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Abstract 
Fast mapping is a phenomenon by which children learn the 
meanings of novel adjectives after a very small number of 
exposures when the new word is contrasted with a known 
word. The present study was a preliminary test of whether 
machine learners could use such contrasts in unconstrained 
speech to learn adjective meanings and categories.  Six de-
cision tree-based learning methods were evaluated that use 
contrasting examples in order to work toward an adjective 
fast-mapping system for machine learners. Subjects tended 
to compare objects using adjectives of the same category, 
implying that such contrasts may be a useful source of data 
about adjective meaning, though none of the learning algo-
rithms showed strong advantages over any other. 
 
 

 Introduction    
The average American or British high school graduate 
knows, at a conservative estimate, 60,000 English words.  
The idea of learning and remembering so many words 
seems like a staggering feat—all the more so when you 
consider that this would mean that on average, a person 
must learn 10 new words each day up until that point 
(Bloom, 2002).  Children who are 8-10 years old have been 
shown to learn at a higher than average rate (about 12 
words each day) simply by going about their business as 
children (Anglin et al., 1993).  It has further been shown 
that young children learn the meanings of new words much 
more quickly than adults do and with little explicit instruc-
tion (Newport, 1990).  
 This rapid word learning is called “fast mapping” in the 
child development literature (Carey and Bartlett, 1978; 
Bloom 2002) and is thought to crucially rely on contrast 
between examples.  In the classic experiment on “fast 
mapping,” children instructed to “point to the chromium 
tray, not the green tray” were often able to successfully 
deduce that “chromium” was a color word, and that it was 
the particular color implied by the statement (despite no 
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pointing gestures), and could remember these facts weeks 
after the initial experiment (Carey and Bartlett, 1978). 
 The experiments presented here represent work that 
aims toward this kind of fast, situated learning for robots.  
Human subjects were asked to describe pairs of objects to a 
robot in a manner similar to the classic fast mapping ques-
tions.  We then examined both a human-robot interaction 
(HRI) question as well as a machine learning question.  On 
the human-robot interaction side: are these contrasts gener-
ally presented in a same-category manner (“drive to the red 
one, not the blue one”), or do the adjectives cross catego-
ries (blue/far)?   On the machine learning side: can the con-
trasting examples provided by people help a decision-tree 
based learner to learn the meanings of words? 
 The machine learning problem of identifying definitions 
of words implicitly from just a few examples is rendered 
difficult by the fact that the robot may sense many kinds of 
properties, but only a few matter for a word’s definition.  
The problem is not specific to machines, but is inherent in 
the problem  (Wierzbicka, 1986).  For example, a young 
learner told that a cow grazing in a field is “fangorious” 
does not know whether this word refers to the size of the 
cow, the number of legs it has, or the fact that it is spotted.  
But if people tend to contrast objects in a very formulaic 
manner, such as staying within category for contrasts, a 
machine learner could take advantage of any regularities to 
learn faster. 
 Deb Roy’s CELL system (2002) and Chen Yu’s gaze-
tracking word learning system  (Yu and Ballard, 2004) 
both learned prototype definitions for nouns and color 
words based on object shape and color, but did not attempt 
to learn multiple adjective types, nor learn from explicit 
contrast.  Terry Regier built a system that assigned spatial 
preposition labels to movies of a figure moving relative to 
a ground object, treating examples of prepositions as 
strong positive examples and all non-target words weak 
negative examples, but implicitly assumed that words gen-
erally referred to the same category of spatial language 
(1996).  Stefanie Tellex later built a system that learned 
spatial routines using annotations of real video, with full 
sentences and phrases as input (Tellex and Roy, 2009).  A 
great deal of modern word learning AI does not attempt to 
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ground word meanings in sensory experience at all, but 
simply finds which words in text tend to co-occur (Lan-
dauer and Dumais, 1997).  The present work is most simi-
lar to the TWIG system for learning word meanings from 
implicit contrast (Gold, 2009), but TWIG did not attempt 
to deal with the problem of determining which adjectives 
belong to the same category, instead assuming that all 
words belonging to a particular part of speech were mutu-
ally exclusive.  Related work has attempted to determine 
whether adjective categories can be inferred automatically 
without using explicit contrast (Gold and Petrosino, 2010). 
 The next section describes and evaluates six decision 
tree-based methods that attempt to map meanings to color, 
size, and distance adjectives.  Section 3 contains a discus-
sion of the way contrast information was used in this work 
and speculates about its usefulness in more general terms.  
Section 4 provides some concluding remarks about the 
potential of these methods for use in future work as well as 
a reflection on the contribution of this work. 

