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Abstract

Students in Integral Calculus courses solve a canoni-
cal class of problems based on regions. We present a
technique for identifying and dissecting such regions
into integrable components. We show that our tech-
niques result in a minimal set of constituent regions and
demonstrate the utility of our techniques experimentally
by solving “area between curves” problems, classifying
each problem with a relative difficulty rank, and com-
paring our ranking to the ranking implied by textbooks.

1 Introduction
In a traditional Introduction to Integral Calculus course, stu-
dents solve “area between curves” (problems when context
is clear). Figure 1 depicts such an area problem consisting
of functions adapted from (Stewart 2007). Our solving and
analysis consists of (1) identifying the regions defined by
the problem, (2) solving the area problem (i.e. setting up
a definite integral expression that computes the area of the
defined region(s)) with respect to (w.r.t.) a vertical axis of
integration, (3) dissect each region into sub-regions for solv-
ing w.r.t. a horizontal axis of integration, and (4) computing
difficulty-based features.

Our first step identifies the exact set of regions defined
by the functions and domain of the problem. We do so by
computing the facets of a planar graph corresponding to the
functions in the area problem. In Figure 1, the two functions
f and h define a single region r. For each region, we in-
tuitively label the boundaries: left, right, top, and bottom.
For example, region r in Figure 1 consists of a left bound-
ary point (−1, 0), right boundary point

(
1
2 ,

3
4

)
, top bound-

ary function h(x) = −x2 + 1, and bottom boundary func-
tion f(x) = x2 + x. Given this ‘rectangular’ view of re-
gion r in Figure 1, it is clear that the area can be computed
w.r.t. the x-axis with solution integral bounds x = −1 and
x = 1

2 . Since our region is defined by a single top and bot-
tom function, we may construct the solution integral w.r.t. x
as

∫ 1/2

−1

[(−x2 + 1
)− (

x2 + x
)]

dx = 9/8.
As a feature for describing problem difficulty, we solve

all such area problems w.r.t. both the x-axis and the y-axis.
With respect to the x-axis, both f and h in Figure 1 are not
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Figure 1: f(x) = x2 + x and h(x) = −x2 + 1 Resulting in
Region r = ∪5

i=1ri

one-to-one over the interval x ∈ [−1, 1
2

]
; hence, region r

must be dissected into sub-regions that are integrable w.r.t.
the y−axis. Consider solving w.r.t. y by sliding a horizontal
line over r from the maximum of h(x) down to minimum
of f(x). This action demonstrates that there is no single
top / bottom function when integrating w.r.t. y. Specifically,
the dashed line segment labeled dy (dy with strikethrough)
demonstrates that f(x) cannot be both a top and bottom
function in an integral solution in y ∈ [−1/4, 0]; similarly,
y ∈ [3/4, 1] prohibits h(x) as a top and bottom function. The
dotted segment dy in Figure 1 identifies distinct top and bot-
tom functions for y ∈ [0, 3/4]. Finding the area of region r
in Figure 1 w.r.t. the y-axis requires summing the areas of
the five constituent sub-regions r1, . . . , r5. We first compute
f−1 and h−1 and select + or − as necessary to treat f−1

and h−1 as functions. Our solution for the area of r is thus
given by

∫
r1 dy + . . .+

∫
r5 dy.

Our first contribution dissects a region into a minimal
number of subregions for solving w.r.t. y. Second, we posit
that there is a correlation between the perception of the dif-
ficulty of a problem and the number of dissected regions re-
quired to find the area of the region w.r.t. the y-axis.

2 Preliminaries
Integrable regions. Our definition of closed, integrable re-
gions is based on integrable functions forming a topologi-
cally equivalent rectangular structure. A region is a Jordan
curve (Jordan 1893) embedded in the Euclidean plane. Thus,
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Figure 2: A Piecewise De-
fined Region
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Figure 3: Planar
Graph for p =〈{x, x3}, [−1.25, 1.25]〉

there exists a homeomorphism between a region r and a
rectangle embedded in the Cartesian Plane. We can topo-
logically equate our notion of a region and the simple notion
of a rectangle by labeling the sides as left, right, top, and
bottom as shown in Figure 2.

