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Abstract

Lack of physical activity has been linked to several chronic
diseases. Health coaching is successful to help patients en-
gage in healthier behaviors, but is resource intensive. Our
goal is to develop a virtual health coach. In this paper, we
discuss one component of our work, automatically summa-
rizing goals set by patients during health coaching conversa-
tions that we collected and annotated. In turn, our goal sum-
marization pipeline consists of a slot-value prediction model
followed by a model that captures the higher-level conversa-
tion flow of the dialogues. We report a detailed evaluation that
shows measures used for summarization such as BLEU and
ROUGE, do not work well for our task.

Introduction

Physical inactivity is a primary reason for many chronic dis-
eases such as type 2 diabetes, cardiovascular disease, and
depression (Booth et al. 2017). According to the Physical
Activity Guidelines for America, an individual should do
at least 150 minutes per week of moderate-intensity phys-
ical activity to be considered active (Piercy et al. 2018). But
unfortunately, only 22.9% of the United States (U.S.) adult
population met the federal guidelines for physical activity
between the years 2010 - 2015 (Blackwell and Clarke 2018).
Therefore it comes as no surprise that every 6 out of 10
adults in the U.S. suffers from at least one chronic disease.

Many of these problems can be reduced by increasing the
amount of physical activity. However, the problem is being
able to maintain these activities regularly and the continuous
motivation needed to do so. Health coaching (HC) has been
identified as a successful method for facilitating health be-
havior changes by having a professional provide evidence-
based interventions, support for setting realistic goals, and
encouragement for goal adherence (Kivelä et al. 2014). Un-
fortunately, personal HC is time-intensive, too expensive for
low-income patients, inflexible in terms of availability of the
coach, and may have limited reach because of distance, es-
pecially for people from rural communities.

In the last few years, there has been a considerable inter-
est in automated systems for health behavior change (Wat-
son et al. 2012; Shamekhi et al. 2017). But internally most of
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these systems rely on a predefined set of input/output map-
pings, focus more on general goal setting, and do not provide
follow-up during goal accomplishment. Our goal is to de-
velop a virtual assistant health coach that will help patients
to set Specific, Measurable, Attainable, Realistic and Time-
bound (S.M.A.R.T.) goals via text messages (Doran 1981).

We follow the traditional architecture for building a dia-
logue system since we have small data and an end-to-end
system is not feasible. We first build the Natural Language
Understanding (NLU) module, which involves understand-
ing the user’s intent (stages-phases) and slot values (SMART
goal attributes). Whereas we will shortly use intent and slots
as inputs to the dialogue manager, in the meantime, we use
the NLU module to support human health coaches and pro-
vide them with automatically generated summaries of the
patients’ goals. Our contributions are as follows:

1. We developed a model for extracting behavioral goals dis-
cussed during human-human HC dialogues. We believe
this is the first model developed for the HC domain.

2. We leveraged the conversation flow of the HC dialogues
we collected to determine the slot values of the agreed-
upon goal. Our slot prediction model is free of any fixed
ontology as values are unbounded for most of our slots.

3. We show that standard metrics like BiLingual Evalua-
tion Understudy score (BLEU) (Papineni et al. 2002)
and Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) (Lin 2004), are not appropriate to evaluate our
extraction based goal summaries.

Related Work

One of the earliest and simplest methods to interact with
patients involves programmable prompting devices, which
send reminders to the participants and are useful for inter-
ventions such as medication adherence and smoking cessa-
tion (Andrade et al. 2005). Then came conversational agents
that interact with the users to help them with activities such
as managing stress and assisting patients during hospital vis-
its (Bickmore et al. 2015; Shamekhi et al. 2017). These sys-
tems are sometimes embodied via an animated character that
uses both verbal and non-verbal cues such as hand gestures
and eye gaze to build a rapport with the user.

