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Abstract 
Generating a schedule for a professional sports league is an 
extremely demanding task. Good schedules have many 
benefits for the league, for example higher incomes, lower 
costs and more interesting and fairer seasons. This paper 
presents a successful solution method to schedule the Finnish 
1st division ice hockey league. The solution method is an 
improved version of the method used to schedule the Finnish 
major ice hockey league. The method is a combination of local 
search heuristics and evolutionary methods. An analyzer for 
the quality of the produced schedules will be introduced. 
Finally, we propose a set of test instances that we hope the 
researchers of the sports scheduling problems would adopt. 
The generated schedule for the Finnish 1st division ice hockey 
league is currently in use for the season 2008-2009. 

1. Introduction   
Many new timetabling problems have been introduced in 
recent years. Most of the timetabling research used to 
concentrate on university and school timetabling, but 
especially rostering and sports scheduling have been quite 
extensively studied recently. Excellent overviews on sports 
scheduling can be found in (Easton et al. 2004) and 
(Rasmussen and Trick 2008). 
 
In the last decade, the sports scheduling focus has moved 
from theoretical results to practical applications. Some of 
the most important theoretical results can be found in 
(Schreuder 1980, 1992; de Werra 1981, 1988, 1990; 
Easton et al. 2001; Elf et al. 2003; Urrutia and Ribeiro 
2004; Dinitz et al. 2007). An extensive summary of the 
theoretical results can be found in (Rasmussen and Trick, 
2008).  
 
Even if quite efficient algorithms have recently been 
designed for sports scheduling problems, to the best  of our 
knowledge, there are only a few cases where academic 
researchers have been able to close a contract with a sports 
league owner: the major baseball league in USA 
(Nemhauser and Trick 1998), the major soccer league in 
Austria (Bartsch et al. 2006), the 1st division soccer in 
Chile (Durán et al. 2006), the major basketball league in 
New Zealand (Wright 2006), the major soccer league in 
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Belgium (Goossens and Spieksma 2006), the major soccer 
league in Denmark (Rasmussen 2008), the major volleyball 
league in Argentina (Bonomo et al. 2008) and the major 
ice hockey league in Finland (Kyngäs and Nurmi 2009). 
This paper presents a new case: the Finnish 1st division ice 
hockey league. 
 
The sports league scheduling problems solved in this paper 
are constrained minimum break problems (see e.g. 
Rasmussen 2008). The problem is to find a schedule with 
the minimum number of breaks and at the same time take 
additional requirements and requests into account. For the 
sports scheduling terminology used in this paper we refer 
to (Kyngäs and Nurmi 2009). 
 
The focus of this paper is to solve a highly constrained 
sports scheduling problem. In Section 2 we give an 
overview of our earlier sports scheduling algorithm. Then 
we present an improved version of the algorithm. Section 3 
presents the Finnish 1st division ice hockey league 
problem. The problem is extremely difficult both in terms 
of finding a feasible solution and of optimizing the 
requests from the league. Computational results are 
reported in this section. It will be seen that our algorithm 
produces excellent results compared to the manual 
schedule used in the previous season. An analyzer for the 
quality of the produced schedules will be introduced in 
Section 4. The use of the analyzer is vital in producing the 
final schedule for the league authorities. Finally in Section 
5, we propose a set of test instances that we hope the 
researchers of the sports scheduling problems will adopt. It 
will be seen that our solutions for these instances are 
competitive 

2. The Improved Algorithm 
Our basic algorithm for solving sports scheduling problems 
is presented in (Kyngäs and Nurmi 2009), (Nurmi and 
Kyngäs 2007) and (Nurmi 1998). The algorithm is a 
genetic algorithm (Goldberg 1989) with one mutation 
operator and no recombination operators. The two most 
important features of the algorithm are the greedy hill-
climbing mutation (GHCM) operator, which generates a 
new solution candidate from the current solution, and the 
adaptive genetic penalty method (ADAGEN), which is a 
multi-objective optimization method. The algorithm uses 
three mechanisms to help the search procedure to avoid 
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local optima: genetic reproduction (Syswerda 1989), tabu 
search (Glover et al. 1985) and simulated annealing 
(Kirkpatrick et al. 1983). The use of these methods differs 
somewhat from their usual application (see Nurmi 1998).  
 
