

Designing and Building Multimedia Cultural Stories Using

Concepts of Film Theories and Logic Programming

Francesco Mele, Antonio Sorgente, Giuseppe Vettigli

Institute of Cybernetics, National Research Council
Via Campi Flegrei, 34 Pozzuoli(Naples) Italy
{f.mele, a.sorgente, g.vettigli}@cib.na.cnr.it

Abstract
In this paper we propose a middleware to reuse multimedia
resources in order to produce new types of multimedia arti-
facts. In this work we adopt some basic concepts of film
theory, such as the notions of plot, fabula and, in particular,
diegetic time. The techniques we use are located within the
area of artificial intelligence, using an explicit representa-
tion of time. The middleware consists of several modules,
some devoted to the semantic annotation of multimedia
components, and others to their visualization. Some mod-
ules regard the analysis of temporal connectivity and consis-
tency of events. From a methodological point of view, an
important module of the middleware contains the represen-
tation of a story (time of the narration and time of the story)
and the temporal reasoning services, which are both imple-
mented using a logic programming language (Flora2). Fi-
nally, there is a module in the middleware that translates the
logical representation (in Flora2 language) into SMIL lan-
guage, which allows the use of the final composition by a
standard player.

Introduction1

A story, regardless of its cultural context, appears to be a
pleasant and efficacious way of transmitting knowledge.
This is because it captures the attention of the interlocutor
and maintains his interest until the end of the story. In this
work, our interest lies in the domain of historical narra-
tions.
 In that context, a story not only generates attention, ex-
pectations and surprises, but also contains some relations
that can be studied in order to find implications among the
events that compose it. The application of reasoning to the
implications of historical events improve one’s, especially
a student’s, cognitive abilities.
 In this work (Fig.1): we propose a new methodology to
represent cultural stories, using existing multimedia re-
sources in the forms of photo, video, and text; we present
useful services to build stories, such as some automated
tools to check the connectivity and consistency of events;

Copyright © 2010, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

we illustrate a methodology for a “Semantic Editing” of
cultural video; and finally, we present a program that
automatically generates the code in SMIL Language
(SMIL 2005) for the visualization of the story.
 Cultural stories on Internet, especially on Wikipedia, are
some examples of stories which inspired us to define the
formalism of the representation of events. In this context,
the material available is very extensive and almost all the
examples found on Wikipedia contain the HISTORY field.
 In the research of computational linguistics, some for-
malisms for the study of tenses have been developed, par-
ticularly the TimeML language (Pustejovsky et al. 2003).
Such formalisms have their roots in the works of Reichen-
bach (Reichenbach 1947) and Allen (Allen 1987) and are
useful tools for the representation of relations between the
events of a story.
 The reuse of multimedia materials in order to construct
stories is a new Internet trend where there are some inter-
esting initiatives (see some recent services of Google).
However, little attention has yet been given to issues con-
cerning the formal aspects of story representation and their
well-formed composition (the connection of events and
analysis of inconsistencies). In this work these aspects
have been developed, where we have proposed a logical
formalism and methodology for annotation of the multi-
media, using notions of film theories such as diegetic
events, plot, fabula, flashbacks and flashforwards (Bord-
well 1985).

Fig. 1: The middleware components.

57

Cognitive and Metacognitive Educational Systems: Papers from the AAAI Fall Symposium (FS-10-01)

Representation of story events

We will show the basic elements of our representation of
the cultural stories. We used the Flora22 (Yang et al. 2007)
formalism to represent the key concepts of our methodol-
ogy.

Temporal Point and Temporal Interval
The representation of the time we adopted in this work is
mixed, it is based on points and time intervals. Time points
are represented by explicit time labels in the form of dates:

[03,mar,1953]:date. [07,sept,2009]:date.
[2009]:date. [mar,2007]:date.
 Instead time intervals of the form:
I_Time[t1=>date, t2=>date].
 Some examples of I_Time are:

int1:I_Time[t1->[03,sett,1943],
 t2->[17,nov,1943]].
int2:I_Time[t1->[mar,1951], t2->[gen,1951]].
int3:I_Time[t1->[1943], t2->[1947]].