However, most of these systems provide a predefined set
of options for input. Though this enhances system’s robust-
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Stage: Goal Setting

(1) Coach: What goal could you make that would allow you to do more walking?
(2) Patient: Maybe walk (S activity) more in the evening after work (S time).
(3) Coach: Ok sounds good. How many days after work (S time) would you like to walk (S activity)?
(4) Coach: And which days would be best?
(5) Patient: 2 days (M days number). Thursday (M days name), maybe Tuesday (M days name)
(6) Coach: Think about how much walking (S activity) you like to do for example 2 block (M quantity distance)
(7) Patient: At least around the block (M quantity distance) to start.
(8) Coach: On a scale of 1-10 with 10 being very sure. How sure are you that you will accomplish your goal?
(9) Patient: 5 (A score)

Figure 1: SMART goal annotations for a conversation between the health coach and the patient. S: Specificity (Blue), M:
Measurability (Red), and A: Attainability (Magenta), Phases: identification (1-2), refining (3-7), and anticipate barriers (8-9)

ness, portability is reduced (Bickmore, Schulman, and Sid-
ner 2011). Some of the work that does provide unconstrained
natural language input uses pattern matching for extract-
ing key-phrases from the user’s input (Song et al. 2013;
Fitzpatrick, Darcy, and Vierhile 2017).

Very recently researchers have started to use computa-
tional methods for analyzing conversations from counseling
and interventions. Work by Althoff, Clark, and Leskovec
(2016) uses 80,000 counseling conversations from a crisis
text line to understand which linguistic features lead to a
successful or unsuccessful counseling session. On the other
hand, Pérez-Rosas et al. (2017) collected a dataset of Moti-
vational Interviewing (MI) based sessions on smoking ces-
sation, weight loss, and medication adherence and built a
model for predicting the counselor’s performance based on
linguistics features. More recently, the authors used public
sources such as YouTube videos on MI for the same purpose
(Pérez-Rosas et al. 2018).

The use of conversational agents in the health care do-
main is still fairly new as compared to other domains such
as traveling or booking a restaurant. The abundance of data
in other domains allows researchers to utilize complex neu-
ral network models. However, in the health domain, it is very
resource intensive to collect real-world data; this results in
very small datasets, which are in general not sufficient to
train neural networks. Also, due to privacy reasons, data can
only rarely be shared. These limitations led us to collect our
data which is specific to our task domain of HC.

Data Collection and Annotation

We recruited 28 patients and a health coach to commu-
nicate with patients via SMS and help them set weekly
SMART goals for 4 weeks. Only one patient didn’t finish
the study. The patients were given a Fitbit to track their
progress (also accessible to the coach). This resulted in a
corpus of 2853 messages. An annotated excerpt is shown
in Figure 1. Two annotators labeled the data for lower-level
attributes i.e. SMART tags and higher-level conversation
structure, i.e. stages-phases. We reached satisfactory levels
of inter-annotator agreement (kappa) on all categories (Co-
hen 1960). The SMART goal schema has 10 word-level tags
with examples shown in parenthesis: specific activity (walk),
specific time (8am), specific location (at work); measurable
quantity amount (2000 steps), measurable quantity distance

(2 miles), measurable quantity duration (15 min), measur-
able days name (Monday, Tuesday), measurable days num-
ber (2 days), measurable repetition (2 times a day); and
attainability score between 1-10 (9). The coaching stages-
phases schema has two stages: Goal Setting (GS) and Goal
Implementation (GI). The GS stage has 5 phases: identi-
fication, refining, negotiation, anticipate barrier, and solve
barrier. The GI stage has the same phases minus identifica-
tion and an additional follow-up phase. Further details can
be found in (Gupta et al. 2018; 2019).

Goal Extraction Framework

Most goal-oriented dialogue systems assume that a user has
a predefined goal that needs to be accomplished such as re-
serving a restaurant. However, that is not the case in our HC
dialogues. Though patients are encouraged to set their own
goals, health coaches play a major role in helping patients
converge on a realistic goal based on their lifestyle and pre-
vious activity patterns; therefore our dialogues involve lots
of negotiation before a goal is agreed upon. Moreover, the
patients sometime change their goals on encountering an un-
seen barrier. This causes information about the goal to be
distributed over multiple messages. Therefore, we hypothe-
size that understanding the current stage-phase of a message
can help identify these negotiations and better predict the
final goal.

