
Dictionary Optimization for Block-Sparse Representations ∗

Kevin Rosenblum and Lihi Zelnik-Manor and Yonina C. Eldar
kevin@tx.technion.ac.il
lihi@ee.technion.ac.il

yonina@ee.technion.ac.il

Abstract

Recent work has demonstrated that using a carefully designed
dictionary instead of a predefined one, can improve the spar-
sity in jointly representing a class of signals. This has moti-
vated the derivation of learning methods for designing a dic-
tionary which leads to the sparsest representation for a given
set of signals. In some applications, the signals of interest can
have further structure, so that they can be well approximated
by a union of a small number of subspaces (e.g., face recog-
nition and motion segmentation). This implies the existence
of a dictionary which enables block-sparse representations
of the input signals once its atoms are properly sorted into
blocks. In this paper, we propose an algorithm for learning
a block-sparsifying dictionary of a given set of signals. We
do not require prior knowledge on the association of signals
into groups (subspaces). Instead, we develop a method that
automatically detects the underlying block structure. This
is achieved by iteratively alternating between updating the
block structure of the dictionary and updating the dictionary
atoms to better fit the data. Our experiments show that for
block-sparse data the proposed algorithm significantly im-
proves the dictionary recovery ability and lowers the repre-
sentation error compared to dictionary learning methods that
do not employ block structure.

Introduction

The framework of sparse coding aims at recovering an un-
known vector θ ∈ RK from an under-determined sys-
tem of linear equations x = Dθ, where D ∈ RN×K is
a dictionary, and x ∈ RN is an observation vector with
N < K . Since the system is under-determined, θ can not be
recovered without additional information. The framework
of compressed sensing (Candes, Romberg, and Tao 2006;
Donoho 2006) exploits sparsity of θ in order to enable recov-
ery. Specifically, when θ is known to be sparse so that it con-
tains few nonzero coefficients, and when D is chosen prop-
erly, then θ can be recovered uniquely from x = Dθ. Recov-
ery is possible irrespectively of the locations of the nonzero
entries of θ. This result has given rise to a multitude of dif-
ferent recovery algorithms. Most prominent among them
are Basis Pursuit (BP) (Chen, Donoho, and Saunders 1999)

∗The authors are with the Technion - Israel Institute of Technol-
ogy, Haifa, Israel.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Orthogonal Matching Pursuit (OMP) (Tropp 2004;
Mallat and Zhang 1993).

Recent work (Aharon, Elad, and Bruckstein 2006b; En-
gan, Aase, and Hakon-Husoy 1999; Olshausen and Field
1996; Lesage et al. 2005; Duarte-Carvajalino and Sapiro
2008) has demonstrated that adapting the dictionary D to
fit a given set of signal examples leads to improved sig-
nal reconstruction. At the price of being slow, these learn-
ing algorithms attempt to find a dictionary that leads to
optimal sparse representations for a certain class of sig-
nals. These methods show impressive results for represen-
tations with arbitrary sparsity structures. In some appli-
cations, however, the representations have a unique spar-
sity structure that can be exploited. Our interest is in
the case of signals that are known to be drawn from a
union of a small number of subspaces (Eldar and Mishali
2009; Gedalyahu and Eldar 2010). This occurs naturally,
for example, in face recognition (Basri and Jacobs 2003;
Yang et al. 2007), motion segmentation (Vidal and Ma
2006), multiband signals (Mishali and Eldar 2009; 2010;
Landau 1967), measurements of gene expression levels (Par-
varesh et al. 2008), and more. For such signals, sorting
the dictionary atoms according to the underlying subspaces
leads to sparse representations which exhibit a block-sparse
structure, i.e., the nonzero coefficients occur in clusters of
varying sizes. Several methods, such as Block BP (BBP) (El-
dar and Mishali 2009; Stojnic, Parvaresh, and Hassibi 2009;
Rauhut and Eldar 2010; Yuan and Lin 2006) and Block OMP
(BOMP) (Eldar, Kuppinger, and Bölcskei 2010; Eldar and
Bölcskei 2009) have been proposed to take advantage of
this structure in recovering the block-sparse representation
θ. These methods typically assume that the dictionary is
predetermined and the block structure is known.

In this paper we propose a method for designing a block-
sparsifying dictionary for a given set of signals. In other
words, we wish to find a dictionary that provides block-
sparse representations best suited to the signals in a given
set. To take advantage of the block structure via block-
sparse approximation methods, it is necessary to know the
block structure of the dictionary. We do not assume that it
is known a-priori. Instead, we infer the block structure from
the data while adapting the dictionary.