(In this work we denote the variables of diegetic time al-
ways with the notion tdx).

Events of stories
For events of cultural stories we considered two types of
entities: properties and actions that happen in temporal
modality. Examples of properties that relate to cultural en-
tities are: the colour or status of a monument (destroyed,
renovated, degraded church) and the style of a building
(Gothic, Baroque, Renaissance). Examples of actions are
bombing, seismic events, and the act of rebuilding or reno-
vating a monument. In this work all rules hold for proper-
ties and actions.
 Our representation of a diegetic event of a story is as fol-
lows:

Event[tM=>TemporalMod, pA=>Property_Action].

Property_Action[PA=>Action].
 Property::Property_Action.
 Action::Property_Action.

 TemporalMod is the temporal modality in which an
action happens or a property is true. We distinguish two
types of temporal modality: I_TemporalMod, e
P_TemporalMod:
I_TemporalMod[int=> I_Time].
P_TemporalMod[td=>date].

 The first class represents all modalities of occurrences of
an action or property compared to time intervals, while the
second class is compared to time points.
 The subclasses of I_TemporalMod are: EqualI, Dur-
ingI, AfterI, BeforeI, OverlapsI, MeetsI,

2
To make reading simpler, here we informally report some key constructs

of this language: X::Y (class X is a subclass of Y), X:Y (X is an instance
of Y), X =>Y (X is an attribute of type Y), X->Y (Y is the value of the
attribute X), X *=>Y (same as X =>Y but it is also hereditable from its
subclasses). The literals preceded by the symbol ? are the variables.

StartsI, FinishesI - while the subclasses of
P_TemporalMod are: AT, DuringP, AfterP, Be-
foreP, MeetsP, StartsP, FinishesP.
 The basic relations of our representations are similar to
temporal relations proposed in the formalism TimeML
(Pustejovsky et al. 2003).
 We provide an example of formalism:
‘Between 1943 and 1953 the church of Santa Chiara was
restructured’

e1:Event[tM->tM1, pA->pA1].
tM1:DuringI[int->int1].
int1:I_Time[t1->[1943], t2->[1953]].
pA4:Property_Action[
 PA->ristrutturare(chiesaSantaChiara)].

For each type of event (During, After, etc.), we defined a
Prolog clause abbreviation of type:

ev(?E,DuringI(?td1,?td2]),?az):-
 ?mtd1:DuringI[dt->?int],
 ?int:I_Time[t1->?td1,t2->?td2],
 ?E:Event[tM->?mtd1,pA->?pa1],
 ?pa1:Property_Action[PA->?az].

 The representation of diegetic events is used for annotat-
ing the multimedia elements of the stories, for this reason
they are the primitives of our formalism. We provide an
informal description for them:
(actions that happen in relation to time intervals)
ev(?E,EqualI([?td1,?td2]),?az).
az happens from td1 to td2
ev(?E,DuringI([?td1,?td2]),?az).
az happens between td2 and td1
ev(?E,AfterI([?td1,?td2]),?az).
az happens after [td1,td2]
ev(?E,Overlaps([?td1,?td2]),?az).
az happens in part on [td1,td2]
ev(?E,MeetsI([?td1,?td2]),?az).
az ends before of [td1,td2]
ev(?E,StartsI([?td1,?td2]),?az).
az starts from the start of [td1,td2]
ev(?E,FinishesI(?[td1,?td2]),?az).
az ends to the end of [td1,td2]

(actions that happen in relation to time points)
ev(?E,AT([?td]),?az).
az happens at time (day) td
ev(?E,AfterP([?td]),?az).
az happens after td
ev(?E,MeetsP([?td]),?az).
az ends before of [td]
ev(?E,StartsP([?td]),?az).
az starts from the start of [td]
ev(?E,FinishesP([?td]),?az).
az ends to the end of [td]

58

The annotation process
The multimedia objects are the basic components of our
reuse methodology. In this work, we are not interested in a
complete representation of these entities. For the semantic
annotation process, we provide the following definitions:

VideoElement::MediaElement[begin=>time,
 end=>time].

AudioElement::MediaElement[begin=>time,
 end=>time].
PhotoElement::MediaElement.