There are two points in the conversations where extracting
and summarizing the goal offline would help coaches; one
at the end of the goal-setting stage and another at the end
of the goal implementation stage. We call them the forward-
looking goal and backward-looking goal respectively.

A forward-looking goal doesn’t include any negotiations
or changes to the goal that might occur during the goal im-
plementation stage. E.g, for the conversation in Figure 1,
the summary would be ‘walk around the block after work
2 days Thursday and Tuesday’. The summary at this point
can be used to send automated reminders, help coaches re-
member the goal, and to compare against the Fitbit read-
ings. A backward-looking goal refers to the final goal the
patient worked towards including all the negotiations during
the week: e.g., during the goal implementation stage, the pa-
tient may encounter a barrier on Thursday, and change the
goal to Friday. In such a case, the goal summary would be
‘walk around the block after work 2 days Friday and Tues-
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Feature

U : Unigrams
D : Distance of the message from top in a week
SMART : SMART attribute present or not
L : Sentence length
T : Normalized time difference between messages
Se : Sender of the message
WE : Google Word Embedding

Table 1: List of features for phase prediction

Features CRF SP LR

Baseline 0.18
U 0.626 0.672 0.514
U+D 0.666 0.604 0.558
U+D+SMART 0.708 0.604 0.592
U+D+SMART+L 0.702 0.622 0.592
U+D+SMART+L+T 0.704 0.622 0.600*
U+D+L+T+Se 0.664 0.590 0.566
U+D+SMART+L+T+Se 0.704 0.628 0.602
All (from Table 1) 0.710 0.622 0.604

Table 2: Phase prediction F1 scores. ‘*’ indicates significant
improvement, boldface indicates highest value.

day’. Summarizing the goal at this point can give coaches a
better sense of the patient’s goal attainability, a direction to
set future goals, and comparison against the Fitbit readings.

Phase Prediction

We first analyzed the HC conversations to see if a given
stage-phase is more likely to be followed by another stage-
phase in a given week. In total, 121 different transitions
are possible in a given week as we have 10 unique stage-
phase categories plus the beginning and end of the week
(start, stop). We found only 39 unique transitions in our
dataset which was expected given that the goal implemen-
tation stage cannot be followed by the goal setting stage in a
given week, and the week always starts with the goal iden-
tification phase. Moreover, out of these 39 transitions, only
13 had a probability above 0.3. Therefore, we tried both se-
quential and non-sequential classification algorithms for the
phase prediction task. For sequential algorithms, we mod-
eled a set of messages in one week as one sequence.

We used the 80-20 rule to divide our data into train-
ing and testing and performed 5-fold cross-validation. All
the messages from one patient were either kept in training
data or test data to avoid any data leakage. We used su-
pervised classification models, specifically Conditional Ran-
dom Fields (CRF), Structured Perceptron (SP), Support Vec-
tor Machines (SVM), Logistic Regression (LR) and Deci-
sion Trees (DT). We did experiment with other models as
well, namely, Hidden Markov Model, Naive Bayes, and K-
Nearest Neighbors, but their overall performance was worse
than the five classifiers mentioned above. Therefore, we per-
formed feature ablation experiments only with CRF, SVM,
SP, DT, and LR classifiers and report the results for the top
three classifiers here. The naive baseline assigns the identifi-

Label P R F1 Support

Baseline 0.250 0.212 0.182 532.4
Anticipate barrier 0.836 0.814 0.816 72.2
Follow up 0.908 0.922 0.912 256.4
Identification 0.816 0.858 0.828 109
Negotiation 0.482 0.360 0.368 21.2
Refining 0.660 0.732 0.678 69.6
Solve barrier 0.722 0.588 0.632 34.2
Macro average 0.738 0.712 0.708 532.4

Table 3: Phase prediction results per label

cation phase to the first message in a week, and the majority
tag follow up to all other messages that week. The list of fea-
tures is shown in Table 1. We also experimented with Part-
Of-Speech (POS) tags, dependency parse trees, number of
content words (not stopwords) in the sentence, and the pre-
vious message’s word embedding. However, none of them
contributed to model performance.

