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Abstract

While for classical logics, the motto “Truth is invariant under
the change of notation” has been studied extensively, less at-
tention has been paid to this aspect in defeasible logics. In this
paper, we address equivalences and transformations among
conditional knowledge bases that take renamings of the un-
derlying signature into account. Extending previous propos-
als, we introduce the concepts of renaming normal form
and renaming antecedent normal form for arbitrary knowl-
edge bases and across different signatures. We present pro-
cedures to transform every knowledge base to corresponding,
up to propositional normalization uniquely determined nor-
mal forms, and we study their properties. Using the obtained
normal forms allows for systematically identifying equiva-
lences among knowledge bases, for easier and more trans-
parent comparisons, and for simplified descriptions of algo-
rithms operating on knowledge bases by avoiding tedious, but
uninteresting borderline cases.

1 Introduction

Electric cars do not need fossil fuel, although there might be
exceptions, e.g., hybrid vehicles. Such a defeasible relation-
ship is conveniently expressed by a conditional of the form If
A then usually B, formally denoted by (B|A). A set of con-
ditionals is a knowledge base that might express the explicit
knowledge of an agent about a specific domain.

Example 1 ((Beierle, Eichhorn, and Kern-Isberner 2017)).
Rcar is a knowledge base about e-cars containing:
(f |c) “Usually cars need fossil fuel.”
(f |e) “Usually e-cars do not need fossil fuel.”
(c|e) “E-cars usually are cars.”
(e|ef ) “E-cars not needing fossil fuel usually are e-cars.”
(ef |e) “E-cars usually are e-cars not needing fossil fuel.”
(e|�) “Usually things are not e-cars.”
(cf ∨ cf |ce ∨ ce) “Things that are cars and e-cars or cars
but not e-cars are cars that need fossil fuel or are not cars
but need fossil fuel.”

Conditionals play a central role in nonmonotonic reason-
ing, and different semantic approaches have been defined for
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them (cf. (Adams 1975; Lewis 1973; Kraus, Lehmann, and
Magidor 1990; Pearl 1990; Lehmann and Magidor 1992;
Dubois and Prade 1994; Goldszmidt and Pearl 1996; Ben-
ferhat, Dubois, and Prade 1999; Kern-Isberner 2001)). In
any of these approaches, there are typically many differ-
ent possibilities to express the same semantic meaning. For
easier comparisons, avoidance of cumbersome but uninter-
esting case distinctions, and for less complex descriptions
of algorithms dealing with knowledge bases, normal forms
are desirable. Here, we address normal forms for condi-
tional knowledge bases that take renamings into account.
Normal forms for conditional knowledge bases have been
proposed in e.g. (Beierle, Eichhorn, and Kern-Isberner 2017;
Beierle 2019) and in (Beierle and Kutsch 2019; Beierle and
Haldimann 2020) with a focus on the systematic generation
of knowledge bases in normal form; in particular, no gen-
eral definition of renaming normal form and no algorithm
transforming a knowledge base into renaming normal form
is given there. The main contributions of this paper are:
• Extend the notion of renaming normal form (ρNF) given

in (Beierle and Haldimann 2020) only for normal form
conditionals to arbitrary knowledge bases.

• Define a new unique renaming antecedent normal form
(ρANF) ensuring model equivalence up to renamings.

• Define renamings, ρNF, and ρANF across different sig-
natures.

• Propose Algorithms Θρ and Θρa transforming every R
into ρNF and ρANF and their properties.
After recalling the required basics in Sec. 2, renamings

and ρNF are introduced in Section 3. Section 4 presents the
algorithm transforming R into its ρNF, and Section 5 intro-
duces the ρANF and how it is obtained. In Sec. 6 we list
conclusions and point out future work.

