
Stochastic Reinforcement Learning
for Continuous Actions in Dynamic Environments∗

Syed Naveed Hussain Shah,1 Dean Frederick Hougen 2

1Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399,
2School of Computer Science, Gallogly College of Engineering,

University of Oklahoma, Norman, OK 73019–3009
sayyed.naveed@gmail.com, hougen@ou.edu

Abstract
Reinforcement learning (RL) agents use trial and error to learn
action policies for environment states. Environments with con-
tinuous action spaces are far more challenging for RL than
those with discrete actions because there are infinite possible
continuous action values from which to choose. Dynamic en-
vironments create additional challenges for RL agents, which
must adjust rapidly to changes. We recently introduced RE-
INFORCE SUN, a superclass of REINFORCE with Gaussian
units, that allows for stochasticity at different levels of granu-
larity in artificial neural networks (synapse, unit, or network),
and have shown that moving stochasticity to synapses greatly
aids RL in both static and dynamic environments with contin-
uous action spaces. However, we also found that performance
in dynamic environments remained substantially lower than
desired. To rectify this, we here consider alternative parameter
update equations for learning in dynamic environments. These
equations form the core of Stochastic Synapse Reinforcement
Learning (SSRL), which we here generalize to create S*RL, a
superclass of SSRL that allows for stochasticity at these lev-
els. Empirical results using multi-dimensional robot inverse
kinematic data sets show that S*RL update equations greatly
outperform traditional REINFORCE equations in dynamic,
continuous state and action spaces.

Introduction
Reinforcement learning (RL) is one of the most widely stud-
ied types of machine learning (Sutton and Barto 2018). An
RL agent attempts to formulate a policy mapping perceived
states to actions in order to maximize the reward gained from
the environment over time, which results in a self-learning al-
gorithm with important real-world applications. RL is partic-
ularly challenging because the agent must balance exploring
the environment and possible policies, hopefully increasing
its knowledge, with exploiting what it has already learned
by taking the best known actions to try to maximize the total
reward it receives, which is generally discounted over time.

Classic RL algorithms including TD (Sutton and Barto
1981) and Q-learning (Watkins 1989) have focused on dis-
crete actions. Today it is still common to focus on RL with

∗Supported by Microsoft Corporation.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

discrete actions and largely ignore continuous spaces because
adapting popular RL algorithms to work in continuous spaces
is difficult (Mnih et al. 2016). Nonetheless, there has been
substantial research on RL using continuous actions, partic-
ularly for robotics applications (Deisenroth, Neumann, and
Peters 2011), including some recent work (Heess et al. 2015;
Duan et al. 2016; Lillicrap et al. 2019; Mao et al. 2019).

Continuous action RL is harder due to the infinite possible
output values and consequent need to approximate the policy.
To learn in such environments, policy gradient approaches
are typically used (Heess et al. 2015; Schulman et al. 2018;
Lillicrap et al. 2019; Mao et al. 2019). These methods sample
continuous values for the agent’s output and follow gradients
based on rewards received. These approaches are generally
paired with artificial neural networks (ANNs) to provide pol-
icy approximation that is often perturbed by stochastic noise
to provide exploration. While REINFORCE with Gaussian
stochastic units was the first and simplest of these methods
(Williams 1992), it continues to provide surprisingly com-
petitive results (Duan et al. 2016), is the de facto benchmark
standard (Sutton and Barto 2018), and forms the core of many
modern systems (Mnih et al. 2016).

Despite its strong and durable success, it is possible to
substantially improve on the REINFORCE framework and,
by extension, on numerous REINFORCE-based systems. We
recently reconsidered the role of stochasticity in ANN-based
RL agents, arguing that placing stochasticity in the synapses
between the penultimate layer of an ANN and its output
layer provides more granular and therefore more appropriate
exploration/exploitation trade-offs than placing it in output
units (as is traditional); introduced REINFORCE SUN, a
superclass of REINFORCE that allows sampling to occur at
different levels of granularity (synapse, unit, or network); and
empirically demonstrated that placing sampling in synapses
greatly improves performance (Shah and Hougen 2019).