Let z be the independent variable for a set of functions
defining a region in the Cartesian Plane. A left (resp. right)
bound for a region r is either a line segment defined in terms
of z or a single point. A top (resp. bottom) bound for a region
r is an integrable function h(z) (resp. f(z)). An integrable
region r consists of a left bound, right bound, top bound, and
bottom bound, all defined w.r.t. z.

In Figure 2 we observe left (r) is a vertical segment from
point a to b while right (r) consists of point d; we acquire
the horizontal (x) component of the left (resp. right) re-
gion bound using xleft(r) (resp. xright(r)). The top bound is a
piecewise defined function: a horizontal segment in the in-
terval [xb, xc] and a cubic polynomial [xc, xd]. The bottom
bounds consist of two quadratic polynomials in the intervals
[xa, xe] and [xe, xf ] followed by a linear polynomial in the
interval [xf , xd].

We refine our notion of an integrable region to account
for integrating w.r.t. y. We say a singleton region is an inte-
grable region with both top and bottom bounds defined by
integrable functions that are not piecewise-defined. Region
r in Figure 1 is a singleton region. Further, region r3 de-
fined w.r.t. x in Figure 1 is not a singleton region; however,
region r3 defined w.r.t. y is a singleton region. Last, all sub-
regions, save r3 in Figure 1, are dual singleton (singleton
regions w.r.t. x and y).
Problems and solutions. We say a region-based problem is
a tuple of the form p = 〈F,D〉 where F is a set of inte-
grable functions and D a domain. If the domain is unspeci-
fied (D = ∅) then p requires the student compute an implicit
domain. For p =

〈{x2 + x,−x2 + 1}, ∅〉 in Figure 1, solv-
ing x2+x = −x2+1 results in the implicit domain

[−1, 1
2

]
.

In comparison,
〈{x2 + x = −x2 + 1}, [−2, 0]〉 has two dis-

tinct regions w.r.t. x.
An area between curves problem is a region-based prob-

lem p with the goal of computing the area of all con-
stituent regions defined by p. With respect to problem dif-
ficulty, we say problems p1 ≡ p2 have equivalent difficulty
(difficulty (p1) = difficulty (p2)) and similarly, p1 ≺ p2
when difficulty (p1) ≤ difficulty (p2).

Definition 1 (Area Between Curves Solution). Let p be
an area between curves problem 〈F,D〉 that defines a set
of n regions {ri}. The solution to p is given by A =∑n

i=1 Area (ri). For a region s partitioned into m inter-
vals I1, . . . , Im defining singleton subregions s1, . . . , sm,
the area of s is given by Area (s) =

∑m
j=1 Area (sj). Then∫ xright(�)

xleft(�)
[top (�)− bot (�)] dx defines the area of a singleton

region � w.r.t. x. Similarly,
∫ ytop(�)

ybot(�)
[right (�)− left (�)] dy for

� defined w.r.t. y.

If problem p = 〈F,D〉 defines a non-singleton re-
gion r, we must partition r into a sequence of singleton
sub-regions R. According to Definition 1, the solution
to an area problem is a sequence of integral expressions.
The area of region r in Figure 2 w.r.t. x consists of four
constituent singleton regions {r1, r2, r3, r4} defined by
the partition xa < xe < xc < xf < xd: Area (r) =∫ xe

xa
[top (r1)− bot (r1)] +

∫ xc

xe
[top (r2)− bot (r2)] +

∫ xf

xc
[top (r3)− bot (r3)] +

∫ xd

xf
[top (r4)− bot (r4)] dx.