2 Background: Conditional Logic

Let L(Σ) be a propositional language over a finite signature
Σ. Unless otherwise stated, Σ consists of atoms a, b, c, . . ..
We call a signature Σ with a linear ordering � an ordered
signature and denote it by (Σ,�). The language may be de-
noted by L if the signature is clear from context. The for-
mulas of L will be denoted by letters A,B,C, . . .. We write
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AB for A∧B and A for ¬A. We identify the set of all com-
plete conjunctions over Σ with the set Ω of possible worlds
over L. For ω ∈ Ω, ω |= A means that A ∈ L holds in ω,
and the set of worlds satisfying A is ΩA = {ω | ω |= A}.
Two formulas A,B are equivalent, denoted as A ≡ B, if
ΩA = ΩB . By introducing a new binary operator |, we ob-
tain the set (L | L)Σ = {(B|A) | A,B ∈ L(Σ)} of condi-
tionals over L(Σ). Again, Σ may be omitted. For a condi-
tional r = (B|A), ant(r) = A is the antecedent of r, and
cons(r) = B is its consequent. The counter conditional of
r = (B|A) is r = (B|A). As semantics for conditionals,
we use ordinal conditional functions (OCF) (Spohn 2012).
An OCF is a function κ : Ω → N expressing degrees of
plausibility of possible worlds where a lower degree denotes
“less surprising”. At least one world must be regarded as be-
ing normal; therefore, κ(ω) = 0 for at least one ω ∈ Ω.
Each κ uniquely extends to a function mapping sentences to
N ∪ {∞} given by κ(A) = min{κ(ω) | ω |= A} where
min ∅ = ∞. An OCF κ accepts a conditional (B|A), writ-
ten κ |= (B|A), if the verification of the conditional is less
surprising than its falsification, i.e., if κ(AB) < κ(AB);
equivalently, κ |= (B|A) iff for every ω′ ∈ ΩAB there is
ω ∈ ΩAB with κ(ω) < κ(ω′). A conditional (B|A) is triv-
ial if it is self-fulfilling (A |= B) or contradictory (A |= B);
a set of conditionals is self-fulfilling if every conditional in
it is self-fulfilling. A finite set R ⊆ (L|L) of conditionals
is called a knowledge base. An OCF κ accepts R if κ ac-
cepts all conditionals in R, and R is consistent if an OCF
accepting R exists (Goldszmidt and Pearl 1996). We use �
to denote an inconsistent knowledge base. Mod(R) denotes
the set of all OCFs κ accepting R. Two knowledge bases
R,R′ are model equivalent, denoted by R ≡mod R′, if
Mod(R) = Mod(R′). We say (B|A) ≡ (B′|A′) if A ≡ A′
and AB ≡ A′B′ where ≡ is propositional equivalence.

3 Renamings and Renaming Normal Form

There are knowledge bases that are identical except for the
names of their variables. E.g., the knowledge bases R1 =
{(a|b), (a|c)} and R2 = {(c|b), (c|a)} become equal if we
swap the names for the variables a and c in one of them.
When analysing the structure of a knowledge base, we are
only interested in one of such knowledge bases that are iden-
tical except for a signature renaming.

Definition 2 (renaming, , mod). Let Σ,Σ′ be signatures.
We call a bijective function ρ : Σ → Σ′ a (signature) renam-
ing. A renaming is lifted canonically to formulas, worlds,
conditionals, knowledge bases, and sets thereof as usual.
Two worlds, formulas, conditionals, knowledge bases, or
sets thereof are equivalent under signature renaming, de-
noted as X  X ′, if there exists a renaming ρ such that
X ′ = ρ(X). Two knowledge bases R, R′ over Σ,Σ′ are
model equivalent up to renamings, denoted R mod R′, if
there is a renaming ρ : Σ′ → Σ such that R ≡mod ρ(R′).

Note that R  R′ implies R mod R′, but not vice
versa; but each condition ensures inferential equivalence up
to renamings: For formuals A,B let A |∼RB denote that
κ |= (B|A) holds for all κ ∈ Mod(R); thus |∼R corre-

sponds to system P inference (Adams 1975; Lehmann and
Magidor 1992) based on R. Then we have:
Proposition 3 ( |∼R and renamings). If R ≡mod ρ(R′) then
A |∼R′ B iff ρ(A) |∼R ρ(B).

In order to be able to deal with normal forms of formulas
in L without having to select a specific representation, we
assume a function ν mapping a propositional formula A to
a unique normal form ν(A) such that A ≡ A′ iff ν(A) =
ν(A′).
Definition 4 (=ν). Two propositional formulas A,A′ are
equal under normalization, denoted as A =ν A′, if ν(A) =
ν(A′). This equivalence is lifted canonically to sets of for-
mulas. Two conditionals (B|A), (B′|A′) are equal under
normalization, if A =ν A′ and B =ν B′. This equivalence
is lifted canonically to sets of conditionals.