The GHCM operator moves a game, g1, from its old 
round, r1, to a new round, r2, and then moves another 
game, g2, from round r2 to a new round, r3, and so on, 
ending up with a sequence of moves. The initial game 
selection is random. The new round for the game is 
selected considering all possible rounds and selecting the 
one which causes the least increase in the cost function 
value when considering the relocation cost only. Moreover, 
the new game from that round is again selected considering 
all the games in that round and picking the one for which 
the removal causes the most decrease in the cost function 
value when considering the removal cost only.  
 
The ADAGEN method is an adaptive penalty method for 
multi-objective optimization. A traditional penalty method 
assigns positive weights (penalties) to the soft constraints 
and sums the violation scores to the hard constraint values 
to get a single value to be optimized. The ADAGEN 
method assigns dynamic weights to the hard constraints.  
 
The reproduction operation of the algorithm is, to a certain 
extent, based on the steady-state reproduction (Syswerda 
1989). We use marriage selection (Ross and Ballinger 
1993)  to select a schedule from the population of 
schedules for a single GHCM operation. The new schedule 
replaces the old one if it has a better or equal fitness. 
Furthermore, the least fit is replaced with the best one 
when n better schedules have been found, where n is the 
size of the population.  
 
Next we present two changes to the original algorithm. 
These changes will help the search procedure to escape 
from local optima as well as better explore the fitness 
landscape. 
 
The original algorithm uses a simulated annealing 
refinement. The initial temperature T0 is calculated by 
 
     T0 = C+ / log(1/X0) , 
 
where X0 is the degree to which we want to accept an 
increase in the cost function (we use a value of 0.75) and 
C+ is an average increment in the cost function for 100 
random moves. This method was proposed by (van 
Laarhoven and Aarts 1987). The exponential cooling 
scheme is used to decrement the temperature: 
 
     Tk = �Tk-1 , 
 
where � is usually chosen between 0.8 and 0.995. Our new 
test runs showed that a good strategy is to stop the cooling 
at some predefined temperature. Therefore, after a certain 

number of iterations m we will continue to accept an 
increase in the cost function with some constant probability 
p. Using the initial temperature given above and the 
exponential cooling scheme, we can calculate the value: 
 
     � = (–1/( T0 log p))–m . 
 
Our preliminary test runs showed that we can get 
surprisingly good results by choosing m equal to the 
maximum number of iterations with no improvement to the 
cost function and p equal to 0.0015. The new annealing 
schedule seems to produce superior solutions compared to 
the well-known annealing schedules. The reason might be 
that it enables the search procedure to continue to escape 
from local optima. We will study this method more closely 
in our next paper. 
 
The other change to the original algorithm concerns 
shuffling the current solution. A hyperheuristic (Cowling 
et. al. 2000)  is a mechanism that chooses a heuristic from 
a set of simple heuristics, applies it to the current solution, 
then chooses another heuristic and applies it, and continues 
this iterative cycle until the termination criterion is 
satisfied. We use the same idea, but the other way around. 
We introduce a number of simple heuristics that are 
normally used to improve the current solution but, instead, 
we use them to shuffle the current solution - that is, we 
allow worse solution candidates to replace better ones in 
the current population. We use five shuffling operations: 

1. Select a random game and move it to a random 
round, and do this k1 times 

2. Swap two random games, and do this k2 times 
3. Select a random round and move k3 random 

games from that round to random rounds 
4. Swap all the games in two random rounds 
5. Select a random game A-B and swap it with the 

game B-A, and do this k4 times. 
We select one random shuffling operation in every m/20th 
iteration of the algorithm, where m equals the maximum 
number of iterations with no improvement to the cost 
function. The best results have been obtained using the 
values k1 = 3, k2 = 2, k3 = 3 and k4 = 2. The shuffling seems 
to produce better solutions than without shuffling. The 
reason might again be that it enables the search procedure 
to continue to escape from local optima. We will again 
study this method more closely in our next paper. 
 