3 Region Analysis
We describe algorithms for dissecting a region into a cover
(Munkres 2013) of disjoint sub-regions. We assume an im-
plicit, finite domain and range; without this assumption,
p = 〈{sinx, 0}, ∅〉 defines an infinite number of regions.
Identifying regions. To capture all regions defined by a set
of functions F over domain D in a problem p = 〈F,D〉, we
take two steps: (1) construct a planar graph w corresponding
to p and (2) identify the facets in w. The facets we identify
correspond directly to the regions defined by p. We detail
planar graph construction and defer to (Alvin et al. 2017)
for facet identification.

Without loss of generality we describe construction of
a planar graph w defined in terms of x. For a problem
p = 〈F,D〉, the first step is to identify all points of in-
tersection among all functions f ∈ F in domain D: If =
∪f1,f2∈F {(x, y) | f1 
= f2 ∧ x ∈ D ∧ f1(x) = f2(x)}. All
points in If are added to w. We observe x and x3 in Figure 3
intersect at x = −1, 0, 1 in the domain [−1.25, 1.25].

For well-constructed problem p = 〈F,D〉 with an im-
plicit domain, we assume finite bounds defined by the func-
tions in F . With explicit domain D, if the endpoints are
not intersection points (e.g., Figure 3), we construct vertical
segments at the endpoints of D. For each respective bound
at x, we add an edge (x,m) to (x,M) to w where m =
min {y | f(x), ∀f ∈ F} and M = max {y | f(x), ∀f ∈ F}
representing a vertical segment. We add two such edges to
the planar graph at x = ±1.25 in Figure 3.

In its current state, w consists of the set of points from
endpoints of the domain and intersection points (e.g., open
circles in Figure 3). Ambiguity arises if we connect these
points with edges in w. Hence, for all f ∈ F , we add to w
the ‘midpoints’ between all points in If ∪ {(x,m), (x,M)}
that lie on all f ∈ F . w is thus a planar graph that corre-
sponds unambiguously to the functions in F . In Figure 3,
our disambiguating points are the smaller, solid points and
the solid lines make up the planar graph w.
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Figure 4: Dissecting a Singleton Region r w.r.t. the y-axis

Computing singleton regions. Computing the area of a re-
gion requires identifying two distinct bounds: a ‘top’ func-
tion and a ‘bottom’ function. For a non-singleton region, we
partition the region into singleton sub-regions. For region r
defined in terms of x, we merge the partition endpoints of the
top and bottom of r. In Figure 2, the ordered endpoints are
E = {xa, xe, xc, xf , xd}. For all non-extreme points in E,
we construct vertical line segments. The result is two outer
‘bookend’ regions with at least one bound being a vertical
line. The left ‘bookend’ (r1 in Figure 2) leverages the exist-
ing left bound of r, a new vertical segment, and the top and
bottom functions defined in the interval. Similarly, for the
right ‘bookend’ (r4 in Figure 2). For inner regions such as
r2 and r3, we iteratively construct all singleton regions with
two vertical segments.
Region dissection with respect to y. For a singleton re-
gion r defined w.r.t. x, our algorithm computes a minimal
set of disjoint sub-regions Sr, each defined w.r.t. y such that
r = ∪s∈Sr{s}. For a function y = f(x), f−1(y) may be a
relation; integrable regions w.r.t. the y-axis requires we seg-
ment the relation into functions over one-to-one intervals.

For a left (resp. right) bound as a vertical line segment,
we construct a horizontal segment into r, if possible. That
is, we consider the least lexicographic point (�) and add a
horizontal segment if the bottom bound is decreasing w.r.t. x
from �. For example, in Figure 4(a), the bottom linear bound
of r, bot (r), is decreasing at the point �v1 ; therefore, we
extend a (dashed) horizontal segment into r. Similarly, we
add a horizontal segment from a point g if the top bound is
increasing at g: e.g., the top bound in Figure 4(a) at gv1

.
When the left bound is a point, we insert a horizontal seg-

ment from left (r) into r that does not extend beyond the
first intersection with the top bound. No segment is added
from right (r) in Figure 4(b) since bot (r) and top (r) are
both decreasing at right (r).