Results are shown in Table 2. The first ‘*’ in a column
indicates a significant improvement (p<0.05) over unigrams
calculated using ANOVA and post-hoc Tukey tests. The next
‘*’ in the column indicates a significant improvement over
the previous significant improvement. The highest F1 score
of 0.710 was achieved using all the features with the CRF
model. However, similar performance was also given by
U + D + SMART feature combination (F1 score=0.708,
Accuracy=0.816). When comparing the highest F1 scores
of different classifiers, CRF was found to be significantly
better than LR but not SP. For the feature combination
U +D+SMART , the per-class performance using CRF is
shown in Table 3, where Support refers to the average num-
ber of samples across the 5 folds. We observed that adding
other features apart from unigrams, distance, and SMART
didn’t help to improve performance significantly. In fact,
adding other features to SP after unigrams lowered its F1
score. However, when examining the F1 scores for individ-
ual classes across all feature combinations, when SMART
and distance features were added to unigrams, the models
were able to predict the low-frequency classes, especially
negotiation, better. The performance on negotiation reduces
to 0.116 from 0.368 in CRF when the SMART feature is re-
moved from U + D + SMART . One can also notice the
differences in F1 scores when the SMART tag feature is re-
moved and U +D + L+ T + Se is used in Table 2.

SMART Tag Prediction

This task involves classifying each word into one of 11
classes: 10 from the SMART annotation schema plus ‘none’
for words without any tag. It is similar to a Named En-
tity Recognition (NER) task, where entities are SMART at-
tributes. We tried both sequential and non-sequential algo-
rithms as many NER tasks are modeled using the former.

We used the five classifiers mentioned in phase prediction:
CRF, SP, SVM, LR, and DT and found the same three classi-
fiers CRF, SP, and LR performed the best. We used different
combinations of features as listed in Table 4, and report the
results in Table 5. The F1 scores are (macro) averaged over
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Feature

W, LW, RW : Word itself, left word and right word
POS : Part-of-Speech
LPOS, RPOS : Left and right word’s POS
SNER : SpaCy Named Entity Recognition
P : Phases
WE, PWE : Current and previous word’s embeddings

Table 4: List of Features for SMART Tag Prediction

Features CRF SP LR

Baseline 0.57
W 0.716 0.742 0.420
WE 0.716 0.750 0.500*
W+LW+RW 0.752 0.760 0.734*
W+LW+RW+P 0.752 0.762 0.734
W+LW+RW+WE 0.766* 0.788* 0.758
W+LW+RW+WE+P 0.766 0.790 0.758
W+LW+RW+WE+SNER 0.784 0.790 0.764
W+LW+RW+WE+SNER+P 0.784 0.794 0.768
W+LW+RW+WE+SNER+POS+P 0.778 0.796 0.772
All (from Table 4) except phases 0.786 0.796 0.780

All (from Table 4) 0.786 0.802 0.780

Table 5: SMART tag prediction F1 scores.‘*’ indicates sig-
nificant improvement. Boldface indicates highest value in
the column

all the classes including ‘none’. For the baseline, instead of
choosing the majority class ‘other’ which would result in
very poor performance, we used a rule-based approach with
the help of the existing SpaCy Named Entity Recognizer.
It can recognize a variety of named entities, including loca-
tion, date, time, quantity, cardinal, and many more. We only
used the ones that are closest to our SMART attributes. The
rules used for each attribute were decided based on the di-
alogues. E.g., specific activity rule uses the most common
activities in the corpus and measurable quantity amount rule
is a cardinal POS tag followed by an activity.

We achieved an F1 score of 0.802 over all the cate-
gories using all the features in Table 4 with the SP model
(when comparing the highest F1 scores of different classi-
fiers, CRF and SP were found to be significantly better than
LR). Even though the highest F1 score involves phases as
features, they did not provide much improvement overall
(only 0.004). The previous word’s embedding and POS tag
didn’t help much either. The F1 scores for individual classes
using W +LW +RW +WE+SNER are shown in Table
6. The SP classifier with W + LW + RW + WE combi-
nation also had a similar performance. Since SMART tags
help in recognition of phases, especially the less frequent
ones, we will adopt a pipeline where SMART tags are rec-
ognized first, independently of phases, and are then used to
recognize phases.

