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Abstract

Coarse word sense disambiguation (WSD) is an NLP
task that is both important and practical: it aims to distin-
guish senses of a word that have very different meanings,
while avoiding the complexity that comes from trying to
finely distinguish every possible word sense. Reasoning
techniques that make use of common sense information
can help to solve the WSD problem by taking word mean-
ing and context into account. We have created a system
for coarse word sense disambiguation using blending, a
common sense reasoning technique, to combine informa-
tion from SemCor, WordNet, ConceptNet and Extended
WordNet. Within that space, a correct sense is suggested
based on the similarity of the ambiguous word to each
of its possible word senses. The general blending-based
system performed well at the task, achieving an f-score
of 80.8% on the 2007 SemEval Coarse Word Sense Dis-
ambiguation task.

Common Sense for Word Sense

Disambiguation

When artificial intelligence applications deal with natural
language, they must frequently confront the fact that words
with the same spelling can have very different meanings. The
task of word sense disambiguation (WSD) is therefore critical
to the accuracy and reliability of natural language processing.
The problem of understanding ambiguous words would be
greatly helped by understanding the relationships between
the meanings of these words and the meaning of the context
in which they are used – information that is largely contained
in the domain of common sense knowledge.

Consider, for example, the word bank and two of its promi-
nent meanings. In one meaning, a bank is a business institu-
tion where one would deposit money, cash checks, or take out
loans: “The bank gave out fewer loans since the recession.”
In the second, the word refers to the edges of land around
the river, such as in “I sat by the bank with my grandfather,
fishing.” We can use common sense to understand there
would not necessarily be loans near a river, and rarely would
fishing take place in a financial institution. We know that a
money bank is different from a river bank because they have
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different common-sense features, and those features affect
the words that are likely to appear with the word bank.

In developing the word sense disambiguation process that
we present here, our aim is to use an existing technique, called
“blending” (Havasi et al. 2009), that was designed to integrate
common sense into other applications and knowledge bases.
Blending creates a single vector space that models semantic
similarity and associations from several different resources,
including common sense. We use generalized notions of
similarity and association within that space to produce dis-
ambiguations. Using this process, instead of introducing a
new and specialized process for WSD, will help to integrate
disambiguation into other systems that currently use common
sense.

Coarse-Grained Word Sense Disambiguation

A common way to evaluate word sense disambiguation sys-
tems is to compare them to gold standards created by human
annotators. However, many such corpora suffer low inter-
annotator agreement: they are full of distinctions which are
difficult for humansto judge, at least from the documentation
(i.e. glosses) provided.

As a solution to this, the coarse word sense disambiguation
(Coarse WSD) task was introduced by the SemEval evalua-
tion exercise. In the coarse task, the number of word senses
has been reduced. In Figure 1 we can see this simplification.

Coarse word senses allow for higher inter-annotator agree-
ment. In the fine-grained Senseval-3 WSD task, there was
an inner-annotator agreement of 72.5% (Snyder and Palmer
2004); this annotation used expert lexicographers. The Open
Mind Word Expert task used untrained internet volunteers for
a similar task1(Chklovski and Mihalcea 2002) and received
an inter-annotator agreement score of 67.3%. These varying
and low inter-annotator agreement scores call into question
the relevance of fine-grained distinctions.

The Coarse Grained Task

SemEval 2007 Task 7 was the “Coarse-Grained English All-
Words Task” (Navigli and Litkowski 2007) which examines
the traditional WSD task in a coarse-grained way, run by

1The Open Mind project is a family of projects started by David
Stork, of which Open Mind Common Sense is a part. Thus Open
Mind Word Expert is not a part of OMCS.
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Fine-grained

1. pen: pen (a writing implement with a point from which
ink flows)

2. pen: pen (an enclosure for confining livestock)
3. pen: playpen, pen (a portable enclosure in which babies

may be left to play)
4. pen: penitentiary, pen (a correctional institution for those

convicted of major crimes)
5. pen: pen (female swan)

Coarse-grained

1. pen: pen (a writing implement with a point from which
ink flows)

2. pen: pen (an enclosure – this contains the fine senses for
livestock and babies)

3. pen: penitentiary, pen (a correctional institution for those
convicted of major crimes)

4. pen: pen (female swan)

Figure 1: The coarse and fine word senses for the word pen.