Notwithstanding the excellent advances of synapse-based
REINFORCE over unit-based REINFORCE, its performance
in dynamic environments is less than desired. Learning in
dynamic (non-stationary) environments is more difficult than
learning in static environments (Sutton and Barto 2018). This
is particularly true of environments that remain stationary for
an extended period of time, then suddenly change, because

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

472

they require an agent that may have settled into exploiting to
shift to exploration if it is to deal with its new environment.

Fortunately, there is an alternative: Stochastic Synapse Re-
inforcement Learning (SSRL), which is designed for dynamic
environments (Shah and Hougen 2017). While there are other
synapse-based RL approaches for continuous spaces, these
were not designed for use in dynamic environments (Ma and
Likharev 2006; Amravati et al. 2018).1 In the present paper
we introduce a superclass of SSRL that we term S*RL that,
like REINFORCE SUN, allows for stochasticity at any level
and compare it to REINFORCE SUN on dynamic problems.

Hypothesis
While we substantially improved on REINFORCE with Gaus-
sian units by moving stochasticity to synapses (Shah and
Hougen 2019), all versions of Gaussian REINFORCE strug-
gle with learning in sharply changing dynamic environments.
Hence, we here compare the performance of equations from
an algorithm intended for dynamic environments: Stochastic
Synapse Reinforcement Learning (SSRL) (Shah and Hougen
2017), yielding the following hypothesis:

H1 SSRL equations will outperform REINFORCE equa-
tions in dynamic environments.

As with REINFORCE SUN, we recognize that it is possi-
ble to adapt the equations from SSRL to the unit and network
level. Therefore, we propose a superclass of SSRL that we
term S*RL with the wild-card “star” indicating the placement
of the stochasticity, giving us not only SSRL, but also SURL
and SNRL. Stochasticity at the synapse level is likely to per-
form better for S*RL, as it did for REINFORCE SUN, though
this is not guaranteed, which gives our second hypothesis:

H2 SSRL will outperform SURL which will, in turn, out-
perform SNRL in both static and dynamic environments.

Testing these hypotheses improves understanding of RL
with continuous actions in dynamic environments. We test
these hypotheses together in the environment in which we
tested REINFORCE SUN (Shah and Hougen 2019).

Approach
A typical approach to generating continuous actions is to
use an artificial neural network (ANN) as a policy approx-
imator. However, typical ANNs are deterministic whereas
RL requires exploration. Including stochastic noise provides
exploration of the infinite continuous actions available.

REINFORCE with Gaussian units learns the standard devi-
ation σ of a sampling distribution for each output unit in the
ANN (Williams 1992). This allows units to learn the degree
to which they should be exploratory. SSRL is conceptually
similar to REINFORCE, but the equations used to update the
parameters are notably different, as detailed in the following
subsections, and noise is added to synapses, rather than units.

In ANNs, there is no reason for being equally exploratory
with respect to each input to a given unit. By using Gaussian
synapses, synapses can learn their own σ values. Conversely,
given that the outputs from all units in the output layer con-
tribute to the total reinforcement earned, we could consider a
Gaussian network with a single σ value.

1These were motivated by ease of implementation in hardware.

The choice of update equations and noise placement gives
REINFORCE S, U, or N, and SSRL, SURL, or SNRL, de-
termined by whether the parameters are updated using RE-
INFORCE SUN or S*RL equations and whether there is one
σ and one corresponding noise sample each time step per
synapse, unit, or network, respectively.

To put these concepts in a familiar ANN structure, we’ll
consider all sampling mean values to be uniformly 0, so that
the value at each synapse is determined by its weight w plus
stochastic noise ε times the input value y on that connection.