Note that the definition of the normalization function im-
plies that for formulas A,B we have A =ν B iff A ≡ B.
Definition 5 (ν). Two worlds or sets thereof are equiv-
alent under signature renaming and normalization, denoted
as ω ν ω′, if ω  ω′. Two formulas A,A′ are equivalent
under signature renaming and normalization, denoted by
A ν A′, if there exists a renaming ρ such that ρ(A) =ν A′.
This equivalence is lifted canonically to sets of formulas.
Two conditionals (B|A), (B′|A′) are equivalent under sig-
nature renaming and normalization, if there exists a renam-
ing ρ such that ρ(A) =ν A′ and ρ(B) =ν B′. This equiva-
lence is lifted canonically to sets of conditionals.

In contrast to renaming, normalization might change the
size of a knowledge base, as the following example shows.
Example 6. Let R = {(b|a), (b|a ∨ a)} and R′ = {(b|a)}.
As both conditionals in R are equivalent, they will be
mapped to the same normal form by ν. Therefore, R =ν R′
although |R| �= |R′|.

For a set M , m ∈ M , and an equivalence relation ≡ on
M , the set of equivalence classes induced by ≡ is denoted
by [M ]/≡, and the unique equivalence class containing m
is denoted by [m]≡. It is easy to see that equivalence un-
der signature renaming  and equivalence under signature
renaming and normalization ν are equivalence relations.
Thus, for instance, the only non-identity renaming from
Σab = {a, b} to itself is the function ρab with ρab(a) = b
and ρab(b) = a, [ΩΣab

]/� = {[ab], [ab, ab], [ab]} are the
three equivalence classes of worlds over Σab, and we have
[(ab|ab ∨ ab)]�ν

= [(ab|ab ∨ ab)]�ν
.

To define a normal form with respect to renaming, we
need an ordering on (L|L)Σ.
Definition 7 (admissible ≺ on (L|L)Σ). We call a total pre-
order ≺ on (L|L)Σ admissible if it fulfils the following con-
ditions:

1. For any two conditionals c1, c2 with c1 �=ν c2 we have
either c1 � c2 or c2 � c1 but not both.

2. For any two conditionals c1, c2 with c1 =ν c2 we have
both c1 � c2 and c2 � c1.

3. For any two equivalence classes [c1]�ν
, [c2]�ν

with
[c1]�ν

�= [c2]�ν
and c1 � c2 it holds that for every

c′1 ∈ [c1]�ν
, c′2 ∈ [c2]�ν

we have c′1 � c′2.

564



For developing such an order, we will represent each for-
mula A ∈ L uniquely by its set ΩA of satisfying worlds.
Furthermore, we use the following notation. For an ordering
relation � on a set M , its lexicographic extension to strings
over M is denoted by �lex . For ordered sets S, S′ ⊆ M with
S = {e1, . . . , en} and S′ = {e′1, . . . , e′n′} where ei � ei+1

and e′j � e′j+1 its extension �set to sets is:

S �set S
′ iff n < n′,

or n = n′ and e1 . . . en �lex e′1 . . . e
′
n′

(1)

For Σ with ordering �, [[ω]]
�

is the usual interpretation of a
world ω as a binary number; e.g., for Σab with a�b, [[ab]]

�
=

3, [[ab]]
�
= 2, [[ab]]

�
= 1, and [[ab]]

�
= 0.

Definition 8 (induced ordering on formulas and conditionals
w
�,

c
�). Let Σ be a signature with linear ordering �. The

orderings induced by � on worlds ω, ω′ and conditionals
(B|A), (B′|A′) over Σ are given by:

ω
w
�. ω′ iff [[ω]]

�
� [[ω′]]

�
(2)

(B|A)
c
�. (B′|A′) iff ΩA

w
�set ΩA′ ,

or ΩA = ΩA′ and ΩB

w
�.

set ΩB′

(3)

In order to ease our notation, we will omit the upper sym-
bol in

w
� and

c
�, and write just � instead, and analogously �.

for the non-strict variants. For instance, for Σab with a � b
we have ab � ab � ab � ab for worlds, and (ab|ab∨ab) �
(ab|ab∨ab) and (ab∨ab|ab∨ab∨ab)� (ab|ab∨ab∨ab∨ab)
for conditionals.
Definition 9 (canonical ordering ≺·). Given a signa-
ture Σ with linear ordering �, let [(L|L)Σ]/�ν