Roberto Navigli and Ken Litkowski (Navigli and Litkowski
2007). In the coarse task, the number of word senses has been
dramatically reduced, allowing for higher inter-annotator
agreement (Snyder and Palmer 2004; Chklovski and Mihal-
cea 2002).

Navigli and Litkowski tagged around 6,000 words with
coarse-grained WordNet senses in a test corpus. They devel-
oped 29,974 coarse word senses for nouns and verbs, repre-
senting 60,655 fine WordNet senses; this is about a third of
the size of the fine-grained disambiguation set. The senses
were created semi-automatically using a clustering algorithm
developed by the task administrators (Navigli 2006), and then
manually verified. The coarse-grained word sense annota-
tion task received inter-annotator agreement score of 86.4%
(Snyder and Palmer 2004).

Why Coarse Grained?

Although we have chosen to evaluate our system on the
coarse-grained task, we believe common sense would help
with any word sense disambiguation task for the reasons
we described above. In this study, we have chosen coarse
word sense disambiguation because of its alignment with
the linguistic perceptions of the everyday people who built
our crowd-sourced corpus of knowledge. We believe the
course word sense task best aligns with the average person’s
“common sense” of different word senses.

The Semeval Systems

Fourteen systems were submitted to the Task 7 evaluation
from thirteen different institutions (Navigli, Litkowski, and
Hargraves 2007). Two baselines for this task were calculated.
The first, the most frequent sense (MFS) baseline, performed

Figure 2: An example input matrix to AnalogySpace.

at 78.89% and the second, a random baseline, performed at
52.43%. The full results can be seen in Table 1 with the
inclusion of our system’s performance.

We will examine the three top performing systems in more
detail. The top two systems, NUS-PT and NUS-ML, were
both from the National University of Singapore. The NUS-
PT system (Chan, Ng, and Zhong 2007) used a parallel-text
approach with a support vector learning algorithm. NUS-
PT also used the SemCor corpus and the Defense Science
Organization (DSO) disambiguated corpus. The NUS-ML
system (Cai, Lee, and Teh 2007) focuses on clustering bag-
of-words features using a hierarchical Bayesian LDA model.
These features are learned from a locally-created collection
of collocation features. These features, in addition to part-of-
speech tags and syntactic relations, are used in a naı̈ve Bayes
learning network.

The LCC-WSD (Novischi, Srikanth, and Bennett 2007)
system was created by the Language Computer Corpora-
tion. To create their features, they use a variety of corpora:
SemCor, Senseval 2 and 3, and Open Mind Word Expert.
In addition, they use WordNet glosses, eXtended WordNet,
syntactic information, information on compound concepts,
part-of-speech tagging, and named entity recognition. This
information is used to power a maximum entropy classifier
and support vector machines.

Open Mind Common Sense

Our system is based on information and techniques used by
the Open Mind Common Sense project (OMCS). OMCS has
been compiling a corpus of common sense knowledge since
1999. It’s knowledge is expressed as a set of over one million
simple English statements which tend to describe how objects
relate to one another, the goals and desires people have, and
what events and objects cause which emotions.

To make the knowledge in the OMCS corpus accessible to
AI applications and machine learning techniques, we trans-
form it into a semantic network called ConceptNet (Havasi,
Speer, and Alonso 2007). ConceptNet is a graph whose
edges, or relations, express common sense relationships be-
tween two short phrases, known as concepts. The edges are
labeled from a set of named relations, such as IsA, HasA,
or UsedFor, expressing what relationship holds between the
concepts. Both ConceptNet and OMCS are freely available.
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Figure 3: A projection of AnalogySpace onto two principal components, with some points labeled.

AnalogySpace

AnalogySpace (Speer, Havasi, and Lieberman 2008) is a
matrix representation of ConceptNet that is “smoothed” using
dimensionality reduction. It expresses the knowledge in
ConceptNet as a matrix of concepts and the common-sense
features that hold true for them, such as “. . . is part of a car”
or “a computer is used for . . . ”. This can be seen in Figure 2.

Reducing the dimensionality of this matrix using truncated
singular value decomposition has the effect of describing
the knowledge in ConceptNet in terms of its most important
correlations. A common operation that one can perform
using AnalogySpace is to look up concepts that are similar
to or associated with a given concept, or even a given set of
concepts and features. A portion of the resulting space can
be seen in Figure 3.