Here we consider only feedforward, fully connected ANNs
with summation units and logistic activation functions and
one hidden layer (Engelbrecht 2007). Only the final weight
layer is updated using one of the RL alternatives described
herein; previous weights are trained by backpropagation.2

General Learning Process
At each time step τ , the agent’s state is fed as an input vector
to the ANN, which propagates weighted activation values
forward through its layers as in a typical feedforward ANN
(Engelbrecht 2007), to its penultimate layer (the last layer of
units before the output layer)3. At this point, noise is added to
the computations to provide for exploration. This noise is in-
cluded in calculating the output values of the network, which
are used as the vector of continuous actions taken by the
agent. The agent then receives reward from the environment,
which is used to update both the weights of the ANN and the
σ values that control exploration. The weight adjustments
from the final weight layer are then backpropagated through
the preceding layers of the network, as with a typical ANN.

It is in the addition of noise ε(τ), and the updates of the
synaptic weights w(τ) and the exploration parameter(s) σ(τ),
that the various approaches described herein diverge.

Noise Computations
For network-based approaches (REINFORCE N and SNRL),
at each time step τ , a noise value εN (τ) is sampled for the
entire network from a zero-mean Gaussian. Conceptually,
this noise is added to each dimension of the action vector
determined by the ANN, providing equivalent exploration in
each output dimension. In practice, this same functionality
is achieved by adding identical noise along each synapse kj
between unit k in the penultimate layer and unit j in the out-
put layer, to make the equations (and the code) more uniform
between the network-, unit-, and synapse-based approaches.

For unit-based approaches (REINFORCE U and SURL),
zero-mean Gaussian noise εj(τ) is sampled independently
for each unit j in the output layer, rather than once for the en-
tire network.4 These independent noise samples, then, can be

2While we here only consider a single hidden layer and back-
propagating weight updates, S*RL (like REINFORCE SUN) is
compatible with ANNs of arbitrary depths and architectures, and
any form of gradient descent to update those layers.

3Because of immediate reward setup, the term τ is interchange-
ably used for both time step and trial.

4REINFORCE U is identical to REINFORCE with Gaussian
units (Williams 1992), although we use different terminology and
notation to ease internal comparisons.

473

thought of as being added to each output unit independently
and provide independent exploration for each dimension of
the action space. Again, however, in practice this same func-
tionality is achieved by adding identical noise εj(τ) along
each synapse connecting to unit j in the output layer, to make
the equations (and the code) more uniform.

For synapse-based approaches (that is, REINFORCE S
and SSRL), zero-mean Gaussian noise εkj(τ) is sampled
independently along each synapse kj between unit k in the
penultimate layer and unit j in the output layer.

In all cases, the noise is added to the weight value wkj(τ)
used in the calculation of the net value for unit j, as

netj(τ) =

∑K
k=1 yk(τ)(wkj(τ) + ε∗(τ))

K
, (1)

where K is the total number of inputs from the penultimate
layer, yk(τ) is the output of unit k in that layer, and ε∗ indi-
cates εN , εj , or εkj , respectively, for the network-, unit-, or
synapse-based approach. The output oj(τ) of each unit in the
output layer is computed as the logistic function of netj(τ).

Weight Updates
To calculate weight updates, both REINFORCE SUN and
S*RL use reward r(τ) and expected reward r̂(τ).5

For REINFORCE SUN, each weight is updated using

wkj(τ + 1) = wkj(τ) + ηw(r(τ)− r̂(τ))ε∗(τ), (2)

where ηw is the weights’ learning rate.
For S*RL, the corresponding weight update equation is

wkj(τ + 1) = wkj(τ) + ηw(r(τ)− r̂(τ))yk(τ)ε∗(τ), (3)

where the additional term yk(τ) for the output from unit k
is included to account for the influence of that output on the
output for which the reward was received.