Table 1 shows the result of the comparison between the 
original and the improved algorithms. Three different 
problems were used to compare their performance: one that 
minimizes just number of breaks, one that includes further 
restrictions (intermediate test problem) and finally a 
complex real-world problem. The improved algorithm 
using simulated annealing and shuffling refinements 
performs clearly better than the original algorithm. 
 
Our algorithm uses random initial solutions. It has been 
claimed in many different contexts that better initial 

196



solutions lead to better final solutions. It has also been 
argued that it is a good idea to use canonical schedules 
(Schreuder 1980) as initial solutions for sports scheduling 
methods since canonical schedules minimize the number of 
breaks. We tested our algorithm using canonical starting 
schedules thus producing good initial solutions. We ran the 
algorithm several times using both artificial problems and 
real-world problems. The results were clear. Canonical 
schedules were unable to produce better final solutions 
than random schedules as initial solutions to our algorithm. 
 
Table 1: The percentage of the best solutions found for the 
original algorithm and for the improved algorithm. The improved 
algorithm uses simulated annealing and shuffling refinements. 
 

Problem  
type 

Original 
algorithm 

Improved 
Algorithm 

Break optimization only 1% 8% 

Intermediate test problem 13% 21% 

Complex real-world problem 7% 14% 

3. The Finnish 1st Division Ice Hockey League 
Ice hockey is the biggest sport in Finland, both in revenue 
and number of spectators. The Finnish 1st division ice 
hockey league is managed by the Finnish Ice Hockey 
Association. The Competition Manager of the league is 
responsible for producing the schedule. Prior to the 
2008�2009 season, the schedule was produced manually. 
When the manager heard that we had scheduled the major 
league (Kyngäs and Nurmi 2009), he contacted us. He told 
us that the 1st division is an even more difficult problem 
than the major league. We agreed to generate a sample 
schedule for them. 
 
The league has twelve teams. Two of the teams are located 
in big cities (over 100 000 citizens) and the rest in smaller 
cities. One team is quite far up north, one on the west 
coast, three teams are located in the east and the rest in 
Central Finland (see Figure 2).  
 
The schedule format for the league has been stable for 
many years. The basis of the schedule is a quadruple round 
robin tournament concluding in 44 games for each team. In 
addition, each team plays at home against the Finnish U20 
team (national team for players under 20 years of age). 
Therefore, there are 45 games for each team and a total of 
276 games to be scheduled. The games should be 
scheduled on Wednesdays and Saturdays. 
 
The league first fixes the dates on which the rounds will be 
played. They only fix 44 dates - that is. the basic schedule 
should be a compact schedule. The U20 games are 
preassigned to given dates.  

Often, there are also parties other than the league and the 
teams involved in the scheduling process. Examples of 
such parties include TV networks and other leagues. In the 
case of the Finnish 1st division ice hockey league the TV 
network chooses the games to show before the scheduling 
process. These games are preassigned to given rounds. The 
Finnish major ice hockey league introduces further 
requirements. Five teams in the 1st division are located in 
(or very close to) the same cities as the teams in the major 
league. The major league is scheduled first and these five 
teams should not play at home on the same days as their 
counterparts in the major league. Furthermore, three other 
teams are competing with the Finnish major basketball 
league for the same spectators. This league is again 
scheduled first, so these three teams should not play at 
home on certain days. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The map of Finland and the twelve teams in the Finnish 
1st division ice hockey league. 
 