We start by formulating this task as an optimization prob-
lem. We then present an algorithm for minimizing the pro-

50

Manifold Learning and Its Applications: Papers from the AAAI Fall Symposium (FS-10-06)

posed objective, which iteratively alternates between updat-
ing the block structure and updating the dictionary. The
block structure is inferred by the agglomerative clustering
of dictionary atoms that induce similar sparsity patterns. In
other words, after finding the sparse representations of the
training signals, the atoms are progressively merged accord-
ing to the similarity of the sets of signals they represent. A
variety of segmentation methods through subspace modeling
have been proposed recently (Vidal, Ma, and Sastry 2005;
Elhamifar 2009; Ma et al. 2007). These techniques learn an
underlying collection of subspaces based on the assumption
that each of the samples lies close to one of them. How-
ever, unlike our method, they do not treat the more general
case where the signals are drawn from a union of several
subspaces.

The dictionary blocks are then sequentially updated to
minimize the representation error at each step. The proposed
algorithm is an intuitive extension of the K-SVD algorithm
(Aharon, Elad, and Bruckstein 2006b), which yields spar-
sifying dictionaries by sequentially updating the dictionary
atoms, to the case of block structures. In other words, when
the blocks are of size 1 our cost function and the algorithm
we propose reduce to K-SVD. Our experiments show that
updating the dictionary block by block is preferred over up-
dating the atoms in the dictionary one by one, as in K-SVD.

We show empirically that both parts of the algorithm are
indispensable to obtain high performance. While fixing a
random block structure and applying only the dictionary up-
date part leads to improved signal reconstruction compared
to K-SVD, combining the two parts leads to even better re-
sults. Furthermore, our experiments show that K-SVD often
fails to recover the underlying block structure. This is in
contrast to our algorithm which succeeds in detecting most
of the blocks.

We begin by reviewing previous work on dictionary de-
sign in Section . In Section we present an objective for
designing block-sparsifying dictionaries. We show that this
objective is a direct extension of the one used by K-SVD.
We then propose an algorithm for minimizing the proposed
cost function (Section). In Section we give a detailed de-
scription of the algorithm for finding a block structure and in
Section we describe the dictionary update part. We evalu-
ate the performance of the proposed algorithms and compare
them to previous work in Section .

Throughout the paper, we denote vectors by lowercase let-
ters, e.g., x, and matrices by uppercase letters, e.g., A. The
jth column of a matrix A is written as Aj , and the ith row as

Ai. The sub-matrix containing the entries of A in the rows
with indices r and the columns with indices c is denoted Ar

c .

The Frobenius norm is defined by ‖A‖F ≡
√∑

j ‖Aj‖2
2.

The ith element of a vector x is denoted x[i]. ‖x‖p is its
lp-norm and ‖x‖0 counts the number of non-zero entries in
x.

Prior work on dictionary design

The goal in dictionary learning is to find a dictionary D
and a representation matrix Θ that best match a given set
of vectors Xi that are the columns of X . In addition, we

would like each vector Θi of Θ to be sparse. In this section
we briefly review two popular sparsifying dictionary design
algorithms, K-SVD (Aharon, Elad, and Bruckstein 2006b;
2006a) and MOD (Method of Optimal Directions) (Engan,
Aase, and Hakon-Husoy 1999). We will generalize these
methods to block-sparsifying dictionary design in Section .

To learn an optimal dictionary, both MOD and K-SVD at-
tempt to optimize the same cost function for a given sparsity
measure k:

min
D,Θ

‖X − DΘ‖F

s.t. ‖Θi‖0 ≤ k, i = 1, . . . , L (1)

where X ∈ RN×L is a matrix containing L given input sig-
nals, D ∈ RN×K is the dictionary and Θ ∈ RK×L is a
sparse representation of the signals. Note that the solution
of (1) is never unique due to the invariance of D to permuta-
tion and scaling of columns. This is partially resolved by re-
quiring normalized columns in D. We will therefore assume
throughout the paper that the columns of D are normalized
to have l2-norm equal 1.

Problem (1) is non-convex and NP-hard in general. Both
MOD and K-SVD attempt to approximate (1) using a re-
laxation technique which iteratively fixes all the parameters
but one, and optimizes the objective over the remaining vari-
able. In this approach the objective decreases (or is left un-
changed) at each step, so that convergence to a local mini-
mum is guaranteed. Since this might not be the global opti-
mum both approaches are strongly dependent on the initial

dictionary D(0). The convention is to initialize D(0) as a col-
lection of K data signals from the same class as the training
signals X .

The first step of the nth iteration in both algorithms op-

timizes Θ given a fixed dictionary D(n−1), so that (1) be-
comes:

Θ(n) = arg min
Θ

‖X − D(n−1)Θ‖F

s.t. ‖Θi‖0 ≤ k, i = 1, . . . , L. (2)

This problem can be solved approximately using sparse cod-
ing methods such as BP or OMP for each column of Θ, since

the problem is separable in these columns. Next, Θ(n) is
kept fixed and the representation error is minimized over D:

D(n) = argmin
D

‖X − DΘ(n)‖F . (3)

The difference between MOD and K-SVD lies in the choice
of optimization method for D(n). While K-SVD converges
faster than MOD, both methods yield similar results.