=
{[r1]�ν , . . . , [rm]�ν} be the equivalence classes of (L|L)Σ
induced by renamings and normalization such that for each
i ∈ {1, . . . ,m}, the conditional ri is a minimal element in
[ri]�ν

with respect to �, and r1 � . . .� rm. The condition-
als {r1, . . . , rm} are the canonical conditionals over Σ. With
Mi = [ri]�ν

\ [ri]=ν
, the canonical ordering on (L|L)Σ in-

duced by �, denoted by ≺·, is given by the schema

[r1]=ν ≺· M1 ≺· [r2]=ν ≺· M2 ≺· . . . ≺· [rm]=ν ≺· Mm

where r ≺· r′ iff r � r′ for all r, r′ ∈ Mi with i ∈
{1, . . . ,m}.
Proposition 10 (≺·). The canonical ordering ≺· defined in
Definition 9 is admissible (cf. Definition 7).

Proof. We show that � fulfils conditions 1 and 2 for ad-
missibility first. Consider c1 = (B1|A1), c2 = (B2|A2).
If c1 =ν c2 then ΩA1 = ΩA2 and ΩB1 = ΩB2 . Hence,

both c1
c
�. c2 and c2

c
�. c1 hold. If c1 �=ν c2 then either

ΩA1
�= ΩB1

or ΩA2
�= ΩB2

. Hence either c1
c
� c2 or

c2
c
� c1 holds. Because the ordering ≺· compared to � only

rearranges the ordering of the equivalence classes with re-
spect to =ν the conditions 1 and 2 of admissibility can be
transferred from � to ≺·. The schema of ≺· given in Defini-
tion 9 shows that ≺· fulfils condition 3 of admissibility.

In the following, we will abbreviate R ≺·set R′ simply
by R ≺· R′ for knowledge bases R,R′, and analogously
for the non-strict version �·set . Using these notations, we
can extend the notion of renaming normal form given in
(Beierle and Haldimann 2020) for normal form conditionals
only to arbitrary knowledge bases containing any condition-
als over Σ.
Definition 11 (ρNF). A knowledge base R over an ordered
signature (Σ,�) is in renaming normal form (ρNF) if for
every knowledge base R′ over Σ with R  R′ we have
R �· R′.

Note that while we use  in Definition 11, the next propo-
sition shows that it does not make any difference if we use
ν instead.
Proposition 12. A knowledge base R over an ordered sig-
nature (Σ,�) is in ρNF iff for every knowledge base R′ over
Σ with R ν R′ we have R �· R′.

Proof. We prove this proposition by showing both implica-
tions of the “iff”.

⇒: Let R be a knowledge base in ρNF and R ν R′.
Let ρ be the renaming such that ρ(R) =ν R′. Because R
is in ρNF, we have R �· ρ(R) �· R′ (cf. condition 2 of
admissibility).

⇐: Let R be a knowledge base such that R �· R′ for
all R′ such that R ν R′. This implies that R �· R′ for all
R′ such that R  R′ and therefore that R is in ρNF.

For every knowledge base, a corresponding knowledge
base in ρNF exists. More precisely, we have:
Proposition 13 (ρNF). For every consistent conditional
knowledge base R over an ordered signature (Σ,�) there
is a knowledge base R′ in ρNF over Σ such that R  R′.

If two knowledge bases R′,R′′ over Σ are both in ρNF
and R  R′ and R  R′′, then R′ =ν R′′.

Proof. Consider the set {R′ ⊆ (L|L)Σ | R  R′} of all
knowledge bases over Σ that are renaming equivalent to R.
Select a minimal element with respect to ≺· from this set.
This element is in ρNF. With condition 1 of the definition of
admissibility it follows that R′ =ν R′′.

In the strict sense, for every knowledge base R there is a
set S = {R′ ⊆ (L|L)Σ | R  R′ and R′ is in ρNF} that
is not necessarily a singleton. But Proposition 13 states that
all elements of S are equivalent under propositional normal-
ization. Therefore, in cases where it does not matter which
element from S is selected, we will denote some arbitrary
element from S as ρNF(R) and call it “the” ρNF of R.

