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Abstract

In this study we examined the efficacy of machine learning
general regression algorithms for predicting ordinal variables
based on the acoustic speech signal. We were specifically in-
terested in whether predictions that fell between ordinal lev-
els (e.g. a predicted score of 3.2 instead of a true score of
3) contained meaningful information about the outcome vari-
able. As a test case, we explored speech-based estimation of
the Amyotrophic Lateral Sclerosis Functional Rating Scale -
Revised (ALSFRS-R), a clinical measure for speech severity.
The ALSFRS-R is a diagnostic tool that measures individual
components of motor function for patients with ALS along a
5-point ordinal scale. Using artificial neural networks (ANN)
we can generate continuous estimates of the speech compo-
nent in ALSFRS-R. However, the degree to which the im-
proved resolution of these estimates contains useful informa-
tion related to patients’ motor control has not been thoroughly
studied. In this paper, we sought to answer this question by
comparing the residuals in machine learning estimates of the
ALSFRS-R speech score with patients’ intelligible speaking
rate (ISR), which is a more granular measure of speech motor
control. Experimental results using speech data from 45 pa-
tients with ALS confirmed that ANN regression is effective at
learning granular information even when trained with coarse
ordinal labels.

1 Introduction

A growing area of research is focused on utilizing machine
learning and speech processing in diagnostics and the de-
velopment of assistive tools for individuals with neurolog-
ical speech disorders (Berisha, Utianski, and Liss 2013;
Benba, Jilbab, and Hammouch 2015; Williamson et al.
2015; Orozco-Arroyave et al. 2016; Hsu et al. 2017; Norel
et al. 2018; An et al. 2018; Wang et al. 2018). A major chal-
lenge in this field is the development of tools that can quan-
tify the degree to which aspects of speech, such as articu-
latory precision, are degraded as a result of a neurological
disorder. Quantifying specific areas in which speech, or mo-
tor function more broadly, are impaired is critical for clini-
cians and doctors to both plan and effectively evaluate differ-
ent treatment strategies. Unfortunately, existing evaluation
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strategies are often reliant on subjective assessments that
can vary widely across different clinicians. These measure-
ments can also be easily biased by the degree of familiarity
between the clinician and their patients (Liss et al. 2002;
Borrie, McAuliffe, and Liss 2012). The measurable bias
and time-cost of these subjective assessments provide a
strong motivation for the development of objective assess-
ment methods.

Often in clinical situations, the variables we are trying to
predict are ordinal rather than continuous or categorical. Or-
dinal variables are like categorical variables, but their differ-
ent categories follow a natural order. A common example of
this variable type are Likert scale measures in which respon-
dents may be asked to state their feelings towards a given
statement along a predefined scale such as: {strongly dis-
agree, disagree, neutral, agree, strongly agree}. Ordinal vari-
ables are widely used in a number of fields, including com-
munication disorders, because they provide concrete bench-
marks that are easy to interpret.

Although there exist a number of supervised learning
strategies designed specifically for the prediction of ordi-
nal independent variables (Cheng, Wang, and Pollastri 2008;
Chu and Keerthi 2007; Fu et al. 2018), these methods re-
strict their predictions to an ordinal scale. This restriction
may not be ideal in all applications (such as clinical as-
sessment). Ordinal ratings are often used in clinical assess-
ments not because of an inherent preference for discrete
categories, but because they facilitate more reliable subjec-
tive ratings. In these cases the coarse nature of the ordi-
nal scale is undesirable as it inhibits the ability to detect
subtle changes in a patient’s status. As a pertinent exam-
ple of this, we consider the challenge of measuring the de-
cline in speech motor control experienced by individuals
with amyotrophic lateral sclerosis (ALS). ALS is a progres-
sive neurological disease that inhibits the ability of the brain
to control muscle movements. The ALS functional rating
scale-revised (ALSFRS-R) is a clinical measure of the de-
cline in motor control experienced in this population (Cedar-
baum et al. 1999). The ALSFRS-R measures motor con-
trol across 12 common motor tasks along a 5-point ordinal
scale (0 - 4). While the ordinal scale provides clearly defined
benchmarks for assessment that ease administration and in-
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terpretation of the measure, the coarse measurement scale
limits its ability to track small changes along specific di-
mensions of motor control. As a result, the components of
the ALSFRS-R may lack the sensitivity of instrumentation-
based measures of motor function (Allison et al. 2017;
Andres et al. 2017). Using a general regression model that
treats the ordinal measures of the ALSFRS-R as if they were
continuous can avoid binding the predicted speech scores
to the same coarse scale of the original ALSFRS-R mea-
sure. Although this approach has been employed in some
prior studies (Wisler et al. 2019), the degree to which the
enhanced resolution offered by these estimates is actually
useful remains to be studied.