The MOD algorithm treats the problem in (3) directly.
This problem has a closed form solution given by the
pseudo-inverse:

D(n) = XΘ′(n)(Θ(n)Θ′(n))−1. (4)

Here we assume for simplicity that Θ(n)Θ′(n) is invertible.
The K-SVD method solves (3) differently. The columns

in D(n−1) are updated sequentially, along with the corre-

sponding non-zero coefficients in Θ(n). This parallel up-
date leads to a significant speedup while preserving the spar-

sity pattern of Θ(n). For j = 1, . . . , K , the update is

51

as follows. Let ωj ≡ {i ∈ 1, . . . , L|Θj
i �= 0} be the

set of indices corresponding to columns in Θ(n) that use
the atom Dj , i.e., their ith row is non-zero. Denote by

Rωj
= Xωj

−
∑

i�=j(DiΘ
i
ωj

) the representation error of

the signals Xωj
excluding the contribution of the jth atom.

The representation error of the signals with indices ωj can

then be written as ‖Rωj
− DjΘ

j
ωj
‖F . The goal of the up-

date step is to minimize this representation error, which is
accomplished by choosing

Dj = U1, Θj
ωj

= Δ1
1V

′
1 .

Here UΔV ′ is the Singular Value Decomposition (SVD) of
Rωj

. Note, that the columns of D remain normalized after
the update. The K-SVD algorithm obtains the dictionary
update by K separate SVD computations, which explains
its name.

Block-Sparsifying Dictionary optimization
We now formulate the problem of block-sparsifying dictio-
nary design. We then propose an algorithm which can be
seen as a natural extension of K-SVD for the case of sig-
nals with block sparse representations. Our method involves
an additional clustering step in order to determine the block
structure.

Problem definition

For a given set of L signals X = {Xi}
L
i=1 ∈ RN , we wish

to find a dictionary D ∈ RN×K whose atoms are sorted
in blocks, and which provides the most accurate represen-
tation vectors whose non-zero values are concentrated in a
fixed number of blocks. In previous works dealing with the
block-sparse model, it is typically assumed that the block
structure in D is known a-priori, and even more specifically,
that the atoms in D are sorted according to blocks (Eldar
and Mishali 2009; Stojnic, Parvaresh, and Hassibi 2009). In-
stead, in this paper we address the more general case where
the block structure is unknown and the blocks can be of vary-
ing sizes. The only assumption we make on the block struc-
ture is that the maximal block size, denoted by s, is known.

More specifically, suppose we have a dictionary whose
atoms are sorted in blocks that enable block-sparse repre-
sentations of the input signals. Assume that each block is
given an index number. Let d ∈ RK be the vector of block
assignments for the atoms of D, i.e., d[i] is the block index
of the atom Di. We say that a vector θ ∈ RK is k-block-
sparse over d if its non-zero values are concentrated in k
blocks only. This is denoted by ‖θ‖0,d = k, where ‖θ‖0,d

is the l0-norm over d and counts the number of non-zero
blocks as defined by d. Fig. 1 presents examples of two dif-
ferent block structures and two corresponding block-sparse
vectors and dictionaries.

Our goal is to find a dictionary D and a block structure
d, with maximal block size s, that lead to optimal k-block
sparse representations Θ = {Θi}

L
i=1 for the signals in X :

min
D,d,Θ

‖X − DΘ‖F

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L

|dj | ≤ s, j ∈ d (5)

Figure 1: Two equivalent examples of dictionaries D and
block structures d with 5 blocks, together with 2-block-
sparse representations θ. Both examples represent the same
signal, since the atoms in D and the entries of d and θ are
permuted in the same manner.

where dj = {i ∈ 1, . . . , K|d[i] = j} is the set of indices
belonging to block j (i.e., the list of atoms in block j).

The case when there is no underlying block structure or
when the block structure is ignored, is equivalent to setting
s = 1 and d = [1, . . . , K]. Substituting this into (5), reduces
it to (1). In this setting, the objective and the algorithm we
propose coincide with K-SVD. In Section we demonstrate
through simulations that when an underlying block structure
exists, optimizing (5) via the proposed framework improves
recovery results and lowers the representation errors with
respect to (1).