(MediaElement is partially defined with respect to
MPG7. Definition is not reported.).
The annotation process consists of associating a Medi-
aElement with a diegetic event of the story. Formally,
this relationship is:

MediaStoryElement[me=>MediaElement,
 e=>Event].

An example of an instance of a MediaStoryElement
(an example of annotation) is as follows:

 mse:MediaStoryElement[me->m1,e->eB].
eB:Event[tM->tM2, pA->Px]].
tM2:DuringI[int->int2].
int2:I_Time[t1->[4,dec,1942],
 t2->[8,aug,1943].
Px:Property_Action[pA->bombing(Naples)].

Fig. 2: Multimedial story element (mse) such as scene

 We wish to emphasize that this instance corresponds
with the notion of a movie scene, due the fact that the di-
egetic event is bound by temporal indexes, i.e. an instance
of MediaStoryElement is a unit (the smallest) having
complete sense (for TN-TS diagrams see the next sec-
tions). For a given multimedia story, we called the in-
stances of all mse annotations: Annotation Set.

Plot and Fabula representation
The definition of fabula that has inspired our formalism is
those given in (Eco 1979):
 “the fabula is the fundamental structure of the narration,
the logic of the actions of the syntax of characters, the
temporally ordered course of events. It may also not be a
sequence of human actions and may concern a series of
events regarding inanimate objects, or also ideas”

Fabula[e=>Event, eRel=>EventRelations].
p(e1,e2):EventRelations.
o(e3,e4):EventRelations.

 In our formalism the fabula is represented by a set of
events and by a set of temporal relations among events. In
this paper we use p(e1,e2) and o(e1,e2) to denote
the qualitative temporal relations “e1 precedes e2”, and
“e1 overlaps e2”.
 Of course, the fabula involves more aspects of the repre-
sentation provided herein. Regarding the objectives we
have set ourselves in this work, we formalized the fabula
especially under the aspect of time: we represented the ba-
sic logic of the actions and the temporally ordered course
of diegetic events.
 The definition of plot in (Eco 1979) is following:
 “story as it is actually told, as it appears in surface, with
its temporal dislocations, forward and backward jumps (i.e.
anticipations and flash-backs) descriptions, digressions, ..”.
 Plot[int=>Interval, m=>MediaStoryElement].

Interval[ti=>time, tf=>time].

[00,04,53]:time. [00,08,58]:time.

 The plot is defined as an ordered set of intervals, corre-
sponding to which are associated the semantically anno-
tated multimedia objects.

Multimedia Story and TN –TS diagrams

We provide a definition of Multimedia Story:

 MultimediaStory[i=>Plot, f=>Fabula].

This definition captures the possibility of constructing dif-
ferent stories using the same (diegetic) events and chang-
ing the order in which they are presented. We consider the
following fabula:

fabx:Fabula[e->{eventx,eventy,eventz},
 eRel->{p(ex,ey),p(ey,ez)}].
ey:Event[tM->tM1, pA->pA1].
tM1:EqualI[int->int1].
int1:I_Time[t1->td1, t2->td2].
pA1: Property_Action.
ex:Event[tM->tM2, pA->pA2].
tM1:DuringI[int->int2].
int2:I_Time[t1->td3, t2->td4].
pA2:Property_Action.
ez:Event[tM->tM2, pA->pA3].
tM1:AfterP[int->int2].
int3:I_Time[td->td4]. pA3:Property_Action.

For this fabula, it is possible to define two different stories.

story1:MultimediaStory[i->{p1, p2, p3},
 f->fabx].

 story2:MultimediaStory[i->{p4, p5, p3},
 f->fabx].

Plot of the story1

59

p1:Plot[int->I1,m->mse1].
I1:Interval[ti->t0,tf->t1].
p2:Plot[int->I2,m->mse2].
I2:Interval[ti->t1,tf->t2].
p3:Plot[int->[t2,t3],m->mse3].
I3:Interval[ti->t2,tf->t3].

Plot of the story2

p4:Plot[int->I4,m->mse2].
I4: Interval[ti->t0,tf->t11].
p5:Plot[int->I5,m->mse3].
I5:Interval[ti->t11,tf->t12].
p6:Plot[int->[t12,t3],m->mse1].
I6:Interval[ti->t12,tf->t3].