In this paper we focused on the speech component of the
ALSFRS-R that is designed to measure patients’ speech pro-
duction. We approached this problem with two main goals.
First, we examined the degree to which the residuals in
ALSFRS-R speech score predictions contain salient infor-
mation about the patients’ speech production that eludes the
coarse measure of the ALSFRS-R. To accomplish this goal,
we used participants’ intelligible speaking rate (ISR, under-
standable words per minute) as a high-resolution measure
of speech production and measure the relationship between
the predicted speech scores and ISR when controlling for
the ground truth ALSFRS-R speech scores. Note that our
goal here was not actually to predict ISR, but to evaluate
whether the predicted speech score measures capture infor-
mation related to ISR beyond what is captured by the initial
labels used to train the model. Therefore, our goal in this
analysis was not simply to evaluate the supervised learning
models’ ability to reproduce the valuable information cap-
tured by the ALSFRS-R, but its ability to improve upon it
by representing the same information along a more granu-
lar scale. Our second goal was to examine the role of model
complexity in the models’ ability capture this latent informa-
tion. To accomplish this goal, we repeated the initial analysis
for a range of different models, and examined the degree to
which different model estimates are predictive of both pa-
tient’s speech score and their ISR.

2 Data Collection

2.1 Participants

The data used for this project, a subset of a larger set that
is being collected, contains forty-five speakers diagnosed
with ALS at early-onset. Participants were asked to attend
four data collection sessions at four to six month intervals.
At each session, participants or caregivers completed the
ALSFRS-R. Although the ALSFRS-R is completed in its
entirety, this paper primarily focuses on the component of
the ALSFRS-R measuring speech production which assigns
patients a speech score of 0-4 according to the following cri-
teria:

• 4: Normal Speech
• 3: Detectable speech disturbance
• 2: Intelligible with repeating
• 1: Speech combined with nonvocal communication
• 0: Loss of useful speech

Table 1: Summary of the key diagnostic measures for the
participants.

Male Female
Number of Participants 26 19
Age 57 + 1.77 60.5 + 2.15
ALSFRS-R 36.8 + 1.20 36.6 + 1.95
Speech Score 3.3 + 0.16 3 + 0.24

Speech intelligibility (percentage of understandable
words, judged by listeners) and speaking rate (words pro-
duced per minute) were assessed by a speech-language
pathologist using the Sentence Intelligibility Test (SIT) soft-
ware (Dorsey et al. 2007). ISR, a measure of communica-
tion efficiency, was also calculated (speech intelligibility ×
speaking rate) (Yorkston and Beukelman 1981). The range
of ISR in our data is from 0 to 235.71 words per minute
(wpm).

The set of participants included in this analysis contained
19 female speakers and 26 male speakers. Participants’ ages
ranged from 39 to 81 years, with an average age of 58.56
(excluding two participants who did not disclose their date
of birth). A detailed breakdown of the participants’ diagnos-
tic information as measured at the beginning of their partic-
ipation in the study is displayed in Table 1.

2.2 Stimuli and Procedure

The participants were asked to produce 20 sentences in a
fixed order, such as I need some assistance and call me back
when you can. A complete list of the stimuli used for data
collection can be found in (Wisler et al. 2019). The sentences
were selected because they are commonly used in augmenta-
tive and alternative communication (AAC) devices (Beukel-
man et al. 1984). All speech stimuli were presented on a
TV screen in front of the participants. The stimuli were re-
peated for a total of four recordings at the participants habit-
ual speaking rate among other speech tasks. In some cases,
participants were unable to complete the entire recording
process, and only a subset of the regular 80 recordings could
be included in the analysis. In total, we used 5,288 record-
ings were collected across the 45 participants at 75 different
recording sessions. The audio signals used in this analysis
were collected using a Shure Microflex microphone with a
sampling rate of 22kHz was positioned approximately 15 cm
from each speaker’s mouth.