Exploration Parameter Updates
For REINFORCE SUN, σ∗, which determines the standard
deviation of the noise Gaussian, is updated6 using

σ∗(τ+1) = σ∗(τ)+ησ(r(τ)−r̂(τ))
ε∗(τ)2 − σ∗(τ)2

σ∗(τ)
, (4)

whereas, for S*RL, the corresponding σ∗ update equation is

σ∗(τ + 1) = σ∗(τ)+
ησ(r(τ)− r̂(τ))y∗k(τ)(|ε∗(τ)| − cσσ∗(τ)), (5)

where constant cσ inclines the algorithm toward exploration
or exploitation (see discussion).

Again the S*RL equation includes a term to account for
the influence of the output of units in the penultimate layer on
the output at the final layer, whereas the REINFORCE SUN
equation does not. However, in this case the term is y∗k(τ) to
represent yk(τ) for SSRL or yK , which is the average of all

5Here, r̂(τ) = d r(τ − 1) + (1 − d) r̂(τ − 1), where d is
a discount factor (Williams 1992). Both REINFORCE SUN and
S*RL are compatible with any calculation of expected reward.

6This assumes that σ∗ is non-zero; otherwise, σ∗ remains zero.

K outputs from the previous layer, for SURL and SNRL. In
addition, the calculations concerning the difference between
the sampled noise ε∗ and the standard deviation σ∗ are quite
different between the algorithms. The origin and importance
of these differences are examined in the discussion.

In all cases, σ∗ updates are subject to σ∗(τ + 1) ≥ 0. That
is, if Equation 4 or 5 would result in a negative value for
σ∗(τ + 1), σ∗(τ + 1) is set equal to 0 (Williams 1992).

Experimental Setup
We performed experiments using multiple data sets based
on inverse kinematics of simplified models of PUMA and
Stanford robotic arms with all values for all data sets scaled
to be in [0, 1]. In each data set, input-output vector pairs are
generated by randomly sampling joint values from a uniform
distribution, generating location values based on a forward
kinematics model, then using location values as inputs and
joint values as target values. The kinematics data sets ensure
that each input-output vector pair is almost certainly unique,
and each pair is presented only once to the learning agent so it
must be able to generalize in order to improve its performance
over time. 50 such data sets are used for each experimental
condition to collect statistically meaningful results.

For each trial τ , the ANN is presented with the input vec-
tor and a scalar reward value r(τ) based on the similarity
between the agent’s action vector and a target output vector
from the training data on that trial, calculated using

r(τ) = 1−
∑J

j=1|tj − oj |
J

, (6)

where J is the number of output units, tj is the target for unit
j, and oj is the corresponding action. The range of possible
input and target values and the logistic activation functions
of the output units, gives reward values in [0, 1].

The 6×6 inverse kinematics problem here is to determine
the values of the waist, shoulder, elbow, and three joints of a
spherical wrist given the desired position in Cartesian three-
space (x, y, z) and orientation given as roll, pitch, and yaw
of the end effector. The 3×3 data sets use the waist, shoul-
der, and elbow joints with the position in three-space. The
6×3 data sets use the waist, shoulder, and elbow joints with
position and orientation. The difference between the arms is
that all PUMA joints are revolute whereas the Stanford arm
has a prismatic elbow. For each data set, 20,000 input-output
vector pairs are generated. The first and second halves of
each data set are generated using complementary ranges of
the arm joints, causing it to reach to very different positions
during the first and second halves of each run, resulting in
the desired dynamic environment.7

Each network has a +1 bias input in addition to the kine-
matics inputs and has hidden units equal to the number of the
inputs plus one. The initial weights for each synapse are in
[−2,+2], λ = 2 for the logistic functions, all learning rates
and reward discount factors are set to 0.5 (a moderate value),
and σ∗ is initialized uniformly randomly in [0, 1].

7This setup is similar to classic continuous RL tasks (Ritter and
Schulten 1987) while providing dimensionality comparable to that
of popular RL tasks, such as the robotics/control tasks from Gym
(https://gym.openai.com/), yet are scalable and sharply dynamic.

