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Abstract

We develop an effective computer model to simulate sensing
environments that consist of natural trees. The simulated en-
vironments are random and contain full geometry of the tree
foliage. While this simulated model can be used as a gen-
eral platform for studying the sensing mechanism of differ-
ent flying species, our ultimate goal is to build bat-inspired
Quad-rotor UAVs—UAVs that can recreate bat’s flying be-
havior (e.g., obstacle avoidance, path planning) in dense veg-
etation. To this end, we also introduce an foliage echo simu-
lator that can produce simulated echoes by mimicking bat’s
biosonar. In our current model, a few realistic model choices
or assumptions are made. First, in order to create natural look-
ing trees, the branching structures of trees are modeled by
L-systems, whereas the detailed geometry of branches, sub-
branches and leaves is created by randomizing a reference
tree in a CAD object file. Additionally, the foliage echo simu-
lator is simplified so that no shading effect is considered. We
demonstrate our developed model by simulating real-world
scenarios with multiple trees and compute the corresponding
impulse responses along a Quad-rotor trajectory.

1 Introduction
Many environments, such as dense vegetation and narrow
caves, are not easily accessible by human beings. Unmanned
Aerial Vehicles (UAVs) provide cost-effective alternatives to
human beings for a large variety of tasks in such environ-
ments, including search, rescue, surveillance, and land in-
spection. In recent years, impressive progress has been made
in UAVs, leading to revolutions in the aerodynamic struc-
ture, mechanical transmission, actuator, computer control,
etc. Despite these advances, existing technology in UAVs is
still limited as most systems can only operate in clear, open
space (Dey et al. 2011) or in fields with sparsely distributed
tree obstacles (Barry, Florence, and Tedrake ), and most ex-
isting approaches for localization and planning fail in the
presence of large number of obstacles. Moreover, sensors
used in these systems are often bulky which hinders effi-
cient navigation (Abdallah 2019). It is highly desirable to
build safe and efficient UAV systems that do not fail under
different real-world conditions.
Among many directions in technological innovation, bio-
inspired technology provides a promising solution that may
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break the performance boundary in UAVs. Mammals, in-
sects and other organisms often exhibit advanced capabil-
ities and features that would be desirable for UAVs. They
can rapidly pick out salient features buried in large amounts
of data, and adapt themselves to the dynamics of their en-
vironments. Adopting prototypes that emulate the charac-
teristics and functions found in living creatures may en-
able robots to maneuver more efficiently without the aid of
approaches such as simultaneous mapping and localization
(SLAM), GPS or inertial units. In recent years, bio-inspired
approaches have already given rise to robots that operate
in water (Yao, Song, and Jiang 2011), air (Duan and Qiao
2014) and on land (Zhou and Bi 2012) and, in some cases,
transiting in various media. For UAVs in particular, “Mi-
crobot” has been created in 2002 by The California Insti-
tute of Technology (Bogue 2015), which achieves indepen-
dent fly by imitating the morphological properties of ver-
satile bat wings. In 2011, AeroVironment successfully de-
veloped the “Hummingbird” by mimicking hummingbirds
(Coleman et al. 2015). The Hummingbird is trained and
equipped to continue flying itself with its own supply of en-
ergy. The flapping wings can effectively control its attitude
angles. Besides these examples, there are several other con-
ventional designs developed, including Robird (Folkertsma
et al. 2017), DelFly (De Croon et al. 2016), and Bat Bot
(Ramezani et al. 2015).
In this research, we consider using the echolocation system
of bats as a biological model for the study of highly parsimo-
nious biosonar sensors for UAVs. Millions of years’ biologi-
cal development provides bats numerous incredible skills to
navigate freely in complex, unstructured environments. Re-
lying on miniature sonar systems with a few transducers—a
nose (or mouth) and two ears, bats achieve much better navi-
gation performance than engineered systems. Specifically, a
echolocating bat emits brief ultrasonic pulses through mouth
or nostrils, and use the returning echoes to navigate (Griffin
1958). Based on bats’ biosonar, we aim to develop a bat-
inspired sonar sensing and navigation paradigm for quad-
rotor UAVs. To achieve this, we adopt a data-driven ap-
proach that integrates large-scale simulations with statistical
learning to gain insights and replicate bats’ abilities.
Results presented in this paper are based on our initial efforts
in recreating the sensory world of bats via computer simu-
lation. We develop an effective computer model to simulate
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Figure 1: A bat navigating around a tree. We mimic the
highly developed bio-sonar system in bats by simulating
sonar and leaf beampatterns and validate it through different
experiments. A Quad-rotor using this sonar is visualized.