An interesting property of the ρNF is that it respects
equivalence under (propositional) normalization.
Proposition 14. Let R,R′ be two consistent conditional
knowledge bases over the same ordered signature. Then
R =ν R′ implies ρNF(R) =ν ρNF(R′).

Proof. Assume ρNF(R) �=ν ρNF(R′). W.l.o.g. we assume
ρNF(R) ≺· ρNF(R′). Let ρ be the renaming that transforms
R to ρNF(R) =ν ρ(R). We have ρ(R′) =ν ρ(R) and there-
fore ρ(R′) �· ρNF(R) ≺· ρNF(R′). This is a contradic-
tion.

565



Two knowledge bases that are equivalent under renaming
share the same ρNF.
Proposition 15. Let R,R′ be two consistent conditional
knowledge bases over the same ordered signature. Then
R  R′ implies ρNF(R) =ν ρNF(R′). Furthermore:
R ν R′ iff ρNF(R) =ν ρNF(R′).

Proof. We will show both implications of the last “iff”.
⇐: R ν ρNF(R) =ν ρNF(R′) ν R′
⇒: R ν R′ implies that there is a renaming ρ such

that ρ(R) =ν R′. Let ρ′ be the renaming that maps R′ to
ρNF(R′). Then ρ′ ◦ ρ maps R to ρNF(R′) which is in ρNF.
With Proposition 13 it follows that ρNF(R) =ν ρ′ ◦ρ(R) =
ρNF(R′).

Finally, we consider renamings across different signa-
tures.
Proposition 16. For every consistent conditional knowledge
base R over (L|L)Σ and every ordered signature (Σ′,�)
such that |Σ| = |Σ′| there is a knowledge base R′ ⊆
(L|L)Σ′ in ρNF such that R  R′.

If two knowledge bases R′,R′′ ∈ (L|L)Σ′ are both in
ρNF and R  R′ and R  R′′ then R′ =ν R′′.

Proof. As |Σ| = |Σ′| there is a renaming ρ : Σ → Σ′ that
maps R to a knowledge base R′′′ over Σ′. With Proposi-
tion 13 it follows that there exists a knowledge base R′ in
ρNF such that R′′′  R′. Therefore R  R′′′  R′.
From R′  R  R′′ it follows with Proposition 15 that
R′ =ν R′′.

Again, in general, for every knowledge base R there is a,
possibly non-singelton, set S = {R′ ∈ (L|L)Σ′ | R 
R′ and R′ is in ρNF} of renaming equivalent knowledge
bases in ρNF. Proposition 16 allows us to write ρNFΣ′(R)
to denote an arbitrary element from S if it does not make a
difference which element is selected (cf. ρNF(R)).

Proposition 14 can be transferred to situations with mul-
tiple signatures.
Proposition 17. Let R′ ∈ (L|L)Σ′ ,R′′ ∈ (L|L)Σ′′ be two
consistent knowledge bases and (Σ,�) be an ordered sig-
nature. Then R′ ν R′′ iff ρNFΣ(R′) =ν ρNFΣ(R′′).

Thus, for comparing knowledge bases over different sig-
natures with respect to equivalence under renaming and nor-
malization, we can simply compare their renaming normal
forms with respect to some ordered signature Σ.

4 Converting Knowledge Bases to ρNF

In this section, we will introduce the algorithm Θρ to trans-
form an arbitrary conditional knowledge base over a signa-
ture with an ordering into ρNF. Algorithm Θρ can be seen
as an implementation of ρNF(R). Using Perm(Σ) to denote
the set of all renamings from Σ to Σ, Θρ is shown in Algo-
rithm 1. The algorithm exploits two main observations:

(O1) For each equivalence class Ci, every conditional c ∈
Ci is mapped to Ci by all renamings over Σ.

(O2) For any two knowledge bases R,R′ over Σ and 1 ≤
i ≤ n the following implication holds:

Algorithm 1 Θρ: Transform cond. knowledge base into ρNF
Input: conditional knowledge base R over signature Σ
with linear ordering �

Output: conditional knowledge base RρNF in ρNF such
that R  RρNF

1: {C1, . . . , Cn} ← [(L|L)(Σ)]/�ν
with C1 ≺· . . . ≺· Cn

2: P0 ← Perm(Σ)
3: for i = 1, . . . , n do
4: Ri ← R∩ Ci

5: Ptmp ← ∅
6: Rtmp ← ∅
7: for ρ ∈ Pi−1 do
8: if Ptmp = ∅ or ρ(Ri) ≺· Rtmp then
9: Ptmp ← {ρ}

10: Rtmp ← ρ(Ri)
11: else
12: if ρ(Ri) =ν Rtmp then
13: Ptmp ← Ptmp ∪ {ρ}
14: Pi ← Ptmp

15: if |Pi| = 1 then
16: Pn ← Pi

17: break
18: ρ ← chooseOneOf(Pn)
19: return RρNF ← ρ(R)

R∩ (C1 ∪ · · · ∪Ci) ≺· R′ ∩ (C1 ∪ · · · ∪Ci) implies
that R ≺· R′.

