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Abstract 
Survival analysis has currently become a hot topic be-
cause it has been proven to be useful for understanding 
the relationships between patients’ variables and co-
variates (e.g. clinical and genetic features) and the ef-
fectiveness of various treatment options. In this study, 
we study survival analysis of breast cancer patient with 
gene methylation data and clinical data. We propose a 
novel method for survival prediction using bidirectional 
LSTM network and ordinal Cox model. First, gene 
methylation data and clinical data are merged and fil-
tered. To reduce the gene expression features dimen-
sion, a weighted gene co-expression network analysis 
(WGCNA) algorithm is used to obtain cluster 
eigengenes. Then, the eigengenes serve as input fea-
tures for a machine learning network. We build a cox 
proportional hazards model for survival analysis and 
use LSTM method to predict patient survival risk. We 
use the leave-one-out method for cross validation and 
the concordance index (C-index) to evaluate the predic-
tion performance. Stringent cross-validation tests on the
benchmark dataset demonstrates the efficacy of the pro-
posed method, which achieves very competitive perfor-
mance with existing state-of-the-art methods. 

Introduction   
Breast cancer is one of the most omnipresent diseases in to-
day’s US Healthcare system (Group, 2017). Gene methyla-
tion influence on cancer has been introduced with great suc-
cess. Methylation of CpG sites is an epigenetic regulator of 
gene expression that usually results in gene silencing. Ex-
tensive perturbations of DNA methylation have been noted 
in cancer, causing changes in gene regulation that promote 
oncogenesis (Suzuki et al., 2012). Consequently, to explore 
the utility of methylation analysis for cancer diagnosis, we 
analyzed gene methylation expression of tumors from pa-
tients with breast cancer to identify potential cancer-specific 
methylation genes. One long-term goal of cancer research is 
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to be able to identify prognostic factors that affect patients’ 
survival time, which in turn allows clinicians to make early 
decisions on treatment. The clinical phenotype of breast 
cancer is quite diverse, ranging from slow-growing local-
ized tumors to aggressive metastatic disease. Therefore, 
prognostic markers play a crucial role in stratification of pa-
tients for personalized cancer management, which could 
avoid either overtreatment or undertreatment. For instance, 
patients classified into a high-risk group may benefit from 
closer follow-up, more aggressive therapies, and advanced 
care planning (Yu et al., 2016). 

Cox proportional hazard model (Lin et al., 1993) is among 
the most popular survival prediction models. Recently, 
based on the Cox model, several regularization methods 
have been proposed in the literature. The least absolute 
shrinkage and selection operator Cox model (LASSO-COX) 
(Shao et al., 2018) apply lasso feature selection method to 
select components that are related to cancer prognosis. Ran-
dom survival forest (RSF) (Ishwaran et al., 2008) computes 
a random forest using the log-rank test as the splitting crite-
rion. It computes the cumulative hazards of the leaf nodes 
and averages them over the ensemble. Cox regression with 
neural networks using a one hidden layer multilayer percep-
tron (MLP) (Xiang et al., 2000) was proposed to replace the 
linear predictor of the Cox model. It was showed that some 
novel networks were able to outperform classical Cox mod-
els (Amiri et al., 2008). DeepSurv (Katzman et al., 2016) is 
a Cox proportional hazards deep neural network and a sur-
vival method for modeling interactions between a patient’s 
features and treatment effectiveness in order to provide per-
sonalized treatment recommendations (Katzman et al., 
2018). DeepSurv is developed upon Cox proportional as-
sumption with a cutting-edge deep neural network model.  

Although much progress has been made using above ap-
proaches, the prediction performance of the existing meth-
ods is still far from satisfactory, and there still exits much 
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room for further improvement. In addition, the above meth-
ods assumed that the survival information of one patient is 
independent from another, and thus miss the strong ordinal 
relationships between the survival times of different patients. 
Motivated by all these consideration, we thus propose a sur-
vival analysis method with deep LSTM networks (Graves et 
al., 2005) using ordinal Cox model to predict a breast cancer 
patient’s survival risk from gene methylation data. We 
demonstrate the importance of gene methylation signatures 
and the efficacy of the proposed method. In data prepro-
cessing, we use weighted gene co-expression network anal-
ysis (WGCNA) algorithm (Langfelder and Horvath, 2008)
to cluster genes into co-expressed eigengenes. Below, we 
describe these steps systematically and evaluation results. 