Methods 

Real-world sensor data for this experiment was obtained 
using a Surveyor SRV-1 Blackfin robot (Figure 1).  The 
SRV’s camera and lasers were used to collect data about 
the color, the maximum height and width, and the distance 
scaled for height of objects in its environment.    
 Color information was measured in the YUV color 
space—a format that separates color information into lu-
minance (Y) and chrominance (U and V) values.  Not only 
has YUV been shown to lead to better segmentation of 
objects from their background than many other common 
color spaces, but luminance/chrominance color spaces also 
provide information that is more similar to the visual in-
formation taken in by the human retina than do other kinds 
of color spaces, RGB being one well-known example 
(Kumar, 2002; Livingstone, 2002). 

Figure 1: The Survyor SRV-1 Blackfin robot. 

 Thirty-two different objects were described in this ex-
periment.  Books, candles, and foam letters of varying 
heights, widths, and colors (red, green, orange, yellow, 
blue, and white, mostly monochromatic, though some ob-
jects had text or small blocks of other colors), and placed at 
three different distances (approximately 5, 25, and 45 cm) 
from the SRV were collected.  Objects were chosen in or-

der to avoid correlations between unrelated attributes (e.g., 
both tall and short green objects were chosen). 
 In order to obtain feature information for the objects, 
they were placed individually in front of the SRV’s left 
laser and segmented from the background image using a 
depth-first search in which the laser was assumed to be 
pointing at the object and pixels whose color was closer to 
the color at the laser’s position than a given threshold were 
added to the object.  The YUV values assigned to the ob-
ject also came from the color value at the laser’s position.  
The distance from the SRV to the object was calculated 
using an empirically derived equation relating the position 
of the laser to object distance.  Height and width values 
were simply the difference between the minimum and 
maximum x and y pixel values, scaled by distance. 
  Four Wellesley College students were recruited to per-
form three object description tasks in order to 1) determine 
which adjectives were likely to be used for instructing the 
robot, 2) obtain a consensus on descriptions to be used as 
ground truth for each object, and 3) ensure that the kinds of 
contrasts that people naturally make are useful for fast-
mapping word learning.  The data from three of the par-
ticipants were used as a training set for building all deci-
sion trees and the fourth participant’s data was kept aside 
to be used as a test set. 
 In Task 1, designed to generate a list of size, distance, 
and color words for the SRV to learn and to determine 
which categories of adjectives were most commonly used 
to describe objects, participants sat at a table with the SRV 
placed directly in front of them.  Objects were placed in 
front of the SRV in groups of 3 to 5.    Participants were 
then asked to freely describe the objects without referring 
to any text on the objects (many of the objects were 
books).  From this task, a list of words was generated for 
the robot to potentially learn, shown in Figure 2, divided 
into the three adjective categories for which the SRV takes 
in sensor information.  Participants used an average of 2.8 
adjectives to describe each object.  At least one color word 
was used for each object by all of the participants; so in 
this task, color was the most common category used for 
free descriptions. 

 

Adjective 
Category 

Words Obtained from Free Descrip-
tions 

Color red, yellow, blue, green, orange, white, 
salmon, maroon, brown 

Size small, big, tall, wide, little, short, thick 
Distance close, far, near 

Figure 2: The list of all words used by participants. 
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Figure 3:  The experimental setup for task 3. 