Algorithm Preview

In this section, we propose a framework for solving (5).
Since this optimization problem is non-convex, we adopt
the coordinate relaxation technique. We initialize the dic-

tionary D(0) as the outcome of the K-SVD algorithm (using
a random collection of K signals leads to similar results, but
slightly slower convergence). Then, at each iteration n we
perform the following two steps:

1. Recover the block structure by solving (5) for d and Θ
while keeping D(n−1) fixed:

[d(n), Θ(n)] = min
d,Θ

‖X − D(n−1)Θ‖F (6)

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L

|dj | ≤ s, j ∈ d.

An exact solution would require a combinatorial search
over all feasible d and Θ. Instead, we propose a tractable
approximation to (6) in Section , referred to as Sparse Ag-
glomerative Clustering (SAC). Agglomerative clustering
builds blocks by progressively merging the closest atoms
according to some distance metric (Duda and Hart 2001).
SAC uses the l0-norm for this purpose.

2. Fit the dictionary D(n) to the data by solving (5) for D

and Θ while keeping d(n) fixed:

[D(n), Θ(n)] = min
D,Θ

‖X − DΘ‖F (7)

s.t. ‖Θi‖0,d(n) ≤ k, i = 1, . . . , L.

52

In Section we propose an algorithm, referred to as Block
K-SVD (BK-SVD), for solving (8). This technique can
be viewed as a generalization of K-SVD since the blocks

in D(n) are sequentially updated together with the corre-

sponding non-zero blocks in Θ(n).

In the following sections we describe in detail the steps
of this algorithm. The overall framework is summarized in
Algorithm 1.

Algorithm 1 Block-Sparse Dictionary Design

Input: A set of signals X , block sparsity k and maximal
block size s.
Task: Find a dictionary D, block structure d and the corre-
sponding sparse representation Θ by optimizing:

min
D,d,Θ

‖X − DΘ‖F

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L

|dj | ≤ s, j ∈ d.

Initialization: Set the initial dictionary D(0) as the outcome
of K-SVD.
Repeat from n = 1 until convergence:

1. Fix D(n−1), and update d(n) and Θ(n) by applying Sparse
Agglomerative Clustering.

2. Fix d(n), and update D(n) and Θ(n) by applying BK-
SVD.

3. n = n + 1.

Block Structure Recovery: Sparse Agglomerative
Clustering

In this section we propose a method for recovering the
block structure d given a fixed dictionary D, as outlined in
Fig. 2(a). The suggested method is based on the coordinate
relaxation technique to solve (6) efficiently. We start by ini-
tializing d and Θ. Since we have no prior knowledge on d it
is initialized as K blocks of size 1, i.e. d = [1, . . . , K]. To
initialize Θ we keep d fixed and solve (6) over Θ using OMP
with k×s instead of k non-zero entries, since the signals are
known to be combinations of k blocks of size s. Based on
the obtained Θ, we first update d as described below and
then again Θ using BOMP (Eldar, Kuppinger, and Bölcskei
2010). The BOMP algorithm sequentially selects the dictio-
nary blocks that best match the input signals Xi, and can be
seen as a generalization of the OMP algorithm to the case of
blocks.

To update d we wish to solve (6) while keeping Θ fixed.
Although the objective does not depend on d, the constraints
do. Therefore, the problem becomes finding a block struc-
ture with maximal block size s that meets the constraint on
the block-sparsity of Θ. To this end, we seek to minimize
the block-sparsity of Θ over d:

min
d

L∑
i=1

‖Θi‖0,d s.t. |dj | ≤ s, j ∈ d. (8)

Before we describe how (8) is optimized we first wish to
provide some insight. When a signal Xi is well represented
by the unknown block dj , then the corresponding rows in
Θi are likely to be non-zero. Therefore, rows of Θ that ex-
hibit a similar pattern of non-zeros are likely to correspond
to columns of the same dictionary block. Therefore, group-
ing dictionary columns into blocks is equivalent to grouping
rows of Θ according to their sparsity pattern. To detect rows
with similar sparsity patterns we next rewrite the objective
of (8) as a function of the pattern on non-zeros.

Let ωj(Θ, d) denote the list of columns in Θ that have
non-zero values in rows corresponding to block dj , i.e.,

ωj(Θ, d) = {i ∈ 1, . . . , L| ‖Θ
dj

i ‖2 > 0}. Problem (8) can
now be rewritten as:

min
d

∑
j∈d

|ωj(Θ, d)| s.t. |dj | ≤ s, j ∈ d (9)

where |ωj | denotes the size of the list ωj . We propose using
a sub-optimal tractable agglomerative clustering algorithm
(Johnson 1967) to minimize this objective. At each step we
merge the pair of blocks that have the most similar pattern
of non-zeros in Θ, leading to the steepest descent in the ob-
jective. We allow merging blocks as long as the maximum
block size s is not exceeded.

More specifically, at each step we find the pair of blocks
(j∗1 , j∗2) such that:

[j∗1 , j∗2] = arg max
j1 �=j2

|ωj1 ∩ ωj2 | s.t. |dj1 | + |dj2 | ≤ s.