To represent relationships between elements of the plot and
those of the fabula, we used the diagrams TN-TS intro-
duced in (Mele et al. 2007).

Fig. 3: Examples of TN-TS diagram.

 In Fig. 3 the events represented in the previous example
are shown. Diagrams TN-TS are part of the middleware
services implemented. For the reading of these diagrams,
we note that the axis of the stories is not to scale, whereas
the axis of narration is.

Semantic Editing and automatic plot genera-
tion

Media representation and its semantic have suggested a
new methodological approach for the construction of a
story’s plot, which we have called Semantic Editing. The
scheme shown in Fig. 4 describes the stages of this ap-
proach.

Qualitative Sequential Editing
Film editing is the phase in which the available material is
viewed, analyzed and reconstructed on the basis of narra-
tive purposes. We present the approach, called Qualitative
Semantic Editing (QSeEd), where the designer assembles
the sequence of scenes (sequence of annotated media) by
temporal qualitative relations among scenes. The language
for these descriptions consists of a relation over-
lapsdt(mse1,mse2,dT), and an index timeR-
ateMse.

 The overlapsdt(mse1,mse2,dT) relation indi-
cates that the media mse2 begins after a dT time from
mse1 (dT must be between zero and duration video mse1).

Fig. 4: Services defined for the Semantic Editing

Time Execution modality
Each MediaStoryElement has an intrinsic duration.
The intrinsic duration of a video or audio is determined by
the indexes defined in the MediaElement definition and
indicates the actual duration of a video or an audio. The
photos have an intrinsic time equal to 1.
 In the semantic editing, for each mse, is useful to estab-
lish a ratio (TimeRate=DEmse/DImse) between the
actual playing time (DEmse) and the intrinsic duration of
the media (DImse).
 The ratio is represented by the following predicate:
timeRateMse(mse1,TimeRate). A video with
TimeRate equal to 1 indicates that the video is executed
with the same intrinsic duration of the annotated media.
TimeRate greater than 1 indicates slowmotion.

Transitions among multimedia story elements
In the Semantic Editing the user can select, in a symbolic
manner, the transactions between two scenes (the effect
created when there is a change from one scene to another).
The effects are represented by binary predicates:

 fade(mse7,mseN). cross_fading(mseN,mseM).

 The name of the predicate describes the type of effect.
These elements have a natural correspondence with the
transaction in Smil.

Control Plot Consistency
For consistency checks of Fabula and Plot, we used the
axiomatic of Russell-Kamp (Lambalgen and Hamm 2004).
Using the stable model semantics (Gelfond and Lifschitz
1988), we implemented a new version of such axiomatic
(see Table 1).

60

Tab. 1: An implementaon of Russell-Kamp Theory in ASP
p(X,Y) :- pD(X,Y), not pN(X,Y).
pN(X,Y):- event(X),event(Y),p(Y,X).
p(X,Z):- p(X,Y), p(Y,Z), not pN(X,Z),
 event(X),event(Y),event(Z).
pN(X,Y):- event(X),event(Y),o(X,Y).
o(X,Y) :- oD(X,Y), not oN(X,Y).
o(X,X) :- event(X).
o(Y,X) :- o(X,Y),event(X),event(Y).
oN(X,Y):- event(X),event(Y),p(X,Y).
oN(X,Y):- event(X),event(Y),p(Y,X).
p(X,V):- p(X,Y),o(Y,Z), p(Z,V),

 not pN(X,V),event(X),
 event(Y),event(V),event(Z).

 This particular implementation was necessary as the
original Russell-Kamp axioms contain rules with negation
as failure. p(x,y) and o(x,y) are the temporal qualita-
tive relations that precede and overlap those previously in-
troduced.

Plot Generation
During semantic editing, a story builder selects the Medi-
aStoryElement and defines the order of narration. The
order of narration is specified by the meets and over-
laps relations, while the duration of each media segment
is calculated by index timeRate. We implemented the
algorithm QSeMo2Plot for the creation of the plot.
QSeMo2Plot receives the inputs Qualitative Sequential Ed-
iting and timeRate and returns the media story element
ordered in time.
 The inputs of the program are the set of relations
oD(x,y) and pD(x,y) of which the program controls
the consistency.