This is the kind of mechanism we need to be able to distin-
guish word senses based on their common sense relationships
to other words, except for the fact that ConceptNet itself con-
tains no information that distinguishes different senses of the
same word. If we had a ConceptNet that knew about word
senses, we could use the AnalogySpace matrix to look up
which sense of a word is most strongly associated with the
other nearby words.

Blending

To add other sources of knowledge that do know about word
senses (such as WordNet and SemCor) to AnalogySpace,
we use a technique called “blending” (Havasi et al. 2009).
Blending is a method that extends AnalogySpace, using sin-
gular value decomposition to integrate multiple systems or
representations. Blending works by combining two or more
data sets in the pre-SVD matrix, using appropriate weighting
factors, to produce a vector space that represents correlations
within and across all of the input representations.

Blending can be thought of as a way to use SVD-based
reasoning to integrate common sense intuition into other data
sets and tasks. Blending takes the AnalogySpace reasoning

process and extends them to work over multiple data sets,
allowing analogies to propagate over different forms of in-
formation. Thus we can extend the AnalogySpace principle
over different domains: other structured resources, free text,
and beyond. Blending requires only a rough alignment of re-
sources in its input, allowing the process to be quick, flexible
and inclusive.

The motivation for blending is simple: you want to com-
bine multiple sparse-matrix representations of data from dif-
ferent domains, essentially by aligning them to use the same
labels and then summing them. But the magnitudes of the val-
ues in each original data set are arbitrary, while their relative
magnitudes when combined make a huge difference in the
results. We want to find relative magnitudes that encourage
as much interaction as possible between the different input
representations, expanding the domain of reasoning across
all of the representations. Blending heuristically suggests
how to weight the inputs so that this happens, and this weight
is called the blending factor.

Bridging

To make blending work, there has to be some overlap in the
representations to start with; from there, there are strategies
for developing an optimal blend (Havasi 2009). One useful
strategy, called “bridging”, helps create connections in an
AnalogySpace between data sets that do not appear to overlap,
such as a disambiguated resource and a non-disambiguated
resource.

A third “bridging” data set may be used to create overlap
between the data sets (Havasi, Speer, and Pustejovsky 2009).
An example of this is making a connection between WordNet,
whose terms are disambiguated and linked together through
synsets, and ConceptNet, whose terms are not disambiguated.
To bridge the data sets, we include a third data set that we call
“Ambiguated WordNet”, which expresses the connections in
WordNet with the terms replaced by ambiguous terms that
line up with ConceptNet.
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Blending Factors

Next, we calculate weight factors for the blend, by comparing
the top singular values from the various matrices. Using those
values, we choose the blending factor so that the contributions
of each matrix’s most significant singular value are equal.
This is the “rough blending heuristic”, as described in Havasi
(Havasi 2009).

We can blend more than two data sets by generalizing the
equation for two data sets, choosing a set of blending factors
such that each pair of inputs has the correct relative weight.
This creates a reasoning AnalogySpace which is influenced
by each matrix equally.

The blend used for this task is a complex blend of mul-
tiple sources of linguistic knowledge, both ambiguous and
disambiguated, such as Extended WordNet, SemCor, and
ConceptNet. We will discuss its creation below.

Methodology for Disambiguation

Here, we set up a blending-based system to perform sparse
word sense disambiguation. In this system, we used blending
to create a space representing the relations and contexts sur-
rounding both disambiguated and ambiguous words, those
without attached word sense encodings.

We can use this space to discover which word sense an
ambiguous word is most similar to, thus disambiguating the
word in question. We can discover similarity by considering
dot products, providing a measure that is like cosine similarity
but is weighted by the magnitudes of the vectors.

This measure is not strictly a similarity measure, because
identical vectors do not necessarily have the highest possi-
ble dot product. It can be considered, however, to represent
the strength of the similarity between the two vectors, based
on the amount of information known about them and their
likelihood of appearing in the corpus. Pairs of vectors, each
vector representing a word in this space, have a large dot prod-
uct when they are frequently used and have many semantic
features in common.