Automatic Goal Extraction

Given the results we just discussed, we chose an SP model
for SMART tag prediction with feature combination W +
LW + RW +WE + SNER, and a CRF model for phase

Label P R F1 Support

Activity 0.938 0.946 0.942 122.4
Time 0.724 0.684 0.692 66.0
Location 0.676 0.896 0.722 16.8
Quantity-amount 0.926 0.946 0.934 147.2
Quantity-distance 0.632 0.582 0.552 42.2
Quantity-duration 0.900 0.894 0.882 47.2
Days-name 0.766 0.714 0.728 77.2
Days-number 0.802 0.822 0.810 60.6
Repetition 0.782 0.698 0.722 24.8
Attainability score 0.792 0.708 0.742 13.8
None 0.982 0.988 0.984 5107.2
Macro average 0.808 0.806 0.790 5725.4

Table 6: SMART prediction results per label

prediction with feature combination U +D+ SMART for
our goal extraction pipeline. We compare performance on
goal extraction, using only SMART tags or adding stages-
phases to SMART tags. Our pipeline for goal extraction with
the help of phases follows these given steps:

1. Build a SMART prediction model using the training data
of k-1 folds and predict SMART tags for the remaining
one fold of test data.

2. Using the same k-1 folds, build a phase prediction model.
However, when predicting phases for test data, SMART
tags predicted in the previous step are used as features
along with unigrams and distance. (F1 score = 0.686)

3. Using the model from step 1, extract the last mention for
each of the 10 SMART attributes; except

• in backward-looking goal, for measurable quantity
(amount, distance and duration) and measurable days
number, take the last mention only if the message is
not in the follow-up phase.

• in forward-looking goal, take the last mention only
from (human-annotated) goal setting stage.

The experiments were performed using 5 fold cross-
validation over the patients, such that we cover each patient
once in the test set. We also created gold standard goal sum-
maries to compare the extracted summary with. For goal ex-
traction baseline, first, the rules for the SMART tag predic-
tion baseline were used to extract the SMART tags and then
the last mention for each attribute was taken. We evaluated
the models using both existing summary evaluation metrics
(BLEU and ROUGE) and accuracy and F-score measures
coupled with manual verification.

BLEU and ROUGE results for both forward and
backward-looking goals are shown in the first two rows of
Table 7(a) and Table 7(b). These metrics suggest that stages-
phases do not help in goal extraction. Though BLEU and
ROUGE have been widely used for fast and easy summary
evaluation, they are only sensitive to exact word match. That
means, it doesn’t matter if a given word, say ‘two’, is clas-
sified as number of days or measurable distance, BLEU and
ROUGE will output a high score as long as ‘two’ is a part
of the reference summary. Hence, we will look at the per
attribute results and show that the results contrast with the
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(a) forward-looking goal
Evaluation SMART

tags
SMART +
stages-phases

BLEU (unigrams) 0.47 0.48
ROUGE (unigrams) 0.62 0.62

slot-value exists (Avg. Fscore) 0.77 0.88
Type match (Avg. Accuracy) 0.97 0.98

Partial match (Avg. Accuracy) 0.79 0.85
Complete match (Avg. Accuracy) 0.75 0.81

(b) backward-looking goal
Evaluation SMART

tags
SMART +
stages-phases

BLEU (unigrams) 0.48 0.48
ROUGE (unigrams) 0.63 0.65

slot-value exists (Avg. Fscore) 0.77 0.80
Type match (Avg. Accuracy) 0.95 0.96

Partial match (Avg. Accuracy) 0.77 0.81
Complete match (Avg. Accuracy) 0.73 0.77

Table 7: Goal extraction evaluation: BLEU and ROUGE
scores average over summaries; F-scores and accuracies av-
erage over slots.

BLEU and ROUGE scores.
We evaluated the extracted slot-values against the gold-

standard slot-values at multiple levels:

1. Attribute presence test: checks if the algorithm correctly
predicts the existence or non-existence of a slot-value

2. Attribute type match: checks if the extracted value be-
longs to the correct attribute category. E.g., ‘20 minutes’
under specific time will be considered a type mismatch as
it should be measurable amount duration.