3 Methods

The first step in the proposed system was to extract features
from the phrase-level acoustic speech signal. The features
used in this paper were based on the Mel-frequency cep-
stral coefficients (MFCCs). Although MFCCs do not pro-
vide comprehensive representation of the effects of ALS on
the acoustic signal, as they ignore characteristics of pitch,
they have been shown to be an effective tool for charac-
terizing motor-speech disorders (Benba, Jilbab, and Ham-
mouch 2015; Williamson et al. 2015; Tu, Berisha, and Liss
2017) and provide a suitable test case for this study. We ex-
tracted the first fourteen MFCCs, along with their first and
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second derivatives, thus totaling 42 low-level descriptors at
the frame level. These frame-level features are then aggre-
gated using five different statistical functionals: mean, me-
dian, standard deviation, skewness and pairwise variability,
leading to a total of 210 acoustic features.

Once the features were extracted from each participants
frame-level speech, we were left with a 5288x210 feature
matrix that was used to both train and evaluate our regression
model. To partition the data in such a way that maximizes the
amount of training data while still effectively evaluating out-
of-sample performance, we used leave-one-participant-out
cross-validation (CV). Thus at each step of the CV the model
was trained on 42 participants, while the single remaining
participant was held out for evaluation.

As a baseline, we considered a simple artificial neural net-
work with one hidden layer containing eight artificial neu-
rons. Each artificial neuron is fully connected to the 210
input features, and passes the linear combination of inputs
through a hyperbolic tangent sigmoid activation function.
This ANN was trained using the scaled conjugate gradient
backpropagation to generate continuous predictions of the
ALSFRS-R speech scores based on the previously outlined
feature set and cross-validation procedure. As the ALSFRS-
R speech scores being predicted exist along a five-level
scale, this task is not well suited to evaluation by Pearson or
Spearman correlation coefficients. Instead, we evaluated our
predictions using Goodman and Kruskal’s gamma (Good-
man and Kruskal 1979). This measure is calculated by look-
ing at each pair of samples in which both scores (the original
speech score and the predicted speech score) differ across
samples and counting both the number of times that the two
measures agree in the ranking of the two samples (Ns) and
the number of times that the two measures disagree in the
ranking of the two samples (Nd). From these counts the
Goodman and Kruskal’s gamma is calculated by

G =
Ns −Nd

Ns +Nd
. (1)

Following this initial assessment, where the predictions
were evaluated based on a comparison to the original speech
score values, we conducted a follow-up analysis where they
were compared with participants’ intelligible speaking rate.
The goal of this analysis was to assess the degree to which
predictions generated by this model contain useful infor-
mation about participants’ speech severity beyond what is
contained in the original ALSFRS-R speech score values.
For this assessment we performed a regression analysis
where the dependent variable is intelligible speaking rate
and the independent variables are the individual’s ALSFRS-
R speech score (y) and the model residuals. We calculate the
model residuals as

r = yp − y. (2)
where yp represents the predicted speech score. Typically we
think of residuals as errors in model predictions; however,
this thinking is overly simplistic in cases where the variable
being predicted is an imperfect representation of the under-
lying quantity it tries to measure. Speech motor control is
too complex to be completely characterized by only five cat-
egories. It is possible that some part of the residuals in our

predictions represents latent information about speech mo-
tor function that is not captured by the ordinal rankings of
the ALSFRS-R. As there is no perfect measure for overall
speech motor control, ISR serves as a reasonable proxy.