sensing environments that consist of natural looking trees.
The simulated environments are random and contain full ge-
ometry of the tree foliage. While this model can be used as
a general platform for studying the sensing mechanism of
different flying species, our ultimate goal is to build bat-
inspired Quad-rotor UAVs—UAVs that can recreate bat’s
flying behavior (e.g., obstacle avoidance, path planning) in
dense vegetation. To this end, we also introduce an foliage
echo simulator that can produce simulated echoes by mim-
icking bat’s biosonar. In Figure 1, we demonstrate how a
bat is mimicked by a Quad-rotor while navigating across a
tree. In our current model, a few realistic model choices or
assumptions are made. First, in order to create natural look-
ing trees, the branching structures of trees are modeled by
L-systems, whereas the detailed geometry of branches, sub-
branches and leaves is created by randomizing a reference
tree in a CAD object file. Additionally, the foliage echo sim-
ulator is simplified so that no shading effect is considered.
We demonstrate our developed model by simulating real-
world scenarios with multiple trees and compute the corre-
sponding impulse responses along a Quad-rotor trajectory.
The rest of this paper is organized as follows. In Section 2,
we describe the method of simulating a sensing environment
with multiple natural looking trees and the theory behind the
foliage echo simulator. We elaborate experimental results
and analyses in Section 3. Finally, in Section 4, a general
conclusion and the direction towards future work are given.

2 Material and Methods

We develop a computational framework that consists of two
simulators, one for the simulation of sensing environment
which produces random trees with necessary geometry (e.g.,
leave locations, size and orientations etc.), another for the
simulation of foliage echoes which produces sonar impulses
by mimicking the biosonar system of bats. In this Section,

we elucidate the main methodology used in these simulators.

We simulate the topology of each individual tree by com-
bining Lindenmayer systems (L-systems) with modified
CAD implemented object files. An L-system is a graphi-
cal model commonly used to describe the growth pattern
of plants (Prusinkiewicz and Lindenmayer 1996). It defines
the branching pattern of a plant through recursively apply-
ing certain production rules on a string of symbols. Each
symbol in the string defines a structural component (e.g.,
branch, terminal). Each recursive iteration creates an addi-
tional level of growth of the string. The final string repre-
sents the branching structure of the grown tree. While L-
system is commonly used to produce branching structures
(Shlyakhter et al. 2001), we found that it is not sufficient for
generating natural looking trees because of over-simplified
assumptions. For example, tree models based on L-systems
often model branches as straight lines while ignoring the nat-
ural curvatures of the branches. Furthermore, most of the L-
system models often rely on a few parameters to control the
lengths, thickness and angles of branches. Although prob-
ability distributions can be introduced to randomize these
parameters, they are often not enough to characterize all
features of a particular tree species. For these reasons, we
choose to adopt L-system to generate the first level branch-
ing locations at the trunk. To generate the branches and sub-
branches, we modify reference trees from CAD developed
object files by randomizing the branch curvatures, lengths,
and sub-branch locations. This produces random trees that
look more realistic. In Figure 2, we demonstrate the plot of
a tree simulated by L-system with the first level branching
structure only.
Information about the branches, sub-branches and leaves of
the simulated trees is stored as an organizational structure
of building systems. This is associated with 3D CAD draw-
ing that includes faces and vertices modelled as meshes.
This provides a complete 3D tree with planarity for each
branch. The planarity makes it easy to visualize the tree with
short computing time based on available data (i.e: Polygon,
vertices, textures etc), thereby offering a convenient way
to effectively imagine scenarios with other trees in forests.
The L-system does not really follow drawing standards (i.e:
with the geometric information). Hence, in order to make
branches and sub-branches, we should follow certain rules
using 3D CAD tools that abides by the tree geometry (see
Figure 3).
Based on the simulator of a random tree, we are able to
generate a community that consists of random number of
trees. We determine the number of trees and the locations
of these trees in a 2-D region by sampling from Inhomo-
geneous Poisson process (IPP). Let D ⊂ R