For the following terminology and notation we refer to 
(Kyngäs and Nurmi 2009). The league and the teams gave 
the following requirements for the 2008�2009 season: 

H1. Every team plays in every round exactly once (a 
compact schedule). 
H2. 36 home games are forbidden on certain days. 
H6. A team cannot play at home on two consecutive 
calendar days. 
H7. 61 preassigned games. 
H8. There cannot be a break in the second round. 

In addition, the league and the teams gave the  following 
requests: 

S2. A team cannot have more than two consecutive 
home games. 
S3. A team cannot have more than two consecutive 
away games. 
S4. The LeKi, Hokki, Jokipojat, Kiekko-Vantaa and 
TuTo teams wish to play a few away tours. 
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S5. There must be at least six rounds before two 
teams meet again. 
S7. All teams wish to play their home games on 
Saturdays. 
S9. The D-Team, HeKi, Kiekko-Vantaa, LeKi and 
TuTo teams do not want to play at home on the same 
day as their major league counterparts. 
S12. The difference between the number of home 
games and the number of away games for each team 
should be as small as possible after each round. 

The most important requests from the league were assigned 
a larger weight in the ADAGEN method. The following 
weights were used for hard constraints: 

� 3-25 for H1. 
� 3-10 for H2. 
� H6 to H8 were preassigned. 

 
The construction of the schedule was quite a difficult task. 
First of all, there were a considerable number of 
restrictions � over 10% more than in the Finnish major ice 
hockey league (Kyngäs and Nurmi 2009). Secondly, the 
teams had many more wishes than the teams in the major 
league. 
 
Table 2: The manual solution for the 2007�2008 season and our 
best solution for the 2008�2009 season. Unfortunately it is not 
possible to calculate values for other constraints from the 
2007�2008 manual schedule. 
 

 2007-2008 
(manual) 

2008-2009
(algorithm) 

H1: number of rounds (does not  
       include those needed for  
       the away tours) 

64 44 

H2,H7: number of forbidden 
       and preassigned games < 60 97 

S2,S3: number of 3-breaks 
       (at home + away) 68 2 + 4 

S4: number of away tours 13 17 

S7: minimum number of home 
      games on weekends 9 12 

 
We generated two schedules as we did for the major 
league. After the generation of the first schedule the 
Competition Manager discovered that he had forgotten a 
few restrictions. We added them to the program and 
produced a second schedule. The second schedule was 
accepted and only two games were relocated both due the 
fact that the teams would have had to play three 
consecutive away games because of home venue 
unavailability. So the schedule is in use almost as 
generated. Table 2 shows our solution for the 2008�2009  

season and a comparison with the solution produced 
manually for the 2007�2008 season. The algorithm was 
run on an Intel Core 2 Duo PC with a 3.8GHz processor 
and 2GB of random access memory running Windows XP. 
Our solution (best of the 50 runs) was found in six hours of 
computer time, whereas the manual solution took several 
weeks to construct. 
 
The Competition Manager was very satisfied with the 
schedules we generated and we closed a contract with the 
league. 

4. The Analyzer 
It is very difficult to examine the quality of the generated 
schedule. Even if someone were to have the patience to do 
it, it would take quite a long time. To ease this process we 
have made an analyzer for analyzing sports schedules. 
 
Actually we have made two analyzers: one for analyzing 
the output file of our program (algorithm) and one for 
analyzing any general sports schedule. The analyzer takes 
the schedule, requirements and requests as input, given as 
text files and produces a simple text file as output, where it 
is very easy to examine the conflicts in the schedule. The 
output file details each restriction and possible conflicts for 
each team in a readable form. A few examples: 

� All breaks 
� Weekday preferences are listed day by day (given 

lower bound, given upper bound, actual value). 
� Every game that has a violation in the k-value.  

 
The output file is excellent for presenting the results to the 
customer. When we introduced our program to the 
Competition Manager we generated three somewhat 
different schedules for the first half of the season. The 
manager could very quickly see the benefits of our 
program just by inspecting the output file. We claim that 
the use of the analyzer is vital in producing the final 
schedule for the league authorities. 

