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Abstract

Deep learning models have demonstrated high-quality per-
formance in areas such as image classification and speech
processing. However, creating a deep learning model us-
ing electronic health record (EHR) data, requires addressing
particular privacy challenges that are unique to researchers
in this domain. This matter focuses attention on generat-
ing realistic synthetic data while ensuring privacy. In this
paper, we propose a novel framework called correlation-
capturing Generative Adversarial Network (CorGAN), to
generate synthetic healthcare records. In CorGAN we uti-
lize Convolutional Neural Networks to capture the corre-
lations between adjacent medical features in the data rep-
resentation space by combining Convolutional Generative
Adversarial Networks and Convolutional Autoencoders. To
demonstrate the model fidelity, we show that CorGAN gener-
ates synthetic data with performance similar to that of real
data in various Machine Learning settings such as classi-
fication and prediction. We also give a privacy assessment
and report on statistical analysis regarding realistic charac-
teristics of the synthetic data. The software of this work
is open-source and is available at: https://github.com/astorfi/
cor-ganhttps://github.com/astorfi/cor-gan.

Introduction

Adoption of Electronic Health Records (EHRs) by the
healthcare community, along with the massive quantity of
available data, has led to calls for employing promising
data-driven methods inspired by Artificial Intelligence (AI).
Data-powered tools alter how clinicians and healthcare bu-
reaus approach and satisfy patients’ needs for care. How-
ever, extending EHR adoption to also support data access for
research and development purposes, is far from being prac-
tical in the healthcare domain, due to privacy restrictions.

De-identification of EHR data is often employed for mit-
igation of privacy risks. However, questions and doubts
have increased about the safety of prolonged use of de-
identification methods regarding their vulnerability to infor-
mation leakage (El Emam et al. 2011). Accordingly, more
recent attention has focused on Synthetic Data Generation
(SDG) which can satisfy reliably the needs for privacy.
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We aim to create realistic synthetic EHR data by Genera-
tive Adversarial Networks (GANs), which have been suc-
cessfully employed in applications such as image gener-
ation (Reed et al. 2016; Brock, Donahue, and Simonyan
2018; Karras, Laine, and Aila 2018), video generation (Von-
drick, Pirsiavash, and Torralba 2016; Tulyakov et al. 2018),
and image translation (Isola et al. 2017; Kim et al. 2017a;
Dong et al. 2017). Contributions of this work include:

• We propose an efficient architecture to generate synthetic
healthcare records using Convolutional GANs and Convo-
lutional Autoencoders (CAs) which we call “CorGAN”.
We demonstrate that CorGAN can effectively generate
both discrete and continuous synthetic records.

• We demonstrate the effectiveness of utilizing Convolu-
tional Neural Networks (CNNs) as opposed to Multilayer
Perceptrons to capture inter-correlation between features.

• We show that CorGAN can generate realistic synthetic
data that performs similarly to real data on classification
tasks, according to our analysis and assessments.

• We report on a privacy assessment of the model and
demonstrate that CorGAN provides an acceptable level of
privacy, by varying the amount of synthetically generated
data and amount of data known to an adversary.

Related Works

Some distinguished efforts were conducted in a variety of
domains about synthetic data generation (Walonoski et al.
2017; Buczak, Babin, and Moniz 2010; McLachlan, Dube,
and Gallagher 2016; Park, Ghosh, and Shankar 2013). But
some of these works are overly disease-specific, unrealistic,
or have failed to provide any substantial measurements re-
garding privacy.

Highly relevant is “medGAN” (Choi et al. 2017), using
GANs for synthetic discrete EHR data. But in contrast to
medGAN, we consider the temporal nature of the data and
local correlation between features. Instead of regular multi-
layer perceptrons, we base our architecture on CNNs and
provide empirical results to demonstrate the superior perfor-
mance in capturing inter-correlations between data features.
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Method

Discrete EHR Data Description

Many discrete variables (e.g., diagnosis, procedure code) are
available in the dataset. Let’s assume there are |D| discrete
variables and the vector VC ∈ N0

|D| (where N0 indicates
natural numbers including zero) is in a vector space. The
jth dimension designates the number of incidents of the
jth variable in a subject’s medical records. We can repre-
sent a patient’s visit (encounter event) by a binary vector
VB ∈ {0, 1}|D|, where the jth dimension shows whether
the jth variable occurred in the patient record. We represent
the input space as a matrix in which columns indicate dis-
crete variables in the EHR record. Such representation ex-
tracts multiple patients’ records representing different points
in time.

