The hashtag was then removed from the
tweet before it is used for training or testing purposes.
This distant supervision labeling technique does have a
potential drawback in the presence of sarcasm in tweets.
Labeling tweets through the use of a single hashtag may
make the labeling process prone to the introduction of
sarcasm into the dataset. Despite this possibility, curat-
ing emotional text data in this way has become common
practice in works such as (Mohammad 2012a; Mintz et al.
2009; Wang et al. 2012; Abdul-Mageed and Ungar 2017;
González-Ibánez, Muresan, and Wacholder 2011). There-
fore, this concern will not be explicitly addressed in this
work.

• CrowdFlower (CF): this is the dataset from “Sentiment
Analysis: Emotion in Text” published by CrowdFlower
and used in Microsoft’s Cortana Intelligence Gallery

Dataset Total Size Train / Val / Test
ZM 69120 46656 / 8640 / 13824
DD 22407 14720 / 3200 / 4480
TEC 21051 10816 / 3200 / 7008
AG 107724 64608 / 21504 / 21504
CF 40000 28000 / 8000 / 8000

Table 1: A summary of the datasets including the total size
of the set and the training/validation/testing split.

(CrowdFlower 2016b; 2016a). This dataset consists of
40,000 tweets labeled with one out of a possible 13
emotions. The dataset was also labeled using the semi-
supervised approach described for the TEC dataset.

• DailyDialogs (DD): contains 13,118 conversations, split
into 102,980 sentences each hand labeled via expert an-
notation (Li et al. 2017). Each sentence has a single label
from one of seven emotional categories: anger, fear, dis-
gust, happiness, sadness, surprise, and noemo (no emo-
tion).

• Aggregate Dataset (AD): presented by Laura Bostan and
Roman Kilnger, is a dataset which is comprised of an ag-
gregation of other emotion classification in text datasets;
including the three listed above. This dataset contains
202,062 sentences each labeled with one of 12 emotion
labels. The other datasets used in the making of this set,
as well as the procedures used to combine them, can be
found in (Bostan and Klinger 2018).

• Zolkepli Emotion Data (ZM): is a dataset that was cu-
rated by Husein Zolkepli for his Emotion Classification
Comparison project (Zolkepli 2018). This dataset con-
tains tweets that have been parsed to remove all non-
alphanumeric characters, and labeled as one of six basic
Ekman emotions: joy, sadness, love, anger, fear, and sur-
prise. Each emotion label has the same number of tweet
examples, resulting in a perfectly balanced dataset. The
tweets where labeled using the same semi-supervised ap-
proach used for both the TEC and CF datasets.

Additional preprocessing was applied to the Aggregate
and Daily Dialog datasets. The DD dataset was found to be
extremely unbalanced; with “noemo” dominating the other
emotional categories. Through data exploration, the Daily
Dialog dataset was found to have 85,572 sentences labeled
noemo, with the next largest emotional category - joy -
containing only 12,885 records. To create a more balanced
dataset, so as to counter the negative training effects inherent
to heavily biased data, 5,000 noemo labeled sentences were
randomly selected from the 85,572 present to be used dur-
ing training and evaluation. The other noemo labeled sen-
tences where discarded. This resulted in the Daily Dialogs
dataset being reduced to a size of 22,407 total records. Fur-
thermore, the same noemo bias was found in the Aggregate
dataset which was found to contain 104,338 sentences la-
beled noemo, and only 37,237 examples for the next largest
category: joy. Similar to the DD dataset, 10,000 random
noemo labeled sentences were selected to be used in training
and evaluation, reducing the size of the Aggregate dataset to
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Model CF AG TEC DD ZM
F1 A F1 A F1 A F1 A F1 A

Emotion RCNN-EN 0.380 0.384 0.520 0.523 0.600 0.603 0.727 0.724 0.950 0.951
(Lai et al.) RCNN 0.360 0.357 0.450 0.451 0.570 0.574 0.675 0.674 0.940 0.939

(Kim) CNN 0.340 0.340 0.450 0.448 0.537 0.538 0.668 0.668 0.910 0.914
Bidirectional LSTM 0.210 0.209 0.340 0.342 0.320 0.321 0.575 0.577 0.910 0.912
BoW + Naı̈ve Bayes 0.300 0.302 0.470 0.468 0.520 0.524 0.658 0.656 0.850 0.859

BoW + SVM 0.340 0.341 0.510 0.513 0.570 0.569 0.690 0.689 0.890 0.899
TFIDF + Naı̈ve Bayes 0.280 0.280 0.380 0.383 0.450 0.452 0.595 0.600 0.680 0.735

TFIDF + SVM 0.350 0.347 0.460 0.456 0.553 0.552 0.670 0.673 0.830 0.851

Table 2: Summary of micro F1 score (F1) and accuracy (A) on the all the test sets for all evaluated models. All scores where
calculated using Scikit-learn (Pedregosa et al. 2011).