We further decompose a function f(x) into one-to-one in-
tervals by constructing horizontal segments from each mini-
mum of the top function (resp. maxima of the bottom) in the
given domain. In Figure 4(b), a segment is added from local
minimum m and local maximum M as those points are both
in the interval

[
xleft(r), xright(r)

]
.

Adding only horizontal segments in Figure 1 creates three
sub-regions with one being integrable w.r.t. y (indicated with

Table 1: Problem Features from Least-Significant (1) to
Most-Significant (23)

1 Complex Graphing 13 Restrictive Domain
2 Has Trigonometric 14 Has Polynomials

3
Method of How
Solution Bounds

are Computed
15 More Easily Solved by

Opposing Axis

4 No. Problem
Regions 16 No. Functions Defined

by x

5 ‘Other’ Function
Present 17 No. Dissected

Subregions
6 Has Exponential 18 Domain Stated
7 Rational Function 19 Other Variables Used (z)

8 Sum of Polynomial
Function Degrees 20 No. of Function Bounds

9 Largest Degree
Polynomial 21 Has Logarithms

10 No. Functions
Defined by y

22 Has Root Functions

11 Regions are
Symmetric 23 Has Piecewise Function

12 Degree of Root
Function

dy); the other two sub-regions are problematic because each
have the same ‘left’ and ‘right’ bounds w.r.t. y (indicated
with dy). By Rolle’s Theorem (Stewart 2007), since our
functions are differentiable, there exists an extreme point be-
tween the endpoints. We argue informally that the bound is a
horizontal line or there is only one such extreme point (oth-
erwise, we would have constructed more horizontals from
minima). Thus, singleton regions w.r.t. y are created by ex-
tending vertical segments from the maxima in the domain of
the top and similarly for the minima of the bottom bound in
its domain (as guaranteed by Rolle’s Theorem). For exam-
ple, Figure 1 constructs two vertical segments resulting in
five total sub-regions; three are constructed in Figure 4(b).

Our algorithm decomposes a singleton region r defined
w.r.t. x into a minimal number of sub-regions. Furthermore,
each sub-region is a singleton region w.r.t. y. A formal proof
is omitted due to space limitations.

4 Experimental Analyses
We selected 97 area problems from two seminal Calculus
textbooks (Stewart 2007; Larson and Hostetler 1986) and
identified a set of features that, in our opinion, would con-
tribute to the perceived difficulty of a problem.
Background. We propose a formal model of relative prob-
lem difficulty we call step-wise difficulty. This model is a
well-ordering of problems based on their difficulty where
each pair of problems p2n+1 ≡ p2n+2 for n ∈ N0 and
p2n+1 ≺ p2n+3 for n ∈ N0.
Problem Features. Table 1 orders all of the features used
to build our models from least significant (1) to most sig-
nificant (23). To identify the feature orders, we built a linear
regression model that initially included 23 features as poten-
tially correlative with problem difficulty. We then used the
backward elimination form of stepwise regression (Derk-
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sen and Keselman 1992): we repeatedly removed the fea-
ture from the model with the least statistical significance and
then rerunning the model until the only features remaining in
the model showed a statistical significance (p-value < 0.05).
For example, the method for computing the integral bounds
is experimentally critical in determining problem difficulty.
On the contrary, few problems in the corpus contain log-
arithms due to difficult integrability, thus it is a negligible
feature based on our sample. Sadly, our analyses by y de-
scribed in §3 were not the most salient features (15 and 17).
Survey of Educators. We surveyed 26 high school and col-
lege educators asking “What are some of the most impor-
tant factors in determining the difficulty of an ‘Area Between
Curves’ problem?” Graphing. Region identification is con-
tingent on properly graphing the problem functions and is
one of the most significant features (Table 1): 62% of sur-
vey respondents identified graphing as a factor. Points of
Intersection. Solving the system of equations may be sim-
ple (i.e., factoring a quadratic), using more complex algebra
(i.e., a trigonometric function and polynomial), or requires
a calculation device to compute the real-valued irrationals.
Since basic algebra can be a problem for students, this is-
sue was noted by 65% of the experts. Multiple Regions. The
more regions in a problem, the more complex the integral
expression solution. 27% of the experts made direct or indi-
rect reference to this idea and according to Table 1 is one
of the most salient features for determining problem dif-
ficulty. Variables. 65% of the experts said students would
find the problem functions {x2 − 6x, 0} less difficult than
{z2 − 6z, 0} with 25% saying they were equivalent. We ac-
counted for variables as a feature, but it ranked 13th in signif-
icance. Calculus. Only 27% of experts mentioned Calculus-
related issues (antidifferentitation and evaluation) as con-
tributing to the difficulty of a problem. Our feature set did
not take into account complexity of integration.
Feature analysis and difficulty model. We constructed a
multi-layer perceptron (MLP) to test the ability of the iden-
tified features to predict the relative difficulty of the prob-
lems. Our hypothesis was that the order of the problems in a
textbook is indicative of problem difficulty as described by
the identified features. The input to the MLP consisted of the
sets of the features from pairs of problems with the goal of
predicting which problem comes earlier in a set of textbook
problems. The MLP used two hidden layers (resp. 32 and 8
neurons), the Adam optimizer (Kingma and Ba 2014) with
default parameters, ReLU activation, a maximum of 1000
epochs, and early convergence termination.