Generative Adversarial Networks

A Generative Adversarial Network (GAN), introduced in
(Goodfellow et al. 2014), is a combination of two neural
networks, a discriminator and a generator. The whole net-
work is trained in an iterative process. First the generator
network produces a fake sample. Then the discriminator net-
work tries to determine whether this sample (ex.: an input
image) is real or fake, i.e., whether it came from the real
training data. The goal of the generator is to fool the dis-
criminator so it believes the artificial (i.e., generated) sam-
ples synthesized by the generator are real.

The generator goal is to learn the distribution pg over
data x. In that regard, pz(z) represents the input noise vari-
ables distribution which generates random data shown by
G(z; θg). The function G is differentiable with parameters
θg . The discriminator, D(x; θd), decides if its input data is
real or fake. D is trained to distinguish the training samples
from G by minimizing log(1−D(G(z))). D and G perform
the following min-max game with value function V(G, D):

Min
G

Max
D

V (G,D) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[1− logD(G(z))]
(1)

Proposed Architecture

We use the architecture in Fig. 1. The discrete input X rep-
resents the source EHR data; z is the random distribution for
the generator G; G is the employed neural network architec-
ture; Dec(G(z)) refers to the decoding function which is
used to transform the generator G continuous output to their
equivalent discrete values. The discriminator D attempts to
distinguish real input X from the discrete synthetic output
Dec(G(z)). For the generator and the discriminator, a 1-
Dimensional Convolutional GAN architecture is utilized.

Consider the decoding function Dec(.). GANs are
known for generating continuous values and encountering
trouble when dealing with discrete variables. Recently, re-
searchers proposed solutions to the problem of generating
discrete variables (Hjelm et al. 2017; Wang et al. 2017;
Kim et al. 2017b; Yu et al. 2017). Some approaches use
the indirect method such that they create a separate model

to transform continuous to discrete data (Choi et al. 2017).
Regarding EHR data generation, we are dealing with dis-
crete data. Hence, our generative model should create dis-
crete data directly, or there should be a function to transform
the continuous data samples into discrete equivalents. We
chose the second approach, and employed autoencoders.

Considering Fig. 1, the autoencoder digests (right part of
the figure) discrete values and reconstructs the same dis-
crete values as well. The autoencoder structure consists of
two main elements: encoder and decoder. While encoding,
the autoencoder transforms the discrete space into a corre-
sponding (we call it equivalent as well) continuous space
(the output of the hidden layer) and the decoder reverses the
process. The Binary Cross-Entropy (BCE) loss function is
used for training the autoencoder:

BCEloss = − 1

N

N∑

i=1

xilog(yi) + (1− xi)log(1− yi)

(2)
yi = Dec(Enc(xi)) (3)

We used denoising autoencoders (Vincent et al. 2010) to
create a more robust pretrained model as we do not expect
our model to always generate perfect discrete samples. Af-
ter training the autoencoder, we need to use its decoder to
convert continuous values to their associated discrete val-
ues. The cost function to train our proposed architecture is
similar to Eq. 1 with the exception of operating the decoder
on top of the generator.

Min
G

Max
D

V (G,D) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[1− logD(Dec(G(z)))]
(4)

As we are dealing with 1D data, we chose the 1-
Dimensional Convolutional Autoencoders (1D-CAEs) as a
particular form of the regular CAEs. This approach enables
us to capture the neighboring feature correlations. We call
our proposed architecture CorGAN. It is worth noting that
for our experiments with discrete variables, we round the
values of Dec(G(z)) to their nearest integers (the outcome
is zero or one) to guarantee that we train and evaluate the
discriminator on discrete values.