Materials and Methods 

Benchmark Datasets  
Survival data are included in the main clinical file down-
loaded from The Cancer Genome Atlas (TCGA) (Tomczak 
et al., 2015), which provides an extensive collection of ge-
nomic and clinical outcome data for large cohorts of patients 
of more than 30 types of cancers. The main files contain pa-
tients’ clinical annotations and information. In our case, two 
clinical variables are used: Overall Survival Status (1 if the 
patient deceased, 0 if he/she is living at the time of the last 
follow-up) and Overall Survival (Months), which represents 
the number of months between diagnosis and date of death 
or last follow-up. In clinical data, patients with missing fol-
low-up were excluded. The gene data are the normalized 
breast invasive carcinoma (BRCA) methylation data. The 
methylation file used was downloaded from FireHose (Deng 
et al., 2017). Gene methylation data and clinical data were 
merged and filtered to keep matching. Consequently, the 
benchmark dataset including 779 patients with 20106 genes 
was obtained. The gene methylation and clinical character-
istics for the selected patients are summarized in Table 1.

Table 1. Methylation gene and clinical characteristics.

Characteristics Summary
Patient no. 779
Gene no. 20106

Survival status
Living 677

Deceased 102
Follow up (months) 0.03-282.69

Age (years)
Range 26-90
Median 58.08

Gene Co-expression Clustering: WGCNA 

As for the gene methylation expression data, we firstly use 
WGCNA algorithm to cluster genes into co-expressed mod-
ules, and then summarize each module as an eigengene (fea-
ture). This algorithm yields 12 co-expressed gene modules.

System Algorithm Flow Chart 
Figure 1 shows the algorithmic process of our proposed 
method. There are three stages, including the gene co-ex-
pression cluster stage, the bidirectional LSTM network 
stage and the COX model stage. In the gene co-expression 
clustering stage, gene methylation expression data could be 
reduced in terms of feature dimension. WGCNA  algorithm 
is used to cluster genes. So, twelve eigengenes are obtained 
and will serve as input features for the machine learning net-
work. Secondly, the bidirectional Long-Short-Term-
Memory (biLSTM) method is proposed to predict patient 
survival risk. Finally, a novel ranking loss function for the 
deep cox proportional hazard model is built for survival 
analysis to ensure that the ordinal relationship among the 
survival time of different patients can be preserved.

Figure 1. Schematic diagram of the proposed method

Cox Model and Loss Function 
In survival analysis, prediction of the time duration until a 
certain event occurs is the goal of survival analysis and the 
death of a cancer patient is the event of interest in our study. 
Cancer patients can be divided into two categories i.e., cen-
sored patients and non-censored patients. For censored pa-
tients, the death events were not observed for them during 
the follow-up period, and thus their genuine survival times 
are longer than the recorded data; while for non-censored 
patients their recorded survival times are the exact time from 
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initial diagnosis to death. We use a triplet ( , , )i i ix t �  to repre-
sent each observation in survival analysis, where ix  is the 
feature vector, it  is the observed time, and i�  is the censor-
ing indicator. Here, 1i� � or 0i� � indicates a non-censored 
or censored instance, respectively. The negative log partial 
likelihood function of the Cox model is defined as follows 
(Farzindar and Kashi, 2019; Sy and Taylor, 2000):
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where T
ix�  is called the survival function, in which �  can 

be estimated by minimizing its corresponding negative log 
partial likelihood function; n denotes the number of patients, 

( )iR t denote the set of all individuals at risk at time it , which 
represents the set of patients that are still under risk before 
time it .