474

Results
Table 1 provides results for SSRL and REINFORCE S (the
best performing variant in each group): average of average re-
wards r and average of standard deviation of reward σr on all
data sets over each entire run, last 1,000 trials before change,
and last 1,000 trials in run. Underline indicates highest r and
lowest σr. P: PUMA, S: Stanford.

Figure 1 shows average reward collected for all variants
of both S*RL and REINFORCE SUN at each trial across all
runs for the Stanford arm. (Similar PUMA results are not
shown to conserve space.) The differences between these
curves are statistically significant (randomized ANOVA, p <
0.001 for both algorithm and interaction for all experiments
and all pairwise comparisons) (Piater et al. 1998).

Figure 2 shows box and whisker plots of reward for SSRL
and REINFORCE S across all runs. Here, within each in-
dividual sub-figure, the two boxes on the left represent the
cumulative reward collected during each run, the two in the
middle represent the cumulative reward in the last 1,000 trials
before change (when the algorithms have had time to con-
verge), while the two on the right represent the cumulative
reward received in the last 1,000 trials of the run.

These results are statistically significant for all SSRL to
REINFORCE S comparisons (t-test, p < 0.001, d.f.=49)
except for 3×3, 6×3, and 6×6 Stanford data sets, the last
10% of the reward collected before change (t-test, p = 0.5273,
p = 0.1117, and p = 0.5394 respectively). The results are
also statistically significant for all comparisons within S*RL
algorithms (p < 0.001 for both pre and post-hoc statistics,
d.f.N=2, d.f.D=98) (Quade 1979) except the following: For
the 3×3 PUMA data set, the post-hoc comparison for the
last 1,000 trials before change, SSRL is not significantly
different from SURL (p=0.29) and after change, SURL is
not significantly different from SNRL (p=0.036). Similarly,
for the 6×6 Stanford data set, the post-hoc comparison for
the last 1,000 trials before change, SSRL is not significantly
different from SURL (p=0.26) and after change, SURL is not
significantly different from SNRL (p=0.17). Further, the post-
hoc comparisons for the last 1,000 trials before change shows
that for 3×3 Stanford dataset SSRL is significantly different
from SURL (p=0.00407), however for 6×3 PUMA, 6×3
Stanford, and 6×6 PUMA datasets, SSRL is not significantly
different from SURL (p=0.059, 0.06, and 0.076 respectively).

The few results that are not statistically significant are
a result of two distinct phenomena. The lone comparison
where SURL results are not significantly different from those
of SNRL in the last 10% of the trials after the change, are
a result of SNRL achieving deceptively high reward values
after the change, because it never learned well before the
change, and thus gained an accidental advantage in the second
half when both SSRL and SURL performance dropped well
below that of SNRL because they had converged to good
values prior to the change. The comparisons where SSRL
results are not significantly different from their SURL and
REINFORCE S counterparts in the last 10% of the rewards
collected before the change are a result of all algorithms
achieving near-optimal performance at that point.8

8Note that performance and statistical results for SURL vs. RE-

Table 1: Results for SSRL and REINFORCE S (in percent).
Data Entire run 1k trials pre change Last 1k trials
set SSRL R-S SSRL R-S SSRL R-S

r σr r σr r σr r σr r σr r σr

3×3 P 86.6 1.7 80.7 4.5 93.5 0.1 93.6 0.1 93.3 1.1 75.1 10.9
3×3 S 85.6 2.1 75.4 3.7 91.5 0.1 91.4 0.7 90.4 3.0 63.1 9.5
6×3 P 89.7 1.5 84.5 3.1 93.6 0.1 93.7 0.1 92.6 2.2 79.0 8.0
6×3 S 85.6 2.2 73.4 2.6 91.5 0.1 91.3 1.0 89.8 3.4 57.5 6.1
6×6 P 90.0 0.7 86.9 1.7 93.4 0.1 93.7 0.1 93.0 0.6 84.8 4.6
6×6 S 87.2 1.2 82.5 2.1 92.4 0.1 92.4 0.4 91.1 1.6 77.0 5.3