 In Task 2, the words from the list created in the previous 
experiment were divided into pairs of opposites (color 
words were excluded) as follows: tall/short, big/little, 
large/small, wide/skinny, thick/thin, near/far, and close/far.  
In this experiment, participants were shown each of the 32 
objects individually and asked, “What color would you say 
this object is?”  The color word given for each object in 
this task matched one of the color words given for the ob-
ject in Task 1.  Then, for each pair of opposites, partici-
pants were asked, “Would you say that this object is ____, 
____, or neither?”  The descriptions obtained in this ex-
periment served as a ground truth for determining whether 
or not the descriptions produced by the decision trees were 
correct.  If “neither” was chosen, neither of the labels was 
used for the ground truth. 
 Task 3 was meant to determine whether people normally 
tend to contrast objects along a single dimension (“or-
ange,” not “blue”), which would make learning by fast 
mapping feasible outside of an experimental setting, or 
whether contrasts were commonly made across different 
adjective categories (“orange,” not “short”).  Participants 
were seated at a table with the SRV directly in front of 
them while pairs of objects differing along multiple dimen-
sions were presented.  Each object appeared in only one 
pair.  The experimental setup for this task is shown below 
in Figure 3.  Participants were then prompted with the fol-
lowing instruction:  “How would you tell the robot to drive 
to one of the objects in front of it, giving instructions in the 
form, ‘Drive to the ____ one, not the ____ one’?  You may 
use only one adjective to describe each object.” 
 The words used by subjects in task 3 and the 6 proper-
ties of the objects as measured by the robot (3 YUV fea-
tures,  distance, height, width) formed the training data for 
several different varieties of a greedy decision tree learning 
algorithm (Quinlan, 1986) that attempted to learn the defi-
nitions of each adjective.  
 One method attempted was a standard multiclass deci-
sion tree, in which only one word could be produced for 
each object.  A second method added the difference in 

property values between the two contrasted objects as an 
extra six features, so that if X and Y were the feature vec-
tors for the two objects, then [X - Y X]  and [Y - X Y] 
were used as the new feature vectors for each example.  A 
third method used the strategy of (Regier, 1996) and cre-
ated a separate binary valued (Yes/No) tree for each adjec-
tive, treating examples with that adjective as strongly 
weighted (w = 4) positive examples and all other words as 
weak negative examples.  This method was tried with and 
without chi-square pruning, in which decisions were omit-
ted from the tree if they did not refer to a difference that 
was statistically significant.  Two experiments were also 
run in which the yes or no trees were constrained to only 
contain decisions that all referred to the same category 
(color, size, or distance); this approach was tried in both a 
greedy fashion, in which the first decision determined the 
category that would be used for the tree, and in an optimal 
fashion, in which all three categories were used for each 
tree, and only the category with best results were used.  
Finally, a graph was made of the subjects’ contrasting 
comparisons, in which the vertices were the adjectives and 
an edge connected two vertices if subjects contrasted the 
words; multiclass trees were then run on the strongly con-
nected components of this graph, in the hope that con-
nected components would each be words that shared a 
category.   
 Precision was measured according the proportion of 
adjectives that the trees would produce for an example that 
agreed with the subjects’ forced choices in Task 2.  Recall 
was measured as the proportion of adjectives that could be 
used to describe the object that the learner produced, again 
using Task 2 for ground truth.  F-measure was calculated 
as the harmonic mean of precision and recall. 

Results 

In total, 59 contrasts out of 64 total trials were within a 
single adjective category and only two of the four partici-
pants contrasted objects across categories.  In 3 of the 5 
cross-category contrasts, two different size dimensions 
were mixed, contrasting “tall” with “small” (strangely, 
both participants made this particular contrast) and “wide” 
with “short.”  The remaining mixed-category contrasts 
came from one participant who contrasted “blue” with both 
“tall” and “near.”  Again, color was the most common 
category used to describe words, with 36 out of the 64 con-
trasts within the color category.  
 The results of the decision tree learners are summarized 
in Figure 4.  In general, it was much easier to achieve pre-
cision than recall in this setting because for all methods 
besides the strongly connected components method, the 
negative examples were all implicit, and occasionally 
wrong.  For example, a red object labeled “wide” might 
count as a weak negative example for “red.”  This led the 
systems to be conservative in the words they produced.  
The strongly connected components method may benefit 
from a larger data set. 

88



Figure 4:  Machine learning results on the data for task 3. 