Although we could use the above Cox model to directly 
make survival prediction, it does not take the ordinal sur-
vival information between different patients (e.g., the sur-
vival time for patient A is longer than that for patient B) into 
consideration. In the hazard ratio based model, if the sur-
vival time for patient i  is shorter than that for patient ( 1i � ), 
the hazard risk of patient i will be zero and the hazard risk 
of patient ( 1i � ) will be ( 1i ix x �� ). By utilizing the above 
ordinal relationship indicated by the Cox model, we design 
a ranking loss function to capture the ordinal survival infor-
mation among different patients as follows:
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Where iD  is individual with event times at it , and is part of 
( )iR t ; ( )iD�  is the risk set at ordinal time, and when 1i it t �� , 
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Experimental Results and Discussions 
In this part, we assess the performance of the proposed 
method and carry out experiments on the training set 
through leave-one-out cross validation. Specifically, we 
firstly use WGCNA algorithm to cluster genes and obtain 12 
eigengenes. Then the Cox proportional hazards model is 
built on the clustered eigengene features in the training set. 
After that, the median risk score predicted by the cox pro-
portional hazards model is used as a threshold to split pa-
tients into low-risk and high-risk groups. Finally, we test if 
these two groups have distinct survival outcomes using 
Kaplan-Meier estimator and rank test. The survival curves 
are drawn by applying different methods.

Comparison with Different Survival Prediction 
Methods over Cross-validation Test
We compare the prediction effects of our proposed method 
with four machine learning methods: RSF (Ishwaran et al., 
2008), LASSO (Shao et al., 2018), MLP (Amiri et al., 2008),
and DeepSurv (Katzman et al., 2016). The concordance in-
dex (C-index) (Mayr and Schmid, 2014) is used to evaluate 
the prediction performance. C-index quantifies the fraction 
of all pairs of patients whose predicted survival times are 
correctly ordered. For the sake of fairness, we carry out the 
same feature set in all cross validation tests. 

Table 2 Performance comparison among different survival pre-
diction methods by the measurements of Concordance Index (C-

index) 

Methods C-index

The proposed method 0.6330

DeepSurv 0.6122

MLP 0.6090

LASSO 0.6032

RSF 0.5449

Table 2 summarizes the performance comparisons be-
tween the proposed method, DeepSurv, MLP, Lasso, and 
RSF by the measurements of C-index. From Table 2, we 
find that the cross validation of the proposed method on the 
standard training set is better than the other four methods. 
Compared with the methods: RSF, LASSO, MLP, and 
DeepSurv, the C-index of the proposed method is improved 
by 8.81%, 2.98%, 2.40% and 2.08%. As can be seen from 
Table 2, firstly, the prognosis power of the regularized Cox 
models (i.e., RSF and LASSO) is inferior to the other deep 
model based methods (i.e., MLP and DeepSurv). This is be-
cause the deep model can better represent gene features than 
the hand-crafted low-level features. Secondly, the proposed 
biLSTM method can achieve higher C-index values than the 
comparing methods, which demonstrates the advantage of 
LSTM that can represent the heterogeneous patterns of se-
quential methylation data. 

Survival Stratification Prediction 
Another important task in survival analysis is to stratify can-
cer patients into subgroups with different predicted out-
comes, by which we can develop personalized treatment 
plans during cancer disease progression. The median risk 
score method is used in the training set as a threshold to 
stratify patients in the test set into low-risk and high-risk 
groups, and then test if these two groups have significantly 
different survival time using the log-rank test. Better prog-
nosis prediction performance comes with smaller p-value 
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from the log-rank test. We show the stratification perfor-
mance of different prediction methods in Figure 2. 

As shown in Figure 2, the proposed biLSTM prediction 
method achieves significantly superior stratification perfor-
mance (lower p-value) when compared with the other meth-
ods (RSF, LASSO, MLP, and DeepSurv) on gene methyla-
tion datasets. This is because our proposed model considers 
both the ordinal characteristics and the heterogeneous pat-
terns in survival analysis. Thus its prognostic power is ef-
fectively improved. 

Figure 2. The survival curves by applying different methods. 

Conclusion 
In this study, we have developed a survival prediction 
framework for breast cancer patients, in which we take pa-
tients’ ordinal survival information into consideration. 
Leave-one-out cross-validation experiments on the gene 
methylation expression data and clinical data were carried 
out. Experimental results demonstrate the superiority of the 
proposed method over the existing RSF, Lasso, MLP, and 
DeepSurv predictors. The good performances of the pro-
posed method come from the use of the combined bidirec-
tional LSTM predictor and ordinal information. 
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