107,724 records. The total size and training, validation, and
testing split for each dataset can be seen in Table 1.

Experimental Settings

Before the experiments were conducted the datasets were
processed as follows. Each set was split into training, vali-
dation, and testing sets and then pre and post padding was
applied to ensure a uniform length for all the input vectors.
The length of each input vector was dependent upon the
average sentence length in each of the datasets being pro-
cessed. The TEC, AG, and CF datasets were each padded to
a length of 100 words, DD to 80, and ZM was padded to 60
words. Categorical crossentropy was used as the network’s
loss function, and stochastic gradient descent with clipping
was used as the model’s training optimizer. Recurrent lay-
ers employ L2 regularization and dropout to prevent overfit-
ting. For the learning rate, the training technique: Stochas-
tic Gradient Descent with Restarts (SGDR), as proposed by
(Loshchilov and Hutter 2016), was used. A maximum learn-
ing rate of 0.2 was selected with a minimum of 0.001, a cycle
length of 10 epochs, and a decay rate of 35% per cycle.

Furthermore, due to the small size of the DD and TEC
datasets, cross-validation was employed during training and
evaluation. 3-Fold cross-validation was utilized for the TEC
dataset and 5-Fold cross-validation for the DD dataset.

Evaluation Metrics

The following metrics were used for evaluating the perfor-
mance of the tested networks: Categorical Accuracy, and mi-
cro F1 score (F1).

Comparison of Methods

The following is a list of the models we used to evaluate
our network architecture. Each model in the list below was
implemented with Tensorflow, Keras, Scikit-learn and using
standard machine learning practices or as detailed in the as-
sociated paper.

• Baselines: The baseline models are a Naı̈ve Bayes Bayes
(NB) classifier and a Support-Vector Machine (SVM)
classifier. For the NB and SVM models, two word vec-
torization techniques were used during evaluation: Bag
of Words (BoW) and Term Frequency-Inverse Document
Frequency (TFIDF).

• Bidirectional LSTM: A simple bidirectional LSTM net-
work.

• Yoon Kim CNN (2014): Yoon Kim’s seminal work
demonstrating the effectiveness of CNN for text classi-
fication tasks.

• Lai et al. RCNN (2015): The recurrent convolutional
neural network that this work is heavily based upon.

• Emotion RCNN-EN: Our Network.

Experimental Results

Our network architecture outperforms every model tested
against it, see Table 2, including the state of the art RCNN,
achieving results that are on average 8.31 percentage points
(pps) more accurate than any other evaluated model across
all datasets. Furthermore, our model outperforms the other
evaluated models in terms of F1 score across all datasets.

Baseline Models

When comparing the results of our architecture to the base-
line models, it is clear that our network far exceeds the ac-
curacy performance of the baselines. On average our model
is 7.975 pps more accurate than the baselines across all the
datasets. Furthermore, our network also performs higher in
terms of F1 score across all datasets. However, as can be
seen in the results for the TEC, AG, and DD datasets, the
baseline methods are among the top performing models.
With respect to the DD and TEC datasets, it is likely that
the SVM model, with BoW text embeddings, outperformed
it’s deep learning counterparts due to the limited amount
of training data available. It is well established that the
SVM models perform exceptionally well on small amounts
of data, when compared to other machine learning models,
and that deep learning models traditionally require massive
amounts of training data to be viable. Therefore, the SVM
has an advantage in these particular cases. Nonetheless, our
proposed network still outperforms the SVM model, across
all the datasets, regardless of the amount of available train-
ing data. Our network is specifically designed to extract
all available emotionally salient information throughout the
text. Thus, it is able to outperform the SVM models, as well
as all the other models, through gaining access to and learn-
ing from more emotionally rich information.
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Emotion F1 score
AB Our Model

joy 0.95 0.94
sadness 0.95 0.97
anger 0.97 0.92
fear 0.94 0.92

surprise 0.93 0.95
avg 0.948 0.946

Table 3: Comparison of micro F1 scores for the common
emotions between this work and the state of the art work in
(Abdul-Mageed and Ungar 2017).