We then merge j∗1 and j∗2 by setting ∀i ∈ dj2 : d[i] ← j1,
ωj1 ← {ωj1 ∪ ωj2}, and ωj2 ← ø. This is repeated un-
til no blocks can be merged without breaking the constraint
on the block size. We do not limit the intersection size for
merging blocks from below, since merging is always ben-
eficial. Merging blocks that have nothing in common may
not reduce the objective of (8); however, this can still lower
the representation error at the next BK-SVD iteration. In-
deed, while the number of blocks k stays fixed, the number
of atoms that can be used to reduce the error increases.

Fig. 2(b) presents an example that illustrates the notation
and the steps of the algorithm. In this example the maximal
block size is s = 2. At initialization the block structure is set
to d = [1, 2, 3, 4], which implies that the objective of (8) is∑L

i=1 ‖Θi‖0,d = 2+1+2+2 = 7. At the first iteration, ω1

and ω3 have the largest intersection. Consequently, blocks 1
and 3 are merged. At the second iteration, ω2 and ω4 have
the largest intersection, so that blocks 2 and 4 are merged.
This results in the block structure d = [1, 2, 1, 2] where no
blocks can be merged without surpassing the maximal block

size. The objective of (8) is reduced to
∑L

i=1 ‖Θi‖0,d = 4,
since all 4 columns in Θ are 1-block-sparse. Note that since
every column contains non-zero values, this is the global
minimum and therefore the algorithm succeeded in solving
(8).

While more time-efficient clustering methods exist, we
have selected agglomerative clustering because it provides
a simple and intuitive solution to our problem. Partitional
clustering methods, such as K-Means, require initialization

53

(a)

(b)

Figure 2: (a) A flow chart describing the SAC algorithm. (b)
A detailed example of the decision making process in the
SAC algorithm.

and are therefore not suited for highly sparse data and the
l0-norm metric. Moreover, since oversized blocks are un-
wanted, it is preferable to limit the block size rather than the
number of blocks. It is important to note that due to the it-
erative nature of our dictionary design algorithm, clustering
errors can be corrected in the following iteration, after the
dictionary has been refined.

Block K-SVD Algorithm

We now propose the BK-SVD algorithm for recovering the
dictionary D and the representations Θ by optimizing (8)
given a block structure d and input signals X .

Using the coordinate relaxation technique, we solve this
problem by minimizing the objective based on alternating Θ
and D. At each iteration m, we first fix D(m−1) and use
BOMP to solve (8) which reduces to

Θ(m) = arg min
Θ

‖X − D(m−1)Θ‖F

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L. (10)

Next, to obtain D(m) we fix Θ(m), d and X , and solve:

D(m) = argmin
D

‖X − DΘ(m)‖F . (11)

Inspired by the K-SVD algorithm, the blocks in D(m−1)

are updated sequentially, along with the corresponding non-

zero coefficients in Θ(m). For every block j ∈ d, the update
is as follows. Denote by Rωj

= Xωj
−

∑
i�=j Ddi

Θdi
ωj

the

representation error of the signals Xωj
excluding the contri-

bution of the jth block. Here ωj and dj are defined as in the
previous subsection. The representation error of the signals

with indices ωj can then be written as ‖Rωj
− Ddj

Θ
dj

ωj‖F .
Finally, the representation error is minimized by setting

Ddj
Θ

dj

ωj equal to the matrix of rank |dj | that best approx-
imates Rωj

. This can obtained by the following updates:

Ddj
= [U1, . . . , U|dj|]

Θdj

ωj
= [Δ1

1V1, . . . ,Δ
|dj |

|dj |
V|dj |]

′

where the |dj | highest rank components of Rωj
are com-

puted using the SVD Rωj
= UΔV ′. The updated Ddj

is
now an orthonormal basis that optimally represents the sig-
nals with indices ωj . Note that the representation error is
also minimized when multiplying Ddj

on the right by W

and Θ
dj

ωj on the left by W−1, where W ∈ R|dj|×|dj| is an in-
vertible matrix. However, if we require the dictionary blocks
to be orthonormal subspaces, the solution is unique up to the
permutation of the atoms. It is also important to note that if
|dj | > |ωj |, then |dj | − |ωj | superfluous atoms in block j
can be discarded without any loss of performance.

This dictionary update minimizes the representation er-

ror while preserving the sparsity pattern of Θ(m), as in the
K-SVD dictionary update step. However, the update step
in the BK-SVD algorithm converges faster thanks to the si-
multaneous optimization of the atoms belonging to the same
block. Our simulations show that it leads to smaller rep-
resentation errors as well. Moreover, the dictionary update

54

step in BK-SVD requires about s times less SVD compu-
tations, which makes the proposed algorithm significantly
faster than K-SVD.