The first observation follows from the definition of the
equivalence classes C1, . . . , Cn. The second observation
follows from condition 3 of the admissibility of ≺· (Defi-
nition 7). In combination these observations imply:

(O3) For any knowledge base R over Σ and 1 ≤ i ≤ n the
following implication holds:

If a renaming ρ maps R to a knowledge base in ρNF,
then it also maps R∩ (C1∪· · ·∪Ci) to a knowledge
base in ρNF.

The algorithm Θρ looks for a renaming that transforms a
knowledge base R to ρNF in Lines 2 to 18. To do so it starts
with the set of all renamings (cf. Line 2) and filters them in
each iteration of the for loop starting in Line 3. Using obser-
vation (O3), in the i-th iteration we keep only the renamings
that map R ∩ (C1 ∪ · · · ∪ Ci) to its ρNF. After the loop,
only renamings that map R to its ρNF remain in Pn. The
algorithm chooses one of these renamings (cf. Line 18) and
applies it to R (cf. Line 19).

Inside the outer loop in Lines 3 to 17, we employ another
optimization in Lines 5 to 14. We know, that at the beginning
of the i-th iteration, all ρ ∈ P map R∩ (C1 ∪ · · · ∪Ci−1) to
the same knowledge base (which is in ρNF). Together with
the second observation (O2) it follows that:

ρ1(R∩ (C1 ∪ · · · ∪ Ci)) ≺· ρ2(R∩ (C1 ∪ · · · ∪ Ci))

⇔ ρ1(R∩ Ci) ≺· ρ2(R∩ Ci)

Therefore, it suffices to select those renamings, that mini-
mize R ∩ Ci. This is what happens in Lines 5 to 14. The
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check in Lines 15 to 17 avoids unnecessary iterations as
there are no non-minimal elements in a singleton.

Formalizing these observations about Θρ yields:
Proposition 18 (Θρ). Let R be a knowledge base.
1. (termination) Θρ terminates on input R.
2. (=ν) If ρ1, ρ2 are different choices in Line 18 of

executing Θρ(R), then ρ1(R) =ν ρ2(R).
3. (ρNF) Θρ(R) is in ρNF.
4. () R  Θρ(R).

In the remainder of this chapter, we will illustrate two
approaches how the algorithm Θρ can be used to check
whether two knowledge bases are renaming equivalent. The
first approach transforms two knowledge bases into ρNF
over their corresponding signatures. Afterwards the knowl-
edge bases are compared. This approach makes use of the
following proposition.
Proposition 19. Let Σ1 = {a1, . . . , ak},Σ2 = {b1, . . . , bk}
be two ordered signatures with the same size with a1 �1

a2 �1 . . .�1 ak and b1 �2 b2 �2 . . .�2 bk. Define t : Σ1 →
Σ2, ai �→ bi for i = 1, . . . , k. Let R1 be a knowledge base
over Σ1 and R2 be a knowledge base over Σ2. Then R1 ν

R2 iff t(Θρ(R1)) =ν Θρ(R2).

Proof. We will prove both implications of the “iff”:
⇐: Because t is a signature renaming we have R1 ν

Θρ(R1) ν Θρ(R2) ν R2.
⇒: Assume that R1 ν R2 but t(Θρ(R1)) �=ν Θρ(R2).

Therefore t(Θρ(R1)) ≺· Θρ(R2) or Θρ(R2) ≺· t(Θρ(R1))
(cf. admissibility of ≺·, condition 3 in Definition 7.). The
first case is impossible because t(Θρ(R2)) is in ρNF. The
ordering of the elements in Σ1 and Σ2 together with the def-
inition of t implies that R ≺· R′ ⇔ t(R) ≺· t(R′) for
all knowledge bases R,R′. The second case therefore im-
plies t−1(Θρ(R2)) ≺· Θρ(R1). This is a contradiction, as
Θρ(R1) is in ρNF.