2 denote the
2-D region on which the community of trees will be built.
The random locations (i.e., (x, y) coordinates) of the trees
are denoted by S = {si}1≤i≤n. We assume that S follows
an IPP with intensity function λ(s) : D → R

+, where
λ(s) is a parameter to be specified by user which describes
how dense the trees are at every location. Small values of
λ(s) indicate sparse regions whereas high values indicate
dense regions. The number of trees, n, follows a Poisson
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distribution
∫
D
λ(s)ds. To simulate S given n, we adopt a

thinning approach (Lewis and Shedler 1979).

For the simulation of foliage echoes, we follow the ap-
proach of (Ming et al. 2017). Here, we briefly summarize
the method. In the current model, the leaves are simplified
as circular disks. The simulated foliage echoes are stored
as time-domain (discrete) signals. Let Y = {y1, . . . , yn}
denote one time-domain signal to be simulated. Let Y ∗ =
{y∗1 , . . . , y∗n′ } denote the Fourier transform of Y in the fre-
quency domain. To obtain Y , we first compute Y ∗ and ap-
ply inverse fast Fourier transform. It is assumed that y∗k is
nonzero in the frequency ranges between 60 to 80 kHz,
which corresponds to the strongest harmonic in the biosonar
impulses of the Rhinolophus ferrumequinum bat (Andrews
and Andrews 2003). According to acoustic laws of sound
reflection (Bowman, Senior, and Uslenghi 1987a), each
Fourier component y∗k is the superposition of all the reflect-
ing echoes from the reflecting facets within the main lobe of
the sonar. It takes the form

y∗k =
m∑

i=1

Aki cos(φki) + j
m∑

i=1

Aki sin(φki), (1)

where m denotes the number of reflecting facets within the
main lobe of the sonar, Aki is the amplitude at frequency
fk (which is the frequency corresponding to y∗k) for the i-th
facet, φki is a phase delay parameter at fk for the i-th facet.
The term Aki can be computed by

Aki = S(azi, eli, fk, ri)Li(βi, ai, fk)
λk

2πr2i
, (2)

where S(azi, eli, fk, ri) represents the sonar beampattern
with azi and eli being the azimuth and elevation angles of
the line that connects the sonar with the i-th reflecting facet,
ri is the distance between the sonar and the i-th reflecting
facet, Li(βi, ai, fk) is the beampattern of the reflecting facet
with βi and ai being the incident angle and of the i-th reflect-
ing facet respectively. The sonar beampattern has the general
form

S(·) = A1 exp{−(a(x− x0)
2+

2b(x− x0)(y − y0) + c(y − y0)
2t)} (3)

where A1 is the amplitude, a, b, c are the parameters of
Gaussian function. The value of a, b, c are determined by
empirical data. The leaf beampattern can be approximated
by cosine function of the form

Li(·) = A (c (fk, ai) · cos (Bc (fk, ai) · βi)) (4)
where c = 2πaifk/v, with v being the speed of sound and
A, B are functions of c. A detailed description of (3) and (4)
is beyond the scope of this paper and we refer the interested
readers to (Bowman, Senior, and Uslenghi 1987b; Adelman,
Gumerov, and Duraiswami 2014).
The simulation of sensing environments and foliage echoes
provide us rich amount of sensing data under various sens-
ing tasks. Within the simulated setup, we can design a Quad-
rotor that mimics the bat behaviors for tasks such as insects

Figure 2: L-system for branch generation on the trunk.

prey. The dynamics of Quad-rotor UAV can be taken from,
e.g., (Bouabdallah 2007). We employ the control, that has
been recently developed to stabilize UAV while flying (Tan-
veer, Recchiuto, and Sgorbissa 2019).