Training Augmentation

One of the primary crash forms for GAN is for the generator
to collapse to a set of parameters and always generate the
same sample. This phenomenon is called Mode Collapse.
Some approaches have been proposed to handle the mode
collapse issue such as minibatch discrimination (Salimans
et al. 2016) and unrolled GANs (Metz et al. 2016). We uti-
lized minibatch discrimination due to its better stability. We
also utilized batch normalization (Ioffe and Szegedy 2015)
to improve the generator’s learning abilities. Furthermore,
we used LeakyRelu activation unit (Maas, Hannun, and Ng
2013) as it consistently demonstrated equal or better results
over other common activation functions (Xu et al. 2015).
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Figure 1: The architecture for generating synthetic data from
real samples. The right side of the figures, shows the pre-
trained convolutional autoencoder which its decoder part is
being used to transform the generated continuous samples to
their discrete equivalents.

Privacy

We utilize the Membership Inference (MI) attack as an ap-
proach to measure the privacy. Membership Inference (MI),
proposed in (Shokri et al. 2017), refers to determining
whether a given record generated by a known machine learn-
ing model was used as part of the training data. If the ad-
versary has complete access to the records of a particular
patient and can recognize their employment in the model
training, that is an indication of information leakage, as it
can jeopardize the whole dataset privacy or at least the par-
ticular patient’s private information. Here, we will assume
the adversary has the synthetically generated data as well as
a portion of the compromised real data.

Experiments

We evaluated CorGAN with two datasets. First, we explain
the datasets and baseline models. Then, we provide the re-
sults regarding the evaluation of the synthetic data in terms
of the realistic characteristics. Finally, we report on a privacy
assessment of the model.

Datasets

We used two publicly available datasets in this study. The
first is the MIMIC-III dataset (Johnson et al. 2016) consist-
ing of the medical records of almost 46K patients. From
MIMIC-III, we extracted ICD-9 codes only. We represent a
patient record as a fixed-size vector with 1071 entries for
each patient record. This dataset is used for experiments
with binary discrete variables.

We conducted our experiments regarding continuous
variables with the UCI Epileptic Seizure Recognition
dataset (Andrzejak et al. 2001). This dataset characterizes

Table 1: Statistics of the UCI Epileptic Seizure Recognition
dataset.

Dataset UCI

# of patients 500
Each patient’s data points 4097
Each patient’s duration of recording 23.5 seconds
# data points chunks per patient 23
# of data points per chunk 178
Duration per chunk 1 second
Data type Continuous EEG

brain activities. The core task is classification, regarding if a
sample indicates a seizure activity. The number of features
and samples are 179 and 11500, respectively. Almost 20%
of the samples are categorized as seizure activity. So, we are
dealing with an unbalanced dataset in a binary classifica-
tion setting. The first 178 features are the values of the Elec-
troencephalogram (EEG) recordings at different time points,
and the last feature is the class. There are five values for
the class label (y = 1, ..., 5). Except for y = 1, the rest of
the classes indicate subjects who do not have an epileptic
seizure. Dataset statistics are given in Table 1.

Models

To show the effectiveness of our proposed architecture, we
compare our results with different baseline methods as be-
low:

• Stacked Deep Boltzmann Machines (DBMs): We
trained a stacked Deep Boltzmann Machine (DBM) (Hin-
ton and Salakhutdinov 2009). After which, we used Gibbs
sampling to generate synthetic binary samples. All hid-
den layers have 256 dimensions. We employed greedy
contrastive divergence to create the model. We ran Gibbs
sampling for 500 iterations per sample.

• Variational Autoencoder (VAE): We used
VAEs (Kingma and Welling 2013) as one of our
baseline models. For both the encoder and the decoder,
we used 1D convolutional neural networks, each having
two hidden layers. All hidden layers have the size of 128.
We trained VAE with Adam optimizer for 500 epochs
and for the batch size of 500.

• medGan: The medGan (Choi et al. 2017) architecture
consists of the following elements; (1) regular multilayer
perceptrons for autoencoder, discriminator, and genera-
tor. (2) shortcut connections to improve the power of gen-
erator. (3) minibatch-averaging (Choi et al. 2017) to cope
with the mode collapse.