To evaluate how the performance varies with model
complexity, we conducted a second experiment where
we tested eight single-layer ANNs and eight two-layers
ANNs with the number of neurons per layer selected ac-
cording to the following exponential pattern: NANN =
[2, 4, 8, 16, 32, 64, 128, 256]. To overcome random vari-
ations in each model’s performance, due to the non-
deterministic training process, we averaged the results
across a 10-trial Monte Carlo simulation. The performance
of each model is evaluated based on the strength of the rela-
tionship between the model’s predictions and the two clini-
cal quantities of interest (speech score and ISR).

4 Results & Discussion

4.1 Experiment 1: Baseline model performance

Based on the initial analysis of the single-layer 8 neuron
ANN, we found that the sample-level predictions are mod-
erately correlated, G = 0.466, with the true speech score
measures. When predictions are aggregated to the session-
level (averaged across the ≈ 80 phrase-level predictions),
this correlation goes up to G = 0.594. Functionally, this
means that if one participant is assigned a higher speech
score than another, they are also assigned a higher speech
score by the proposed model 79.7% of the time. While this
may seem low, it is similar to the strength of correlation ex-
hibited between different clinical measures of speech sever-
ity. As an example, using the same correlation analysis to
compare participant’s speech score with their intelligible
speaking rate, we found that the strength of this correla-
tion, G = 0.591, was not much different. Furthermore, the
Pearson correlation between the estimated scores and ISR
(ρ = 0.758) was higher than that of the original speech
scores and ISR (ρ = 0.662). A visual depiction of the ag-
gregated predicted speech scores relative to the true speech
scores is displayed in Figure 1.

Having validated the general efficacy of the model in pre-
dicting the participants’ speech scores, our main interest in
this analysis is to examine whether the residuals provide use-
ful information for predicting ISR beyond what was offered
by the original speech score values. To accomplish this, we
construct a regression model which attempts to fit the resid-
uals and true speech score values to ISR according to the
following equation

ISR = I + b · r + Cy · y (3)

where I represents the intercept, b represents the coefficient
of effect for the residual and Cy represents a variable co-
efficient of effect that is assigned uniquely to each level of
participants’ speech score (y). The results of this regression
model are summarized in Table 2.

The results of this analysis provided strong evidence of a
relationship between the prediction residual and ISR, since
the effect of residuals in the regression model was signif-
icantly below the standard p = 0.05 threshold. While the
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Figure 1: Scatter plot illustrating the relationship between
the predicted and true speech score values.

Table 2: Summary of regression results predicting ISR based
on participant speech score values and model residuals from
the 8 neuron ANN. Note that a speech score of zero is the
considered the baseline for this model. Therefore the inter-
cept represents the effect of a zero speech score, and the
effects of other speech scores are estimated relative to this
baseline.

Estimate SE t-stat p-value
Intercept -35.55 35.72 -1.00 0.32
Residual 47.81 8.28 5.78 < 0.001
Speech Score 1 35.45 37.87 0.94 0.35
Speech Score 2 73.21 36.92 1.98 0.05
Speech Score 3 159.68 36.21 4.41 < 0.001
Speech Score 4 219.50 37.36 5.88 < 0.001

effects of speech score in the model were strongly signifi-
cant for scores of 3 & 4, speech scores of 1 & 2 don’t show
significant effects. This was likely due to both them being
lower levels (the observed effect is relative to the baseline
score of zero), and fewer numbers of samples available at
these levels (7 and 10 respectively). In total, this regression
model was able to explain 64.3% of the variance in the ISR
values. This constitutes a significant improvement over the
43.8% of the variance that the speech scores were able to
explain in isolation. To further illustrate the significance of
this regression model, a visual depiction of the relationship
between the ANN prediction residuals and ISR is displayed
in Figure 2.

These results provide strong evidence that the ANN pre-
diction residuals have a direct relationship with participants’
intelligible speaking rate. Based on the results summarized
in Table 2, a 1-point increase in prediction residuals corre-
sponds to a 47.81 words per minute increase in ISR. This
finding has significant clinical implications, as it suggests
that data-driven estimates of diagnostic measures may be
more sensitive than the original measures themselves.
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Figure 2: Scatter plot illustrating the relationship between
the residuals in predictions of ALSFRS-R speech score and
participant’s intelligible speaking rate at each speech score
level (y) for the initial 8 neuron ANN.