To represent the expected semantic value of the sentence as
a whole, we can average together the vectors corresponding
to all words in the sentence (in their ambiguous form). The
resulting vector does not represent a single meaning; it repre-
sents the “ad hoc category” (Havasi, Speer, and Pustejovsky
2009) of meanings that are similar to the various possible
meanings of words in the sentence. Then, to assign word
senses to the ambiguous words, we find the sense of each
word that has the highest dot product (and thus the strongest
similarity) with the sentence vector.

A simple example of this process is shown in Figure 5.
Suppose we are disambiguating the sentence “I put my money
in the bank”. For the sake of simplicity, suppose that there are
only two possible senses of “bank”: bank1 is the institution
that stores people’s money, and bank2 is the side of a river.

The three content words, “put”, “money”, and “bank”, each
correspond to a vector in the semantic space. The sentence
vector, S, is made from the average of these three. The two
senses of “bank” also have their own semantic vectors. To
choose the correct sense, then, we simply calculate that bank1

has a higher dot product with S than bank2 does, indicating
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Figure 5: An example of disambiguation on the sentence “I
put my money in the bank”.

that it is the most likely to co-occur with the other words in
the sentence.

This is a simplified version of the actual process, and it
makes the unnecessary assumption that all the words in a
sentence are similar to each other. As we walk through
setting up the actual disambiguation process, we will create
a representation that is more applicable for disambiguation,
because it will allow us to take into account words that are
not directly similar to each other but are likely to appear in
the same sentence.

The Resources

First, we must create the space that we use in these calcu-
lations. To do so, we must choose resources to include in
the blended space. These resources should create a blend
with knowledge about the senses in WordNet and add knowl-
edge from ConceptNet, so we can distinguish word senses
based on their common-sense features. Additionally, we
want to add the information in SemCor, the gold standard
corpus that is the closest match to a “training set” for Se-
mEval. Whenever we make a blend, we need to ensure that
the data overlaps, so that knowledge can be shared among
the resources.

In the blend we used: ConceptNet 3.5 in its standard
matrix form; WordNet 3.0, expressed as relations between
word senses; a “pure association” matrix of ConceptNet 3.5,
describing only that words are connected and without dis-
tinguishing which relation connects them; an “ambiguated”
version of WordNet 3.0, which creates alignment with Con-
ceptNet by not including sense information; eXtended Word-
Net (XWN), which adds more semantic relations to Word-
Net 2.0 that are extracted from each entry’s definition; “am-
biguated” versions of Extended WordNet; and the “brown1”
and “brown2” sections of SemCor 3.0, as an association ma-
trix describing which words or word senses appear in the
same sentence, plus their “ambiguated” versions.

Aligning the Resources

To share information between different sources, blending
requires overlap between their concepts or their features,
but blending does not require all possible pairs of resources
to overlap. One obstacle to integrating these different re-
sources was converting their different representations of
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Figure 4: A diagram of the blend we use for word sense disambiguation. Resources are connected when they have either concepts
or features in common.

WordNet senses and parts of speech to a common rep-
resentation. Because SemEval is expressed in terms of
WordNet 2.1 senses, we converted all references to Word-
Net senses into WordNet 2.1 sensekeys using the conver-
sion maps available at http://wordnet.princeton.
edu/wordnet/download/.

As this was a coarse word sense disambiguation task, the
test set came with a mapping from many WordNet senses
to coarse senses. For the words that were part of a coarse
sense, we replaced their individual sensekeys with a common
identifier for the coarse sense.

For the purpose of conserving memory usage, when we
constructed matrices representing the relational data in Word-
Net, we discarded multiple-word collocations. The matrices
only represented WordNet entries containing a single word.

To maximize the overlap between resources, we added the
alternate versions of some resources that are listed above.
One simple example is that in addition to ConceptNet triples
such as (dog, CapableOf, bark), we also included “pure asso-
ciation” relations such as (dog, Associated, bark).

The data we collect from SemCor also takes the form of
pure associations. If the sense car1 and the sense drive2 ap-
pear in a sentence, for example, we will give car1 the feature
associated/drive2 and give drive2 the feature associated/car1.