SMIL Code Generation
In this work we used SMIL Language (SMIL 2005), a lan-
guage designed for the integration and synchronization of
multimedia sources. We implemented the algorithm
Plot2Smil to translate the Plot defined logical representa-
tion into SMIL language. The algorithm uses the transla-
tion rules described in Tab. 3 and creates a SMIL file that
can be run by a standard video player.
 The rule T1 defines the translation from an instance of
Plot to an element of SMIL. Rules T2 and T3, instead, de-
scribe how to synchronize the media according to their
Qualitative Sequential Editing relations. The synchroniza-
tion is done using the SMIL’s tag <par>, which allows
parallel executions of multiple media.
 meets(mse1,mse2) relations have a natural corre-
spondence, in SMIL, with the tag <seq>, but in order to
simplify the algorithm, we defined the translation rule (T3)
with the tag <par> and the constraint "for any mse1 and
mse2, mse2 starts after the end of mse1".

Fig. 5: TN-TS diagram of S.Chiara church story.

Tab.3: Translation rules from Plot to SMIL

 Plot Smil
T1 mse1:MediaStoryElement

.

mse1[me=>me, e->e1].

 me:videoElement[

 media->md,

 begin->10.5s,

 end->25.7s].

p1:Plot[int->i[ti->t1,

 tf-

>t2],

 m->mse1]

<video id=mse1

 src=url1

 ...

 clipBegin="10.5s"

 clipEnd="25.7s"

 dur=DEmse(mse1)/>

T2 overlaps(

 mse1,

 mse2,

 dT)
Con

0 dT <DEmse(mse1)

<par>

 <video id=mse1

 src=url1

 clipBegin="10.5s“

 clipEnd="25.7s"

 dur=DEmse(mse1)/>

 <video id=mse2

 src=url2

 clipBegin="13.5s“

 clipEnd=“42.7s“

 dur=DEmse(mse2)

 begin=mse1.begin+dT

<par/>

T3 meets(

 mse1,

 mse2)

<par>

 <video id=mse1

 src=url1

 clipBegin="10.5s“

 clipEnd="25.7s"

 dur=DEmse(mse1)/>

 <video id=mse2

 src=url2

 clipBegin="13.5s“

 clipEnd=“42.7s“

 dur=DEmse(mse2)

 begin=mse1.end/>

<par/>

61

Partial Order Construction, Connectivity
Evaluation and Consistency Control

In this chapter we will show some programs written in
Flora2/Prolog which constitute a formalization of key con-
cepts of the stories and, at the same time, the basic func-
tions that can be used when the story builder defines a
story reusing multimedia resources.

Partial Order Construction
The annotated events of the stories represent how the ac-
tions happen with respect to a given temporal modality, for
example:

ev(e1,DuringI(Date,Date),Az1).
ev(e2, BeforeP(Date), Az2).

 These relations do not represent the temporal order of
events in a story. We implemented a program that com-
pares each event of a story with all the other events of the
Annotation Set. Each comparison attempts to discover
whether an event precedes or overlaps another event. The
program consists of about 70 Prolog-Flora2 rules, and we
list some of them as examples:

findRel(?e1,?e2):-
 ev(?e1,DuringI(?Date1,?Date2),_),
 ev(?e2,AfterI(?Date3,?Date4),_),
 ?Date4 <=D ?Date1,
 inserta{p(?e1,?e2):EventRelations}.

findRel(?e1,?e2):-
 ev(?e1,EqualI(?Date1,?Date2),_),
 ev(?e2,EqualI(?Date3,?Date4),_),
 ?Date1 <=D ?Date3, ?Date3 <=D ?Date2,
 inserta{o(?e1,?e2):EventRelations}.

(The predicate ?D1 <= D? D2 - infix form - returns
True if the date ?D1 is less than or equal to date ?D2).
 p(?e1,?e2) and (?e1,?e2) are the relations of precedence
and overlap previously introduced. They define the partial
order of events of the story.