We next present a simple example illustrating the advan-
tage of the BK-SVD dictionary update step, compared to
the K-SVD update. Let D1 and D2 be the atoms of the same
block, of size 2. A possible scenario is that D2 = U1 and
Θ2

ωj
= −Δ(1, 1)V ′

1 . In K-SVD, the first update of D is

D1 ← U1 and Θ1
ωj

← Δ(1, 1)V ′
1 . In this case the second

update would leave D2 and Θ2
ωj

unchanged. As a conse-

quence, only the highest rank component of Rωj
is removed.

Conversely, in the proposed BK-SVD algorithm, the atoms
D1 and D2 are updated simultaneously, resulting in the two
highest rank components of Rωj

being removed.

Experiments

In this section, we evaluate the contribution of the proposed
block-sparsifying dictionary design framework empirically.
We also examine the performance of the SAC and the BK-
SVD algorithms separately.

For each simulation, we repeat the following procedure 50
times: We randomly generate a dictionary D∗ of dimension
30 × 60 with normally distributed entries and normalize its
columns. The block structure is chosen to be of the form:

d∗ = [1, 1, 1, 2, 2, 2, . . . , 20, 20, 20]

i.e. D∗ consists of 20 subspaces of size s = 3. We gen-
erate L = 5000 test signals X of dimension N = 30, that
have 2-block sparse representations Θ∗ with respect to D∗

(i.e. k = 2). The generating blocks are chosen randomly
and independently and the coefficients are i.i.d. uniformly
distributed. White Gaussian noise with varying SNR was
added to X .

We perform three experiments:

1. Given D∗ and X , we examine the ability of SAC to re-
cover d∗.

2. Given d∗ and X , we examine the ability of BK-SVD to
recover D∗.

3. We examine the ability of BK-SVD combined with SAC
to recover D∗ and d∗ given only X .

We use two measures to evaluate the success of the simu-
lations based on their outputs D, d and Θ:

• The normalized representation error e = ‖X−DΘ‖F

‖X‖F
.

• The percentage p of successfully recovered blocks. For
every block in D, we match the closest block in D∗ with-
out repetition, where the (normalized) distance between
two blocks S1 and S2 (of sizes s1 and s2) is measured by:

Dist(S1, S2) ≡

√(
1 −

‖S′
1S2‖2

F

max(s1, s2)

)

assuming that both blocks are orthonormalized. If the dis-
tance between the block in D and its matched block in
D∗ is smaller than 0.01, we consider the recovery of this
block as successful.

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

SNR

e

(a)

SAC
oracle

−10 0 10 20 30 40
0

50

100

SNR

p

(b)

−10 0 10 20 30 40
2

3

4

5

6

SNR

b

(c)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

k

e

(d)

1 2 3 4 5 6
0

50

100

k

p

(e)

1 2 3 4 5 6
0

5

10

15

k

b

(f)

Figure 3: Simulation results of the SAC algorithm. The
graphs show e, p and b as a function of the SNR of the data
signals for k = 2 (a, b, c), and as a function of k in a noise-
less setting (d, e, f).

Evaluating SAC

To evaluate the performance of the SAC algorithm, we as-
sume that D∗ is known, and use SAC to reconstruct d∗ and
then BOMP to approximate Θ∗. The SAC algorithm is eval-
uated as a function of the SNR of the signals X for k = 2,
and as a function of k in a noiseless setting. In addition to
e and p, Fig. 3 also shows the objective of (8), which we
denote by b. We compare our results with those of an “ora-
cle” algorithm, which is given as input the true block struc-
ture d∗. It then uses BOMP to find Θ. The oracle’s results
provide a lower bound on the reconstruction error of our al-
gorithm (we cannot expect our algorithm to outperform the
oracle). It can be seen that for SNR higher than −5[dB],
the percentage p of successfully recovered blocks quickly
increases to 100% (Fig. 3.(b)), the representation error e
drops to zero (Fig. 3.(a)) and the block-sparsity b drops to
the lowest possible value k = 2 (Fig. 3.(c)). Fig. 3.(e) shows
that the block structure d∗ is perfectly recovered for k < 6.
However, for k = 6, SAC fails in reconstructing the block
structure d∗, even though the block sparsity b reaches the
lowest possible value (Fig. 3.(f)). This is a consequence of
the inability of OMP to recover the sparsest approximation
of the signals X with k×s = 12 nonzero entries. In terms of
e and b, our algorithm performs nearly as good as the oracle.