Evaluation

In this section, we report our evaluation results regarding the
quality of the synthetic data and the privacy risks. Here, we
divide the dataset into a training Str ∈ {0, 1}R×|M| and a
test set Ste ∈ {0, 1}T×|M|, where |M| is the feature size
and is consistent for all sets. We use Str to train the models,
then generate synthetic samples Ssyn ∈ {0, 1}S×|M| using
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the trained model. Noted that we usually use the same num-
ber of samples for Ssyn and Str.

Evaluation of the Synthetic Data Quality

We use the following two metrics to evaluate our syntheti-
cally generated data.

• Dimension-wise probability: As a basic sanity check to
see if our proposed models learned the distribution of the
real data (for each dimension), we report the dimension-
wise probability. This measurement refers to the Bernoulli
success probability of each dimension (each dimension is
a unique ICD-9 code).

• Dimension-wise prediction: This approach measures
how robust the model catches the inter-dimensional con-
nections of the real data samples. Assume Str is used
to generate Ssyn. Then, one random fixed dimension (k)
from each Ssyn and Str are selected as Ssyn,k ∈
{0, 1}N×1 and Str,k ∈ {0, 1}N×1. We call it the test-
ing dimension. The rest of the dimensions (Ssyn,\k ∈
{0, 1}N×1 and Str,\k ∈ {0, 1}N×1) are used to train a
classifier, which aims to predict the value of the testing
dimension of the test set Ste,k ∈ {0, 1}N×1.

• Binary Classification: We use this metric for our exper-
iments with continuous data. To empirically verify the
quality of the synthetic data, we consider two different
settings. (A) Train and test the predictive models on the
real data. (B) train the predictive model on synthetic data
and test it on the real data. If the model evaluated in setting
(B), represents competitive results with the same model
performed in setting (A), we can conclude the synthetic
data has good predictive modeling similar to the real data.

For Dimension-wise probability and Dimension-wise pre-
diction experiments, we used MIMIC-III dataset and for
Binary Classification experiments we used UCI Epileptic
Seizure Recognition dataset. The results regarding the inves-
tigation of dimension-wise probability are depicted in Fig. 2.
As can be seen, the CorGAN is superior compared to other
methods. An interesting observation is that the VAE is never
generating any synthetic data for which the probability of
occurrence of a diagnosis code is higher than its counterpart
in the real data.

For dimension-wise prediction (Table 2), we use the
following classifiers the predictive model types: Logis-
tic Regression, Random Forests (Breiman 2001), Linear
SVM (Cortes and Vapnik 1995), and Decision Tree (Quin-
lan 1986). For our experiments, we conduct E=100 number
of runs. In each run, we pick a random testing dimension
from test set (Ssyn,k ∈ {0, 1}N×1) and will train each pre-
dictive model on Ssyn,\k and Str,\k. This results in having
two models as Modeltypesyn and Modeltypereal . The superscript
refers to the kind of model that was used to be trained on
both real and synthetic sets. We then report the performance
over all predictive models and for all experiments using the
F1-score variation. F1-score variation means the difference
between the F-1 score obtained from training the model on
synthetic and real datasets.

Table 2: Comparison of different baseline architectures. The
reported metric demonstrate the mean and standard devia-
tion of the F-1 score differences. A better model has a closer
score to zero.

Generative Model F1-Score
DBM (Hinton and Salakhutdinov 2009) 0.12 ± 0.052

VAE (Kingma and Welling 2013) 0.069 ± 0.043
medGAN (Choi et al. 2017) 0.043 ± 0.049

CorGAN [ours] 0.021 ± 0.045

Table 3: Comparison of different generative models for bi-
nary classification. The averaged AUROC and AUROC for
utilizing the predictive models on the real data are 0.95 and
0.46.

Generative Model AUROC AUPRC
DBM 0.81± 0.017 0.27± 0.013
VAE 0.84± 0.021 0.31± 0.022

medGAN 0.89± 0.023 0.35± 0.014
CorGAN [ours] 0.92 ± 0.012 0.41 ± 0.015

For the MIMIC dataset experiments, although the tem-
poral information is ignored, the medical health diagnosis
are sorted in terms of similarity in the feature vector of the
MIMIC data. Therefore, 1D CNNs capture the correlation
between features rather than the temporal information.