Connectivity Evaluation
The partial temporal order of events does not ensure that a
story is connected. This may be because the story builder
does not insert the necessary annotations.
 We implemented a service that concerns the connection
of the story:

 connectedSetEx(?Ex, ?RelEv,?EvCList).
This program for a given event (?Ex) and a set of tempo-
ral relations (?RelEve) among events, returns the list
(?EvCList) of all events connected to ?Ex. The algo-
rithm of connectedSetEx (not shown here) was im-
plemented, representing each event in a story as a node of a
graph, and relations between events as labeled edges of the
graph.
 The algorithm was implemented in XSB Prolog (Swift,
Warren and Sagonas 2009) and implements a variant of a
standard search algorithm in a graph (see Shoham 1994).

 ConnectedSetEx/3 also lets us know if a fabula F is
connected, checking whether the list of events connected
(?EvCList) to a given event (?E) is equal to the list of
all events of the fabula F.
 If the fabula is not connected, there are other services
that can help a story builder to connect the events. These
programs suggest some relations in order to connect the
fabula.

Consistency Event Control
Cultural stories, for obvious reasons, must be consistent;
for example, p(e1,e2) and p(e2,e1) cannot happen. To im-
plement this program we used the algorithm presented in
previous chapters (Control Plot Consistency).

Conclusions

We formalized some key concepts for the representation of
stories that we believe have a general validity, not only for
cultural stories. An approach based on the Event Calculus
(Miller and Shanahan 1999), as suggested in (Mueller
2003), is not adapted to this end (the language is not ex-
pressive enough to represent cultural events, and not suit-
able to check the connectivity and inconsistencies). How-
ever, the rigorous approach of the theories of Event Calcu-
lus may be useful if we want to build a reasoning program
on the connectivity of events. In this case, however, it is
necessary to implement a complex software architecture
that embeds many elements related to the global aspects of
events, such as connectivity and inconsistency.

References

Allen, J.F. 1987. Natural Language Understanding. Menlo
Park, Ca, Benjamin/Cummings.

Bordwell, D. ed. 1985. Narration and the Fiction Film.
London, Routledge.

Eco, U. 1979. Lector in fabula. Milano, Bompiani.

Gelfond, M.; Lifschitz, V. 1988. The Stable Model Seman-
tics For Logic Programming . In Proceedings of the Fifth
International Conference on Logic Programming, 070-
1080. Seattle USA.

Lambalgen, M.V.; and Hamm, F. 2004. The Proper Treat-
ment of Events. Blackwell, Oxford and Boston, 2004.

Mele F.; Calabrese A.; Marseglia R. 2007. Interactive
Analysis of Time in Film Stories. In Proceedings of the
tenth AI*IA. 756-772. Rome, Italy:LNCS Springer.

Miller, R.; and Shanahan, M. 1999. The event-calculus in
classical logic - alternative axiomatizations. In Electronic
Transactions on Artificial Intelligence 3(1): 77-105.

Mueller, E.T. 2003. Story understanding through multi-
representation model construction. In Proceedings of the
HLT-NAACL 2003 Workshop. 46-53. East Stroudsburg,
PA: Association for Computational Linguistics.

62

Pustejovsky, J.; Castaño, J.; Ingria, R.; Saurí, R.; Gai-
zauskas, R.; Setzer, A; and Katz, G. 2003. TimeML: A
Specification Language for Temporal and Event Expres-
sions. Netherlands, Kluwer Academic Publishers.

Reichenbach, H. 1947 Elements of Symbolic Logic. Lon-
don, Mc Millan.

Shoham, Y. 1994. Artificial Intelligence Techniques in
Prolog. Morgan Kaufmann Publishers.

Smil. 2005. Synchronized Multimedia Integration Lan-
guage (SMIL 2.1) http://www.w3.org/TR/2005/REC-
SMIL2-20051213/).

Swift, T.; Warren, D.S.; and Sagonas, K. 2009. The XSB
system version 3.2 - volume 1 e 2
http://xsb.sourceforge.net.

Yang, G.; Kifer, M.; Wan, H.; and Zhao, C.. 2008.
FLORA-2: An Object-Oriented Knowledge Base Lan-
guage, http://flora.sourceforge.net/.

63

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