Evaluating BK-SVD

To evaluate the performance of the BK-SVD algorithm we
assume that the block structure d∗ is known. We initialize
the dictionary D(0) by generating 20 blocks of size 3 where
each block is a randomly generated linear combination of 2
randomly selected blocks of D∗. We then evaluate the con-
tribution of the proposed BK-SVD algorithm. Recall that
dictionary design consists of iterations between two steps,
updating Θ using block-sparse approximation and updating

55

0 20 40
0.2

0.3

0.4

0.5

0.6

0.7

SNR

e
(a)

0 20 40
0

2

4

6

8

10

12

14

SNR

p

(b)

50 100 150 200 250
0.2

0.3

0.4

0.5

0.6

0.7

Iterations
e

(c)

50 100 150 200 250
0

2

4

6

8

10

12

Iterations

p

(d)

1 2 3 4
0.1

0.2

0.3

0.4

0.5

k

e

(e)

1 2 3 4
0

20

40

60

80

100

k

p

(f)

BK−SVD
(B)K−SVD

Figure 4: Simulation results of the BK-SVD and (B)K-SVD
algorithms. The graphs show the reconstruction error e and
the recovery percentage p as a function of the SNR of the
data signals for k = 2 and after 250 iterations (a, b), as a
function of the number of iterations for k = 2 in a noiseless
setting (c, d), and as a function of k in a noiseless setting
after 250 iterations (e, f).

the blocks in D and their corresponding non-zero represen-
tation coefficients. To evaluate the contribution of the lat-
ter step, we compare its performance with that of applying
the same scheme, but using the K-SVD dictionary update
step. We refer to this algorithm as (B)K-SVD. The algo-
rithms are evaluated as a function of the SNR of the signals
X for k = 2 after 250 iterations, as a function of the num-
ber of iterations for k = 2 in a noiseless setting, and as a
function of k in a noiseless setting after 250 iterations. It is
clear from Fig. 4 that the simultaneous update of the atoms
in the blocks of D is imperative and does not only serve as a
speedup of the algorithm.

Evaluating the overall framework

To evaluate the performance of the overall block-sparsifying
dictionary design method, we combine SAC and BK-SVD.
At each iteration we only run BK-SVD once instead of wait-
ing for it to converge, improving the ability of the SAC al-
gorithm to avoid traps. Our results are compared with those
of K-SVD (with a fixed number of 8 coefficients) and with
those of BK-SVD (with a fixed block structure) as a func-
tion of the SNR, as a function of the number of iterations.
The algorithms are evaluated as a function of the SNR of the
signals X for k = 2 after 250 iterations, as a function of the
number of iterations for k = 2 in a noiseless setting, and
as a function of k in a noiseless setting after 250 iterations
(Fig. 5).

Our experiments show that for SNR > 10[dB], the pro-
posed block-sparsifying dictionary design algorithm yields
lower reconstruction errors (see Fig. 5.(a)) and a higher per-
centage of correctly reconstructed blocks (see Fig. 5.(b)),
compared to K-SVD. Moreover, even in a noiseless setting,

0 20 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SNR

e

(a)

K−SVD
BK−SVD+SAC
BK−SVD
oracle

0 20 40
0

20

40

60

80

100

SNR

p

(b)

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

Iterations

e

(c)

50 100 150 200 250
0

20

40

60

80

100

Iterations

p

(d)

1 2 3 4
0

0.1

0.2

0.3

0.4

k

e

(e)

1 2 3 4
0

20

40

60

80

100

k

p

(f)

Figure 5: Simulation results of our overall algorithm (BK-
SVD+SAC), the BK-SVD algorithm and the K-SVD algo-
rithm. The graphs show the reconstruction error e and the
recovery percentage p as a function of the SNR of the data
signals for k = 2 after 250 iterations (a, b), as a function
of the number of iterations for k = 2 in a noiseless setting
(c, d), and as a function of k in a noiseless setting after 250
iterations (e, f).

the K-SVD algorithm fails to recover the sparsifying dictio-
nary, while our algorithm succeeds in recovering 93% of the
dictionary blocks, as shown in Fig. 5.(d).

For SNR ≤ 10[dB] we observe that K-SVD reaches lower
reconstruction error compared to our block-sparsifying dic-
tionary design algorithm. This is since when the SNR is low
the block structure is no longer present in the data and the
use of block-sparse approximation algorithms is unjustified.
To verify this is indeed the cause for the failure of our algo-
rithm, we further compare our results with those of an ora-
cle algorithm, which is given as input the true dictionary D∗

and block structure d∗. It then uses BOMP to find Θ. Fig. 5
shows that for all noise levels, our algorithm performs nearly
as good as the oracle. Furthermore, for SNR ≤ 10[dB] we
observe that K-SVD outperforms the oracle, implying that
the use of block-sparsifying dictionaries is unjustified. For
k <= 3, in a noiseless setting, the performance of our al-
gorithm lies close to that of the oracle, and outperforms the
K-SVD algorithm. However, we note that this is not the case
for k >= 4.