5. A Set of Test Instances 
The generation of standard test problems does not receive 
much attention. Some benchmark instances for round robin 
tournaments have been introduced in Henz (2000). For the 
Traveling Tournament Problem (Easton et al. 2001), test 
instances can be found in (Trick 2008). No set of standard 
test instances exists for the constrained minimum break 
problem.  
 
Researchers quite often only solve some special artificial 
cases or one real-world case. The strength of random test 
instances is the ability to produce many problems with 
many different properties. The strength of practical cases is 
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self-explanatory. However, an algorithm performing well 
on one practical problem may not perform satisfactorily on 
another practical problem. Our future work will present a 
set of both artificial and practical test instances for the 
constrained minimum break problem. In this section we 
present a collection of test instances found in the literature 
as well as some new test instances.  
 
Table 3: Twelve 2RR test instances: R50 (1), R100 (2), B10 (3), 
B12 (4), B14 (5), B10K3 (6), B12K3 (7), B12K10 (8), 
R14K7P208 (9), B8K0P30 (10), B8K2P30 (11), B10K2C4 (12). 

 

ID n Break 
min. k #Constr. Optimal 

#breaks 
Our 

solution 

1 50 No 0 0 – found 

2 100 No 0 0 – found 

3 10 Yes 0 0 8 8 

4 12 Yes 0 0 10 10 

5 14 Yes 0 0 12 14 

6 10 Yes 3 0 ? 16 

7 12 Yes 3 0 16 22 

8 12 Yes 10 0 ? 26 

9 14 No 7 208 P – found 

10 8 Yes 0 30 P ? 10 

11 8 Yes 2 30 P ? 12 

12 10 Yes 2 4 C ? 10 
 
To the best of our knowledge, the best test instances 
presented in the literature so far are those by (Rasmussen 
and Trick 2007). We use four of their problems, two of 
which are slight modifications. All twelve test instances 
are double round robins. Table 3 shows the instances. The 
first two (abbreviated as Rn) are simple round robin 
problems where the only challenge is to find a round robin 
tournament. In the next three instances (Bn) the challenge 
is to find the minimum number of breaks. The next three 
instances (BnK) are also break minimization problems, but 
in these instances two games with the same opponents 
must be separated by at least k = 3 or k = 10 rounds. In the 
instance R14K7P208 the challenge is again just to find a 
round robin tournament, but now with k = 7. Furthermore, 
there are four home game restrictions and four away game 
restrictions in each round totaling a number of 208 
restrictions (place constraints). The next two instances (B8) 
are break minimization problems with place constraints 
and the other one with k = 2. Here we had to modify the 
original problems by (Rasmussen and Trick 2007) because 
their place constraints would have caused extra breaks to 
occur. The final instance B10K2C4 introduces 
complementary constraints – that is, two teams cannot play 

at home at the same day. The instance includes four 
complementary constraints.  
 
It should be noted that our algorithm was not designed to 
merely minimize the number of breaks but to solve 
complex real-world problems. However, we claim that our 
algorithm also works very well for the artificial test 
instances. We were able to find the best possible solution 
for five of the test instances. For three of the instances the 
optimum is not yet known. The up-to-date collection of test 
instances can be found on the web (Nurmi and Kyngäs 
2009). 

6. Conclusions and Future Work 
We scheduled the Finnish 1st division ice hockey league. 
Our algorithm found a feasible and an acceptable schedule 
for the the 2008�2009 season. The generated schedule is 
currently in use. We also proposed a set of test instances 
that we hope the researchers of the sports scheduling 
problems will adopt. Our solutions to the test instances 
were competitive. 
 
Our direction for future research will be to further study 
the improved algorithm and its various parameters. We 
will also publish an extensive set of both real-world 
instances and test instances for the constrained minimum 
break problem. We have already set up a group of 
collaborators for this goal. 
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