We constructed two sets of inputs for the MLP. The first
being a naive pairing of all problems in each textbook sec-
tion: 1124 pairs. The second being the same pairing, exclud-
ing adjacent pairs when the first problem was an odd num-
bered problem: 1078 pairs. We ran each MLP 100 times with
random train/test splits with 15% of the samples being re-
served for testing. For each test set accuracy, we calculated
the mean and standard deviation discarding runs with results
more than two standard deviations from the mean.

Our ground truth for problem difficulty is textbook or-
dering. We conducted baseline naive and baseline stepwise
experiments by excluding region-specific features (4, 11,

Table 2: Accuracy of Naive and Step-Wise MLP Models
(Averaged Over 10 Runs)

Min Mean Max Std. Dev.
Baseline Naive 0.776 0.828 0.880 0.028

Naive 0.785 0.835 0.885 0.027
Baseline

Step-Wise 0.793 0.843 0.893 0.027

Step-Wise 0.801 0.850 0.901 0.027

15, 17 in Table 1); results are shown in Table 2. We com-
pared our baseline accuracies to the complete feature set
and found statistically significant improvements by incorpo-
rating the region-based features: p < 0.03 t-tests for both
naive and stepwise. The experiments (Table 2) show that
both the naive and stepwise versions are strong predictors
of problem difficulty. We also performed t-tests of the two
experimental results for each trial and achieved an aver-
age p-value of 0.0143, indicating stepwise is a statistically
significantly better predictor of problem difficulty. We re-
peated the experiments using logistic regression with ran-
dom train/test splits of 50%, rather than a MLP. These ex-
periments agreed that the stepwise version was a statistically
significantly better predictor: mean accuracies of the logis-
tic regression model were 0.77324 and 0.77893 for the naive
and stepwise variants, respectively. We conclude that MLP
has greater accuracy than a logistic model in predicting rela-
tive textbook problem difficulty, suggesting a non-linear re-
lationship among the predictor features.

5 Conclusions
We have described algorithms for identifying regions and
solving area between curves problems, a steadfast appli-
cation in Integral Calculus. Our region analyses identified
a feature set descriptive of area between curves problems
and their relative difficulty. We then demonstrated the util-
ity of our algorithms by developing a statistically significant
(p < 0.03) non-linear model showing such problems are
ordered in textbooks according to difficulty and step-wise
difficulty.
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