Example 20. We want to check whether the knowl-
edge bases R1 = {(df |e), (ef̄ |e), (de|e), (ēf ∨
ēf̄ |�), (ē|�)} over Σ1 = {d, e, f} and R2 =
{(ba|a), (bc|a), (ac̄|a), (ā|�)} over Σ2 = {a, b, c} are
equivalent under signature renaming and normalization.

Defining d � e � f on Σ1 and a � b � c on Σ2

the results of applying Θρ to both R1 and R2 yields
Θρ(R1) = {(ef |d), (df̄ |d), (ed|d), (d̄f ∨ d̄f̄ |�), (d̄|�)}
and Θρ(R2) = {(ba|a), (bc|a), (ac̄|a), (ā|�)}. Now we ap-
ply t = {d �→ a, e �→ b, f �→ c} to R1 and get t(Θρ(R1)) =
{(bc|a), (ac̄|a), (ba|a), (āc ∨ āc̄|�), (ā|�)} which is equal
under normalization to Θρ(R2). Therefore, R1 and R2 are
equivalent under signature renaming and normalization.

The second approach renames both knowledge bases to
the same signature and then transforms them into ρNF.
Proposition 21. Let Σ1,Σ2 be two signatures and (Σ,�) be
an ordered signature all with the same size. Let ρ1 : Σ1 �→ Σ
and ρ2 : Σ2 �→ Σ be arbitrary renamings. Let R1 be a
knowledge base over Σ1 and R2 be a knowledge base over
Σ2. Then R1 ν R2 iff Θρ(ρ1(R1)) =ν Θρ(ρ2(R2)).

Proof. This is a consequence of Propositions 17 and 18.

The following example illustrates the second approach.
Example 22 (Example 20 continued). Based on Proposi-
tion 21, we want to check whether the knowledge bases
R1,R2 given in Example 20 are equivalent under signa-
ture renaming and normalization. First, we transfer both
knowledge bases to the ordered signature (Σ,�) with Σ =
{a1, a2, a3} and a1 � a2 � a3:

R1  R′
1 = {(a1a3|a2), (a2ā3|a2), (a1a2|a2),

(ā2a3 ∨ ā2ā3|�), (ā2|�)}
R2  R′

1 = {(a2a1|a1), (a2a3|a1), (a1ā3|a1), (ā1|�)}
Applying Θρ yields the two knowledge bases

Θρ(R′
1) = {(a2a3|a1), (a1ā3|a1), (a2a1|a1),

(ā1a3 ∨ ā1ā3|�), (ā1|�)}
Θρ(R′

2) = {(a2a1|a1), (a2a3|a1), (a1ā3|a1), (ā1|�)}
which are equivalent under normalization, showing that R1

and R2 are equivalent under signature renaming and nor-
malization.

5 Renaming Antecedent Normal Form

In the previous sections, we deliberately developed and in-
vestigated the ρNF independent of other normal forms that
have been proposed for conditional knowledge bases. How-
ever, the benefits of ρNF can be even better exploited in
combination with other normal forms. For instance, let us
call a conditional knowledge base R to be in propositional
normal form (PNF) if R = ν(R). If we restrict our at-
tention to knowledge bases in PNF, then each consistent R
has a unique ρNF because ν eliminates syntactic variants
of propositional formulas; this also leads to slightly stricter
versions of e.g. Propositions 13 – 17. The antecedent normal
form (ANF) of R goes considerably further than PNP.
Definition 23 (ANF (Beierle and Kutsch 2019)). Let R be
a knowledge base.

• Ant(R)={A |(B|A)∈R} are the antecedents of R.
• For A ∈ Ant(R), the set R|A = {(B′|A′) | (B′|A′) ∈

R and A ≡ A′} is the set of A-conditionals in R.
• R is in antecedent normal form (ANF) if either R is in-

consistent and R = �, or R is consistent, does not contain
any self-fulfilling conditional, contains only conditionals
of the form (AB|A), and

∣
∣R|A

∣
∣ = 1 for all A ∈ Ant(R).