For binary classification experiments, we used the same
predictive models as for the dimension-wise predictions.
We reported the averaged AUROC (averaged area under the
ROC for all models) and AUPRC (averaged area under the
PR curve for all models) for the models’ evaluations. The
difference with our experiments here is that we are not deal-
ing with binary variables. Hence, for the medGAN and Cor-
GAN methods we eliminate the autoencoder as depicted in
Fig. 1. As can be observed in Table. 3, our proposed method
outperforms the other methods. As the UCI Epileptic Seizure
Recognition dataset features contain termporal information,
our method is able to capture temporal data information
more effectively due to the usage of 1D CNNs.

Privacy Assessment

In this section, the experiments are conducted on the
MIMIC-III dataset regarding the membership inference at-
tack. For privacy assessment, we randomly take P samples
from each Str and Ste and call them SP

tr and SP
tr . We assume

the attacker has the complete knowledge of both SP
tr and SP

te.
Clearly, SP

tr was used to train the generating model, but SP
te

wasn’t. So we have R = 2×P records. Then, we compared
each of these records with the synthetically generated data
samples Ssyn ∈ {0, 1}S×|M|.

We compared each of the samples in the set of SP
te + SP

tr
with each samples in the set of Ssyn and we calculate cosine
similarity score. Cosine similarity is used since it provides a
more meaningful correlation metric as opposed to distance
metrics (Mateo-Sanz, Sebé, and Domingo-Ferrer 2004) used
in previous research efforts (Choi et al. 2017). If the score
is higher than a threshold, then it flags the match, otherwise,
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Figure 2: he scatter plots of dimension-wise probability. Each point depicts one of 1071 unique diagnosis codes. The x-axis and
y-axis represent the Bernoulli success probability for real and synthetic datasets, respectively. The diagonal line shows the ideal
case.

Table 4: The precision and recall demonstrated as a func-
tion of the number of patients whose data is revealed to the
attacker. U = # of Known Records to the attacker.

U 100 1k 2k 3k 4k 5k
Precision 0.60 0.51 0.41 0.40 0.40 0.39

Recall 0.05 0.10 0.19 0.28 0.27 0.28

we call it a mismatch. For threshold, we randomly select 100
threshold values from a Gaussian distribution with a mean of
0.5 and a standard deviation of 0.01 (ignoring possible neg-
ative values), and we report the results which demonstrate
the best adversary attack.

For evaluation, we use precision and recall metrics. We
conduct two sets of experiments here: (1) investigating the
effect of the number of records known by the attacker (Ta-
ble. 4) and (2) examining the effect of synthetic data volume
on the privacy risk (Fig. 3).

As can be seen in Table. 4, by increasing the number of
the real patient records known to the adversary, the attack
will be even less accurate. It also demonstrates the fact that
higher precision is possible at lower recall rates when the
number of known records is not high. However, as is evi-
dent, a higher amount of revealed data increases the privacy
risk significantly.

Regarding the effect of number of generated synthetic
data on the privacy risk, as can be observed in Fig. 3, the
increasing number of synthetic records does not have a sig-
nificant effect on the recall, but it causes a dramatic decrease
in precision. Henceforth, by having a fixed amount of known
records, a higher number of synthetic patient’s records can
be very misleading for the adversary. This empirical obser-
vation indicates that the increasing the number of synthetic
records, with a fixed number or revealed patient’s records to
the attacker, does not necessarily raise privacy risk.

Conclusion

In this work, we proposed CorGAN, which utilizes the con-
volutional generative adversarial networks to learn the dis-
tribution of real patient records. Through precise evaluation
using real and synthetic datasets, CorGAN demonstrated de-
cent results for both discrete and continuous records. We em-
pirically proved the superiority of CNNs over MLPs to cap-
ture the correlated features. We believe our method can be

Figure 3: The recall/precision as a function of the number of
generated synthetic records. The number of records known
to the adversary is considered fixed and is equal to 100.

effectively extended and employed to longitudinal records
as well for which the goal is to capture the temporal charac-
teristics of the data.
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