Discussion
The results in aggregate overwhelmingly support both hy-
potheses: Each algorithm using the SSRL equations greatly
outperforms each corresponding algorithm using the REIN-
FORCE Gaussian equations in dynamic environments, and
SSRL greatly outperforms SURL, which in turn greatly out-
performs SNRL, in both static and dynamic environments, at
least in the long term. SSRL also shows less variability than
REINFORCE S in the average cumulative reward collected,
making SSRL by far the most consistent in performance.

Still, stochastic units appear to learn fastest initially on
many data sets and stochastic networks show faster learning
initially on a few data sets and actually outperform stochastic
units for the 3×3 Stanford arm in the first half of the run.

The reason that each S*RL algorithm outperforms its cor-
responding REINFORCE SUN algorithm clearly lies in the
update equations used by each algorithm. In all other re-
spects, the algorithms as tested are identical. However, which
differences within those equations deserve credit is unclear.

One possibility is that the credit should go to the additional
y terms intended to account for the influence of the output
of the units from the previous layer on the output for which
the reward was received. For S*RL weight updates and for
SSRL σ updates, this term is yk, which is simply the output
from unit k in the previous layer. For the σ updates for both
SURL and SNRL, this term is yK , which is the average of
all K outputs from the previous layer. Both yk and yK scale
the difference values calculated on the basis that the outputs
from the previous layer affect the outputs at the final layer.
In addition, because yk treats the outputs from the units in
the previous layer independently, this term may help with the
structural credit assignment problem.

Another possibility is that the calculations of the differ-
ence between the sampled noise ε∗ and the standard deviation
σ∗ in the σ∗ update equation for S*RL (Eq. 5) deserves the
credit. In the case of REINFORCE (and, therefore, REIN-
FORCE SUN), the corresponding calculation comes from the
partial derivative with respect to σ of the natural log of the
normal distribution, with a factor of σ2 thrown in to obtain
a “reasonable algorithm” (Williams 1992, p. 10). In contrast,
for SSRL (and, therefore, S*RL) this calculation comes from
a straightforward intuition of how such an algorithm should
perform: “If the agent is performing better than expected, the

INFORCE U and SNRL vs. REINFORCE N (not shown for brevity)
largely follow similar trends. Source code and all data are available
at https://doi.org/10.5281/zenodo.2629416.

475

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5000 10000 15000 20000

A
ve

ra
ge

 r
ew

ar
d

Trial

(a) 3×3 Stanford Arm Data Set.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5000 10000 15000 20000

A
ve

ra
ge

 r
ew

ar
d

Trial

(b) 6×3 Stanford Arm Data Set.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5000 10000 15000 20000

A
ve

ra
ge

 r
ew

ar
d

Trial

(c) 6×6 Stanford Arm Data Set.

Figure 1: S*RL and REINFORCE SUN average reward collected per trial across 50 runs by each algorithm. Dark blue: SSRL.
Light blue: REINFORCE S. Dark green: SURL. Light green: REINFORCE U. Dark red: SNRL. Light red: REINFORCE N.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

SSRL R-S SSRL R-S SSRL R-S

A
ve

ra
ge

 a
cc

um
ul

at
iv

e
re

w
ar

d

(a) 3×3 Stanford Arm Data Set.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

SSRL R-S SSRL R-S SSRL R-S

A
ve

ra
ge

 a
cc

um
ul

at
iv

e
re

w
ar

d

(b) 6×3 Stanford Arm Data Set.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

SSRL R-S SSRL R-S SSRL R-S

A
ve

ra
ge

 a
cc

um
ul

at
iv

e
re

w
ar

d

(c) 6×6 Stanford Arm Data Set.