Given a disambiguated resource such as WordNet or Sem-
Cor, we also needed to include versions of it that could line up
with ambiguous resources such as ConceptNet or the actual
SemEval test data. The process we call “ambiguation” re-
places one or both of the disambiguated word senses, in turn,
with ambiguous versions that are run through ConceptNet’s
lemmatizer. An example is given below:

Given the disambiguated triple (sense1, rel, sense2):

• Add the triple (amb1, rel, amb2) (where amb1 and
amb2 are the ambiguous, lemmatized versions of
sense1 and sense2).

• Add the triple (amb1, rel, sense2).
• Add the triple (sense1, rel, amb2).

Blending works through shared information. Figure 4
shows the components of the blend and identifies the ones
that share information with each other. The “ambiguated”

SemCor, which occupies a fairly central position in this dia-
gram, contains the same type of information as the ambiguous
texts which are part of the SemEval evaluation.

Disambiguation using the Blend

Now that we have combined the resources together into a
blended matrix, we must use this matrix to disambiguate our
ambiguous words. For each sentence in our disambiguated
test corpus, we create an ad hoc category representing words
and meanings that are likely to appear in the sentence. Instead
of simply averaging together the vectors for the terms, we
average the features for things that have the “associated”
relation with those terms. This is the new relation that we
created above and used with SemCor and ConceptNet.

Consider again the sentence I put my money in the bank.
We look for words that are likely to carry semantic con-
tent, and extract the non-stopwords put, money, and bank.
From them we create the features: associated/put, associ-
ated/money, and associated/bank, and average those features
to create an ad hoc category of “word meanings that are
associated with the words in this sentence”.

For each word that is to be disambiguated, we find the
sense of the word whose vector that has the highest dot prod-
uct with the ad hoc category’s vector. If no sense has a sim-
ilarity score above zero, we fall back on the most common
word sense for that word.

It is important not to normalize the magnitudes of the
vectors in this application. By preserving the magnitudes,
more common word senses get larger dot products in general.
The disambiguation procedure is thus considerably more
likely to select more common word senses, as it should be:
notice that the simple baseline of choosing the most frequent
sense performs better than many of the systems in Task 7 did.

SemEval Evaluation

The SemEval 2007 test set for coarse word sense disambigua-
tion contains five documents in XML format. Most content
words are contained in a tag that assigns the word a unique
ID, and gives its part of speech and its WordNet lemma. The
goal is to choose a WordNet sense for each tagged word so
that it matches the gold standard.
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System F1
NUS-PT 82.50
NUS-ML 81.58
LCC-WSD 81.45
Blending 80.8
GPLSI 79.55
BLMFS 78.89
UPV-WSD 78.63
SUSSX-FR 77.04
TKB-UO 70.21
PU-BCD 69.72
RACAI-SYNWSD 65.71
SUSSX-C-WD 64.52
SUSSX-CR 64.35
USYD 58.79
UOFL 54.61
BLrand 52.43

Table 1: Task 7 systems scores sorted by F1 measure, includ-
ing the performance of our blending-based system.

Our disambiguation tool provided an answer for 2262 of
2269 words. (The remaining seven words produced errors
because our conversion tools could not find a WordNet en-
try with the given lemma and part of speech.) 1827 of the
answers were correct, giving a precision of 1827/2262 =
80.8% and a recall of 1827/2269 = 80.5%, for an overall
F-score of 80.6%. The blending-based system is compared
to the other SemEval systems in Table 1.

When the results for SemEval 2007 were tallied, the orga-
nizers allowed the algorithms to fall back on a standard list
of the most frequent sense of each word in the test set, in the
cases where they did not return an answer. This improved the
score of every algorithm with missing answers. Applying this
rule to our seven missing answers makes a slight difference
in our F-score, raising it to 80.8%.

Even though prediction using blending and ad hoc cate-
gories is a general reasoning tool that is not fine-tuned for
the WSD task, this score would put us at fourth place in the
SemEval 2007 rankings, as shown in Table 1.

Future Work

The results of this paper show promise for the use of general
common sense based techniques such as blending. We’re
interested in continuing to apply common sense to linguistic
tasks, perhaps prepositional phrase attachment.

In the future it would be interesting to explore a fine-
grained word sense task, perhaps in a different language. The
OMCS project has been extended to other languages, with
sites in Portuguese, Chinese, Korean, and Japanese. These
languages could also serve as parallel corpora for a more
advanced word sense disambiguation system.
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