4.2 Experiment 2: Model comparison

In this section we will look at the results, when the pre-
vious experiment is expanded to consider a range of dif-
ferent ANN architectures, including ANNs with one and
two hidden layers each layer containing NANN neurons
(NANN = [2, 4, 8, 16, 32, 64, 128, 256]). For this experi-
ment we summarize the effectiveness of each model ac-
cording to two metrics. The first metric is the Goodman &
Kruskal’s gamma summarizing the strength of correlation
between the model’s speech score predictions and the true
speech score. The second metric is that amount of variance
of ISR that can be explained by a linear regression model
(like the one summarized in Table 2) of the residuals and
true speech score values. The average performance across
each metric, along with their standard errors, is displayed as
a function of the number of model parameters in Figure 3.
As the ANN’s are fully connected, the number of parame-
ters referred to on the x-axis is equal to 210NANN +NANN

for the weights and biases corresponding to connections be-
tween the features and the first hidden layer, NANN + 1
for the weights and biases corresponding to connections
between the last hidden layer and the output layer, and
N2

ANN + NANN for the weights and biases corresponding
to connections between hidden layers in the two-layer case.

There are several interesting observations that can be
made from these results. In both measures, we found that the
performance peaks at a certain complexity level, after which
point increasing the size of the model only degrades the per-
formance. While this finding is not surprising, what is inter-
esting is the stark difference in where this peak is located
across the two measures. When performance was measured
by comparing our predictions to the ground truth ALSFRS-
R speech score, both the 1 & 2-layer ANNs achieved op-
timal performance for a layer width of 64 neurons. How-
ever when measured based on their ability to predict ISR, we
found better performance from the lower-complexity mod-
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Figure 3: Comparison of results based on model complexity: (Left) Rank correlation (Gamma) between predicted and true
speech ALSFRS-R score values (Right) Variance of ISR explained by prediction residuals.

els, with peaks occurring at a layer width of 4 neurons. Al-
though the performance deviations illustrated in these plots
were relatively small, and further research is needed to eval-
uate the robustness of these findings, this provides evidence
for a hidden cost associated with increasing model complex-
ity that is not captured by a traditional evaluation of the re-
gression models (at least in the presence of imperfect labels).
One possible explanation is that additional complexity of the
wider models is predominately used to learn characteristics
of the speech score that are artifacts of the ordinal scale that
it is measured on, and thus do not contain useful information
in predicting speech severity along other metrics.

Another interesting finding is that while the single layer
ANN generally outperformed the 2-layer ANN in the speech
score evaluation, the inverse is true for the ISR evaluation.
Looking at this result in combination with our previous ob-
servation, it seems that modeling decisions that make the
ANN less prone to over-fitting / memorization (i.e. more lay-
ers, with fewer parameters per-layer) tend to lead to predic-
tions which are more strongly correlated with the ISR rela-
tive to the ALSFRS-R speech score. Although there has been
research on the prediction of other diagnostic measures for
individuals with ALS (such as the ALSFRS-R Bulbar Score
(Wisler et al. 2019) or ISR (Wang et al. 2016)), this paper
represents the first reported work on the prediction of the
ALSFRS-R speech scores. Because of this there are no suit-
able published baselines for direct comparison of the pre-
sented results, and it is highly likely the accuracy of the
speech score predictions reported here could be improved
with additional refinement of the acoustic features and su-
pervised learning strategies that are used. Future work will
consider a broader category of regression models to compare
with ANNs.

5 Conclusion

In this paper we examined the ability of artificial neural
networks to learn clinically-relevant information about pa-

tients with ALS beyond what is present in the ordinal la-
bels that the model is trained on. We found that even when
trained on a coarse ordinal measure for speech motor con-
trol, the continuous ratings generated by the ANN accurately
rank-ordered participant’s by ISR in 70.5% of cases where
there was no difference in the baseline ordinal rating. Ad-
ditionally, when comparing models of varying complexity,
we found that models with fewer parameters were gener-
ally capable of characterizing these subtle deviations in mo-
tor control even when exhibiting inferior performance in the
original prediction task.
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