Figure 2: SSRL and REINFORCE S (abbreviated R-S) average cumulative reward across 50 runs. Box and whisker plots with
outliers. First third in each plot shows average cumulative reward over entire run while second third shows same for last 1,000
trials before change and last third shows last 1,000 trials before end of run.

algorithm encourages exploration or exploitation, whichever
was being used. However, if it performs worse than expected,
then the algorithm encourages the opposite of what it had
been doing” (Shah and Hougen 2017, p. 4). Taking this notion
at face value, the SSRL equation simply takes the difference
between the absolute value of the particular sampled noise
ε∗ and the standard deviation of the noise distribution itself
σ∗ times the constant cσ. This constant can be used to bias
the algorithm toward exploration or exploration. Here, cσ is
set to 0.6745 to leave the algorithm unbiased.9

Of course, it could be that the credit should go to some
combination of these factors, or it might even be that some
of these factors are contributing to the superior performance
of S*RL while others are actually detracting. This credit
assignment problem is left as future work.

Conclusions
This paper introduces S*RL, a superclass that generalizes
SSRL to allow for stochasticity at the level of the synapse,
the unit, or the network and empirically compares S*RL to
REINFORCE SUN, itself a generalization of the venerable
REINFORCE class of RL algorithms. This study clearly

9In a Gaussian distribution, 50% of samples are within 0.6745σ
of the mean.

demonstrates the superiority of each of S*RL’s options as
compared to each corresponding option in REINFORCE
SUN in dynamic environments with continuous states and
actions, and makes it clear that the equations governing S*RL
are responsible for its greater success in these environments.
These results strongly suggest that practitioners should prefer
S*RL to REINFORCE SUN in dynamic environments.

This study also adds support for the general hypothesis
that finer-grained stochasticity outperforms coarser-grained
stochasticity, at least for a range of interesting continuous-
state-continuous-action problems, as well as the more spe-
cific hypothesis that stochastic synapses outperform both
stochastic units and networks, at least in the long term. As
one would expect, however, stochastic synapses have to ex-
plore at a more granular level and thus take longer to learn
initially due to tuning substantially more parameters com-
pared to stochastic units and networks. This suggests that a
hybrid approach might combine the best of all variants; that
is, using stochastic units and/or networks initially might give
faster early learning, and switching to stochastic synapses
later might achieve optimal performance in a long run.

Putting these ideas together, this study strongly suggests
that practitioners should prefer SSRL to SURL, SNRL, or
any version of REINFORCE SUN (including the original) in
dynamic continuous state-continuous action environments,

476

and that researchers should consider SSRL to be the new
benchmark algorithm in these environments and should look
to incorporate SSRL in place of REINFORCE as the core
element in sophisticated, state-of-the-art RL systems.

Nevertheless, the results are far less clear for other environ-
ments. In particular, for static environments it appears that
SSRL learns more slowly than many of the options consid-
ered here, as evidenced by its noticeably shallower ascent at
the start of many of the graphs. These results suggest that
for static environments in which early performance is crucial,
one should prefer REINFORCE S or perhaps even the orig-
inal REINFORCE (which corresponds to REINFORCE U)
if long-term performance should be sacrificed for short-term
returns. However, if the environment is not known to be static,
the brief underperformance of SSRL is outweighed by its
overwhelmingly superior performance in the dynamic envi-
ronments. Still, the hybrid approach of starting stochasticity
at the level of the network or the unit and moving it to the
level of the synapse as learning progresses seems even more
important for S*RL than for REINFORCE SUN.

Future Work
While SSRL outperforms alternatives in dynamic environ-
ments with immediate rewards and continuous states and
actions, other environments such as those with discrete states
and/or those with delayed rewards should be considered.
SSRL has shown promise in such environments (Shah and
Hougen 2017) but direct comparisons are absent.

As noted in the conclusions, it is unclear which differ-
ences between the S*RL and REINFORCE SUN equations
deserve credit for S*RL’s greater performance. Investigating
this credit assignment problem is important future work.