Non-baseline models

Our model outperforms the traditional CNN by 5.56 pps in
terms of accuracy across all the datasets. Furthermore, our
model also consistently outperforms the CNN with respect
to F1 score. While a CNN is undeniably good at extracting
key features, the semantics of emotions in text can be subtle
and difficult to capture completely without taking the rest
of the sentence’s context into consideration. Therefore our
model, which combines the key feature extraction capabil-
ities of CNN’s with the long-term “memory” of RNN’s, is
able to outperform the CNN due to having access to the sen-
tence’s emotional context during the classification process.

When comparing Emotion RCNN-EN to the RCNN
model that inspired it, it can be seen that the new archi-
tecture outperforms the RCNN architecture both in term of
F1 score and accuracy. Our model outperforms the RCNN
model in terms of accuracy by 3.820 pps on average across
all the datasets. Most notable are the results for the evalua-
tions completed using the AG and the DD datasets, with the
Emotion RCNN-EN outperforming the RCNN by 7.241 and
4.977 pps respectively. In addition to the combination of key
feature extraction and the long-term memory capabilities of
our network, we believe this improvement can be attributed
to the convolutional, temporally-invariant, and emotionally
charged semantic features that are used to initialize the Emo-
tion RCNN-EN’s recurrent states. This allows the network
to better capture the “long-distance” semantic patterns and
relationships that would otherwise be missed by traditional
convolutional or recurrent structures. Therefore, our model
is able to gain access to more relevant information already
in the text which is missed by other models; including the
RCNN.

Efficiency of Architecture

In addition to classifying emotions with more precision, our
model is more efficient than existing models. We evaluated
the efficiency of our system against that of the state of the
art work of Abdul-Mageed and Ungar by comparing the F1
scores of the shared emotional categories from the dataset
used in their work and the ZM dataset (2017). While the ZM
dataset is not a subset of the data used by Abdul-Mageed and
Ungar, or vice versa, both datasets are comprised of tweets
that where labeled and validated using the same methodol-
ogy. While this is an indirect comparison of these models,
as the authors of this work where unable to attain either a

trained model or the dataset used by Abdul-Mageed and Un-
gar, it can nonetheless be used to illustrate the efficiency of
our work. The results of this comparison can be seen in Ta-
ble 3. The accuracy of this work - in terms of F1 score - is
nearly the same as the state of the art work, with the average
of our model only 0.2 pps lower than theirs.

The neural network employed by Abdul-Mageed and Un-
gar was trained and evaluated on 1.608 million examples,
whereas our work was only trained and evaluated on 69,120
examples. Despite training with two orders of magnitude
less data, our model performs within a reasonable margin
of error of the current state of the art system. These results
suggest that our model is capable of extracting more rele-
vant information from the data and using it to better classify
emotion. This ability is a direct result of the design choices
explained in the Network Architecture section.

Conclusion

Experimental results from five separate emotion-in-text
datasets demonstrate that our model outperforms traditional
machine learning and deep learning text classification tech-
niques alike and produces results that are on average as ac-
curate as the current state of the art system or better despite
using two orders of magnitude less training data.

The success of our model can be attributed to two key fac-
tors. First, the recurrent convolutional network architecture
which enables the model to capture the text’s log-term con-
text and most emotionally salient features. Second is seeding
the recurrent layers of the model with a prior knowledge of
the most emotionally significant information in the text. Do-
ing this gives the recurrent layers in our model a “hindsight”
as to the emotional context of the text; a hindsight which en-
ables our model to extract more contextual information from
the text.

The combination of both the recurrent convolutional
structure and the convolutional layers seeding the recurrent
layers results this model processing input twice. First, in
the convolutional seeding layers, and second, in the dual-
purpose recurrent and convolutional layers. This process ex-
tracts far more emotionally significant information from the
text than the approaches taken by other works and enables
our model to outperform those models; even with limited
training data. We conclude that the new emotional classifi-
cation technique presented here displays promise and needs
to be further evaluated on a much larger and emotionally
comprehensive dataset.
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