3. Partial attribute match: checks if the extracted value at
least covers part of the gold standard attribute. E.g.,
‘Wednesday’ extracted instead of ‘Monday, Wednesday’
will be counted as a partial match, but ‘blocks’ instead of
‘5 blocks’ is not a partial match but a type match.

4. Complete attribute match: checks if the extracted value
exactly matches the gold standard attribute except for
punctuation, spaces and the measuring unit (only if im-
plicit through the attribute type). E.g., ‘2 days’ and ‘2’
under measurable days number will be considered a com-
plete match, however ‘2 blocks’ and ‘2’ under measurable
amount distance will not be considered a complete match.

5. Complete goal match: checks if all the 10 slot values
match completely for a given goal.

The results for the first four are shown in Table 7(a) for
forward-looking goals and Table 7(b) for backward-looking
goals. SMART plus stages-phases performed better than
only SMART tags at all four levels. The performance over
the entire goal is shown in Figures 2 and 3 for backward-
and forward-looking goals respectively. The graphs show the
performance over the different number of attributes, where
10 means that all the 10 attributes were correct for a given
goal. Percentage of goals with less than 3 attributes correct
is 0%. Since the number of attributes are in descending order
in the graph, the higher the percentage on the left, the better.

Figure 2: Percentage of goals with given number of at-
tributes correct for backward-looking goals

Figure 3: Percentage of goals with given number of at-
tributes correct for forward-looking goals

For now only consider the first three rows in Figure 2; we
will discuss m SMART later. For both backward and for-
ward looking-goals, the best performance is achieved using
‘SMART tags + phases’ and ‘SMART tags + stages’ respec-
tively. For backward-looking goals, we obtained 11% of the
goals with all the 10 attributes correct and 57% of goals with
at least 8 attributes correct (adding percentages for 10, 9 and
8 attributes correct). Similarly, for forward-looking goals,
we obtained 15% of goals with all the 10 attributes correct
and 68% of goals with at least 8 attributes correct.

When we analyzed the per attribute performance, measur-
able quantity amount and measurable days name performed
the worst. One of the reasons for the poor performance
of measurable quantity amount was the recognition of the
amounts related to the current progress. E.g., if the goal was
7000 steps, and the coach sends the message ‘5000 steps
done, 2000 steps more’, we don’t want the model to rec-
ognize the intermediate progress. Since we had also anno-
tated SMART tags as accomplished, remaining, previous or
other, we decided to leverage that and treat them as negative
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examples for the SMART prediction task (the first step in
goal extraction). That is, the words with those features were
treated as having ‘none’ tag. This will reduce the recognition
of such words and hence should improve the performance.
We call it modified SMART prediction model (m SMART).

We saw an improvement of almost 18% when looking at
the complete attribute match alone for measurable quantity
amount. This is also reflected in the final goal extraction per-
formance shown in Figure 2 indicated with ‘m SMART +
phases’. The maximum percentage of 13% goals with all 10
attributes correct was obtained using the modified SMART
model, which is a 2% increase from the previous SMART
model. When we look further at the percentage of goals with
at least 8 attributes correct, we see that 65% of goals had at
least 8 attributes correct when using the modified SMART
prediction model as compared to 57% before. However, we
achieved BLEU and ROUGE scores of 0.44 and 0.56 for the
modified pipeline, which is worse than the original pipeline
performance of 0.48 and 0.65, and confirms that these two
metrics are not the best fit for our type of summaries.

Conclusions and Future Work

In this paper, we discussed our work towards building a vir-
tual assistant health coach that can help patients to live a
more active lifestyle. We focused on the NLU component
and modeled the goal summarization pipeline using slot val-
ues and higher-level conversation flow. The current pipeline
does not take any utterance level intent into account while
generating the goal summary. Therefore, our next step is to
improve the goal summarization results by incorporating di-
alogue acts at the utterance level. We will also run our first
human evaluation of the goal summarization pipeline in our
next round of data collection. We plan to provide the current
week’s goal summary to health coaches in the application in-
terface, where they will be able to provide binary feedback
of correct/incorrect for individual summaries.
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