As already suggested, a hybrid approach with potentially
better long-term performance (the strength of stochastic
synapses) yet faster initial learning (the strength of both
stochastic units and networks), should be studied.

Further, deep RL studies with very high dimensional state
and action spaces using stochastic synapses can potentially
improve on existing results. Similarly, a future study on com-
paring deterministic policy gradient algorithms to SSRL can
shed more light on whether our proposed method performs
better in spite of stochastic policy gradient algorithms requir-
ing more samples as claimed (Silver et al. 2014).

References
Amravati, A.; Nasir, S. B.; Thangadurai, S.; Yoon, I.; and
Raychowdhury, A. 2018. A 55nm time-domain mixed-signal
neuromorphic accelerator with stochastic synapses and em-
bedded reinforcement learning for autonomous micro-robots.
In 2018 IEEE International Solid-State Circuits Conference
(ISSCC), 124–126.
Deisenroth, M. P.; Neumann, G.; and Peters, J. 2011. A
survey on policy search for robotics. Foundations and Trends
in Robotics 2(1-2):1–142.
Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; and Abbeel,
P. 2016. Benchmarking deep reinforcement learning for
continuous control. In International Conference on Machine
Learning, 1329–1338.

Engelbrecht, A. P. 2007. Computational Intelligence: An
Introduction. Wiley, second edition.
Heess, N.; Wayne, G.; Silver, D.; Lillicrap, T.; Erez, T.; and
Tassa, Y. 2015. Learning continuous control policies by
stochastic value gradients. In Advances in Neural Information
Processing Systems 28. Curran Associates, Inc. 2944–2952.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2019. Continuous con-
trol with deep reinforcement learning. arXiv:1509.02971v6.
Ma, X., and Likharev, K. K. 2006. Global reinforcement
learning in neural networks with stochastic synapses. In
Proceedings of the 2006 IEEE/INNS International Joint Con-
ference on Neural Networks, 47–53.
Mao, H.; Venkatakrishnan, S. B.; Schwarzkopf, M.; and Al-
izadeh, M. 2019. Variance reduction for reinforcement
learning in input-driven environments. arXiv:1807.02264v3.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In Inter-
national Conference on Machine Learning, 1928–1937.
Piater, J. H.; Cohen, P. R.; Zhang, X.; and Atighetchi, M.
1998. A randomized ANOVA procedure for comparing per-
formance curves. In Proceedings of the International Confer-
ence on Machine Learning, volume 98, 430–438.
Quade, D. 1979. Using weighted rankings in the analysis of
complete blocks with additive block effects. Journal of the
American Statistical Association 74(367):680–683.
Ritter, H., and Schulten, K. 1987. Extending Kohonen’s self-
organizing mapping algorithm to learn ballistic movements.
In Neural Computers, volume F41. Springer. 393–406.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
P. 2018. High-dimensional continuous control using general-
ized advantage estimation. arXiv:1506.02438v6 [cs].
Shah, S. N. H., and Hougen, D. F. 2017. Stochastic synapse
reinforcement learning (SSRL). In 2017 IEEE Symposium
Series on Computational Intelligence (SSCI), 1–8.
Shah, S. N. H., and Hougen, D. F. 2019. Rethinking stochas-
ticity in neural networks for reinforcement learning with
continuous actions. In IEEE Symposium Series on Computa-
tional Intelligence, 9 pages.
Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; and
Riedmiller, M. 2014. Deterministic policy gradient algo-
rithms. In Proceedings of the 31st International Conference
on Machine Learning, 387–395.
Sutton, R. S., and Barto, A. G. 1981. Toward a modern theory
of adaptive networks: Expectation and prediction. Psycho-
logical Review 88(2):135–170.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learning:
An Introduction. MIT Press.
Watkins, C. J. C. H. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation, King’s College.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine
Learning 8(3-4):229–256.

477