3 Results and Discussion

We performed a pilot study by designing a simple sens-
ing scene that involves multiple trees. These trees are con-
structed by combing an L-system with CAD developed ob-
ject files as described in the previous section. When visualiz-
ing the trees, leaves were approximated using the mid points
of the triangular meshes used to model leaves in CAD.
We conduct several simulations in the MATLAB environ-
ment to demonstrate the performance of model. The perfor-
mance are evaluated on an Intel R© CoreTM i7-3632QM un-
der Ubuntu 16.04 LTS. The simulation with multiple trees
has been done on a ten-core server computer. Tree locations
in the environment are determined by sampling from an IPP
model. The trees are different from each other in terms of of
branches angles, sizes and leaves distribution. Moreover, the
initial branching pattern follows that of an L-system. In each
simulation, we construct a tree (or trees) and analyze the im-
pulse responses from simulated sonar echoes. The impulse
responses are computed at different sonar locations in the
environment to mimic a flying Quad-rotor. For example, we
have computed impulses at regular intervals along a circu-
lar path around a tree and impulses for a trajectory directly
towards the tree. The beam width of the sonar main lobe is
chosen to be 10, 20, and 50 degrees.
Figure 4 presents a tree when the Quad-rotor navigates
through the tree and observes no leaf in the sensor main lobe,
hence no output is generated. Figure 5 demonstrates the situ-
ation when the sonar encounters leaves and branches, which
results in impulse as shown in Figure 6. Figure 7 presents
two trees when the Quad-rotor navigates through the tree
in a circular path. It encounters leaves and branches at four
instances. The impulse responses of the four sample points
are shown in Figure 8. In addition, Figure 10 shows two and
three trees with multiple sonar sample points.
To analyze the computational complexity, we compute the
total computation time while the Quad-rotor completes an
entire trajectory. Under one setup, we increase the number of
locations along the trajectory where the impulse responses
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Figure 3: L-system and object file fusion for generating tree
branches and sub branches

Figure 4: Quad-rotor navigating with no leaves encountering
in main lobe of sensor

are computed. Under another setup, we increase the number
of trees (T) in the environment. The computation time for
different scenarios are shown in Table 1. We observe that,
increasing the number of computation points has a direct ef-
fect on the computation time, which is quite intuitive. It is
interesting to note that for a circular trajectory around one
tree (T = 1) with radius of 6.2, it takes only around one sec-
ond on average to compute 15 impulse responses at regular
intervals of 24 degrees. For more than one tree, we set the
centre of the circular trajectory to be the mean position of
the tree locations. We observe that, increasing the number of
trees varies the leaf densities and hence has a direct effect on
the computation time. For T = 5, it takes only about 3 sec-
onds on average to compute impulses at 15 points along the
trajectory. Overall, our model performs fairly well in real-
time.

Figure 5: Quad-rotor navigating with leaves encountering in
main lobe of sensor

Figure 6: Impulse response of main lobe

4 Conclusion

In this research we explore how to recreate bat behaviors on
Quad-rotor UAVs in dynamic environments, thereby trans-
forming nature into bio-technology. In particular, we pro-
pose a computational approach to simulate the sensing en-
vironments and to simulate foliage echoes during different
sensing scenarios.
In this preliminary study, we mainly focused on model
development and experimental validation in a simu-
lated/known environmental setting. The impulse responses
can be further analyzed using state-of-the-art artificial in-
telligence and machine learning methods to predict differ-
ent parameters like leaf density, orientation, density. This
is a promising direction since it enables navigating in un-
known environments. Currently, the trajectories followed by
the sonar are predefined and we only analyze the impulse
generated at different time instances along the trajectory. Im-
mediate next step is to extend it to an active navigation sce-
nario in which an optimal path can be calculated. Another in-
teresting future direction is to extend the framework towards
task and motion planning in large knowledge-intensive do-
mains, as recently done in (Lo, Zhang, and Stone 2018;
Thomas, Mastrogiovanni, and Baglietto 2019). We also plan
to model the shading effect between leaves, for example by
using an adjusted attenuation function. In order to deal with
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Figure 7: Quad-rotor navigating across 2 trees with leaves
encountering in main lobe of sensor

Figure 8: Impulse response of main lobe at 4 different loca-
tions along a circular trajectory.

real world uncertainties, we also plan to integrate our model
with Inverse perspective mapping (IPM) approach. This can
be done by mounting a camera on the UAV in order to obtain
a bird’s eye view (Tanveer, Sgorbissa, and Thomas 2020).
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