Using propositional normalization ν, the transformation
system Θa (Figure 1) maps every R into a unique, model-
equivalent R′ that is in ANF. (Beierle and Kutsch 2019,
Prop. 2). Combining ANF and ρNF, we get:
Definition 24 (ρANF, Θρa). A knowledge base R is in re-
naming antecedent normal form (ρANF) if it is in ANF and
in ρNF. With Θρa(R), we denote Θρ(Θa(R)).

R1, R2 may have different ρNFs, but the same ρANF.
The latter does not guarantee any more that R1 and R2 are
renaming equivalent, but it still ensures that they are model
equivalent up to renamings.
Proposition 25 (ρANF, Θρa). Let R be a knowledge base.
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(SF )
R∪ {(B|A)}

R A |= B, A �≡ ⊥

(AE )
R∪ {(B|A), (B′|A′)}

R ∪ {(BB′|A)} A ≡ A′

(NO)
R∪ {(B|A)}

R ∪ {(ν(AB)|ν(A))} A �= ν(A) or B �= ν(AB)

(IC )
R
� R �= �,Π(R) = incons.

Figure 1: Rules Θa (Beierle and Kutsch 2019) mapping ev-
ery knowledge base to its ANF; Π is a consistency test,
e.g. based on the tolerance criterion (Goldszmidt and Pearl
1996), and � represents an inconsistent knowledge base.

1. (completeness) There is R′ in ρANF with R mod R′.
2. (uniqueness) Θρa(R) is uniquely determined.
3. (commutative) Θρa(R) = Θρ(Θa(R)) = Θa(Θρ(R)).
4. (ρANF) Θρa(R) is in ρANF.
5. (mod) R mod Θρa(R).

For model equivalence up to renaming of symbols we get:
Proposition 26 (Θρa). For i = 1, 2, let Ri be a knowledge
base over Σi and ρi : Σi �→ Σ a signature renaming. Then
Θρa(ρ1(R1)) = Θρa(ρ2(R2)) implies R1 mod R2.

Thus, two knowledge bases over different signatures are
model equivalent up to renamings if they have the same
ρANF for some (arbitrary) embeddings into some common
signature. Note that Proposition 26 also covers the special
case where Σ1 = Σ2 = Σ and where ρi is the identity.
Example 27. Let Σbcf = {b, c, f} and Rbcf = {(b ∨
f |f), (bf ∨ c|b), (bf ∨ c|f), (f |b∨ b∨f)}. When comparing
Rbcf to the knowledge base Rcar from Example 1 we ob-
serve that their ρNFs are different and that they are not re-
naming equivalent. For comparing their ρANFs, let us first
apply Θa to both, yielding:

Θa(Rcar ) = {(ν(cf)|ν(f)), (ν(cef)|ν(e)), (ν(e)|ν(�))}
Θa(Rbcf ) = {(ν(bcf)|ν(f)), (ν(bc)|ν(b)), (ν(f)|ν(�))}

Using an ordered standard signature like Σ = {a, b, c}
with a � b � c and applying Θρ, we obtain
ρANFΣ(Rcar ) = ρANFΣ(Rbcf ) = {(ν(bca)|ν(a)),
(ν(bc)|ν(b)), (ν(a)|ν(�))}, implying Rcar mod Rbcf .
Specifically, for ρ(c) = b, ρ(e) = f, ρ(f) = c, we have
Rcar ≡mod ρ(Rbcf ). Due to Proposition 3, we thus have
A |∼Rcar

B iff ρ−1(A) |∼Rbcf
ρ−1(B) and ρ(C) |∼Rcar

ρ(D)

iff C |∼Rbcf
D for all formulas A,B and C,D over the

signatures of Rcar and Rbcf , respectively.

6 Conclusions and Further Work

We addressed the comparison of conditional knowledge
bases when taking renamings of the underlying signature
into account. We extended the notion of renaming normal

form (ρNF), capturing equivalences of knowledge bases un-
der renamings, previously proposed only for normal form
conditionals, to arbitrary knowledge bases. We introduced
the new renaming antecedent normal form (ρANF), ensurin
model equivalence up to renamings. Both normal forms are
applicable also across different signatures. We presented
procedures transforming any R into its unique ρNF and
ρANF, respectively, and studied their main properties. In fu-
ture work, we will empirically evaluate the properties and
benefits of knowledge bases in renaming normal form, and
investigate the complexity of the normal form algorithms.
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