Conclusions 

These preliminary experiments with human subjects show 
that there is merit to the assumption that people tend to 
contrast objects within categories instead of across catego-
ries, even when speaking to a robot.  Thus, theoretically, 
machine learning algorithms should be able to learn words 
from people faster than if the examples had not been pre-
sented in contrast to each other, since this within-category 
constraint is an extra source of information.  Why, then, 
did this not appear to be useful? 
 One possible explanation is that the experiment here was 
trying to accomplish two things at once -- both establish 
that people tend to use within-category contrasts, and also 
use this same data to perform machine learning.  However, 
to establish the fact of within-category comparisons, object 
comparisons had to be used in which objects varied in 
more than one dimension -- a setting in which even chil-
dren have a difficult time telling what a new adjective is 
referring to (O’ Grady, 2000).   However, it is useful to 
note that a robot using continuous-valued sensors will al-
ways encounter this problem, unless the sensed values are 
somehow quantized or some notion of salient difference is 
built in, because it is unlikely that any two continuous-
valued features in the contrasted objects will be exactly the 
same.  Our future approaches to this problem may attempt 
to take the magnitude of differences between features into 
account; the additional contrast features were a first pass at 
this, but were apparently not sufficient.  
I t may be the case that this work is a better model for 
early adjective learning than might be desired.  Children 
have a great deal of difficulty in learning their first word in 
a given adjective category, particularly their first color 
word.  The inability to correctly map colors to the appro-
priate color words is so pronounced that Charles Darwin 
speculated that children begin their lives colorblind (Dar-
win, 1877).  In one study of early color word learning, 2-
year-olds were shown a series of different red objects and 

for each one they were asked, “What color is this?”  When 
the children responded correctly, they were praised and 
when they failed to do so, they were gently corrected. It 
took an average of 85 trials before children reliably labeled 
the objects that they were being shown as “red” (Rice, 
1980).  It seems that for children first learning the words in 
an adjective category, a very large number of examples are 
required before the categories and the words that describe 
them are reliably linked, but once this point is reached, it is 
easy to learn new words within that category, as in the case 
of fast mapping.  In these experiments, learning algorithms 
had only 96 training examples to learn 19 adjectives across 
three different categories.   Attempting each of the learning 
algorithms described in this paper with a much larger data 
set could very well show that the number of examples re-
quired before they are successful is similar to the number 
of examples of a word that small children require for the 
initial learning of adjectives. 
 Although it was expected that most of the words used in 
this task would be simple descriptive adjectives (“tall”, for 
example), participants’ descriptions were often much more 
complex.  Comparative and superlative adjectives (“taller” 
and “tallest”); negations (“not tall”); the addition of the 
suffix “-ish” to mean “somewhat” (“tallish”); adverbs 
(“pretty tall,” “very tall”); and overall scene descriptions 
(“everything in this group is tall”) were, taken together, 
used as often as simple descriptive adjectives were.  It is 
beyond the scope of this paper to determine whether or 
how to incorporate these more informal or colloquial de-
scriptions into a robot word learning system.  However, if 
it is the case that people talking about the objects in their 
environment tend to use these more complex descriptions, 
it certainly seems that a robotic learner able to obtain use-
ful information from such exchanges would be able to 
learn quickly and with little explicit instruction. 
 Although many of the learning algorithms presented in 
this paper did not clearly benefit from the addition of con-
trasting input data for learning the meanings of adjectives, 
it is in many ways a first step (or, at the least, a useful 
negative result) toward creating a system for the fast map-
ping of adjectives for robot learners.  Much of the literature 
that addresses machine learning of adjectives is limited 
because it does not use real-world sensor data.  All of the 
data in this thesis came from naïve participants freely de-
scribing objects and the camera and laser of a Surveyor 
SRV-1 Blackfin robot measuring their attributes.  The 
noisiness of real-world data may make learning more diffi-
cult, but a machine learner’s reliance on its own sensor 
data to obtain information about objects in the world has 
the potential to free the researcher from creating training 
data and presenting feedback to the learner.  Some related 
works have used visually grounded data for learning the 
meanings of color words, but this is the first work in which 
an attempt was made to map meanings onto adjectives 
across categories, and to tackle size and distance words 
(Gold, 2009; Steels and Belpaeme, 2005).   It is thus a first 
attempt at a grounded approach for fast mapping by offer-
ing as input two words at once that are in contrast to each 
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other.  Direct contrasts are an incredibly rich source of 
information and their usefulness to children learning new 
words should encourage those working toward fast, casual 
word learning for robots to take advantage of them. 
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