Finally, we wish to evaluate the contribution of the SAC
algorithm to the overall framework. One could possibly fix
an initial block structure and then iteratively update the dic-
tionary using BK-SVD, in hope that this will recover the
block structure. Fig. 5 shows that the representation error
e is much lower when including SAC in the overall frame-
work. Moreover, BK-SVD consistently fails in recovering
the dictionary blocks.

56

5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

Iterations

e

5 10 15 20 25
0

10

20

30

40

Iterations

p
K−SVD
BK−SVD+SAC (s

l
=2, s

h
=3)

BK−SVD+SAC (s
l
=3, s

h
=3)

(a)

5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

Iterations

e

5 10 15 20 25
0

5

10

15

20

25

Iterations

p

K−SVD
BK−SVD+SAC (s

l
=2, s

h
=3)

BK−SVD+SAC (s
l
=3, s

h
=3)

(b)

Figure 6: Simulation results of our overall algorithm (BK-
SVD+SAC) and the K-SVD algorithm, with maximal block
size sh = 3. The graphs show the reconstruction error e
and the recovery percentage p as a function of the number
of iterations. (a) contains 12 blocks of size 2 and 12 block
of size 3. (b) contains 30 blocks of size 2.

Choosing the maximal block size

We now consider the problem of setting the maximal block
size in the dictionary, when all we are given is that the sizes
of the blocks are in the range [sl sh]. This also includes the
case of varying block sizes. Choosing the maximal block
size s to be equal to sl will not allow to successfully recon-
struct blocks containing more than sl atoms. On the other
hand, setting s = sh will cause the initial sparse represen-
tation matrix Θ, obtained by the OMP algorithm, to contain
too many non-zero coefficients. This is experienced as noise
by the SAC algorithm, and may prevent it from functioning

properly. It is therefore favorable to use OMP with k × sl

non-zero entries only, and setting the maximal block size s
to be sh.

In Fig. 6(a), we evaluate the ability of our block sparsify-
ing dictionary design algorithm to recover the optimal dic-
tionary, which contains 12 blocks of size 3, and 12 blocks of
size 2. As expected, better results are obtained when choos-
ing sl = 2. In Fig. 6(b), the underlying block subspaces are
all of dimension 2, but sh is erroneously set to be 3. We see
that when sl = 2, we succeed in recovering a considerable
part of the blocks, even though blocks of size 3 are allowed.
In both simulations, K-SVD uses k × sh non-zero entries,
which explains why it is not significantly outperformed by
our algorithm in terms of representation error. Moreover, the
percentage of reconstructed blocks by our algorithm is rela-
tively low compared to the previous simulations, due to the
small block sizes.

Conclusions

In this paper, we proposed a framework for the design of
a block-sparsifying dictionary given a set of signals and a
maximal block size. The algorithm consists of two steps: a
block structure update step (SAC) and a dictionary update
step (BK-SVD). When the maximal block size is chosen to
be 1, the algorithm reduces to K-SVD.

We have shown via experiments that the block structure
update step (SAC) provides a significant contribution to the
dictionary recovery results. We have further shown that for
s > 1 the BK-SVD dictionary update step is superior to the
K-SVD dictionary update. Moreover, the representation er-
ror obtained by our dictionary design method lies very close
to the lower bound (the oracle) for all noise levels. This
suggests that our algorithm has reached its goal in providing
dictionaries that lead to accurate sparse representations for a
given set of signals.

To further improve the proposed approach one could try
and make the dictionary design algorithm less susceptible to
local minimum traps. Another refinement could be replac-
ing blocks in the dictionary that contribute little to the sparse
representations (i.e. “unpopular blocks”) with the least rep-
resented signal elements. This is expected to only improve
reconstruction results. Finally, we may replace the time-
efficient BOMP algorithm, with other block-sparse approxi-
mation methods. We leave these issues for future research.

Acknowledgements

The research of Lihi Zelnik-Manor is supported by Marie
Curie IRG-208529.

References

Aharon, M.; Elad, M.; and Bruckstein, A. M. 2006a. On the
uniqueness of overcomplete dictionaries and a practical way
to retrieve them. Journal of Linear Algebra and Applications
416:4867.

Aharon, M.; Elad, M.; and Bruckstein, A. M. 2006b. The
K-SVD: An algorithm for designing of overcomplete dic-
tionaries for sparse representations. IEEE Trans. SP 54(11).

57

Basri, R., and Jacobs, D. 2003. Lambertian refelectances
and linear subspaces. IEEE Transactions On Pattern Analy-
sis And Machine Intelligence 25(2):383–390.

Candes, E.; Romberg, J.; and Tao, T. 2006. Robust uncer-
tainty principles: Exact signal reconstruction from highly in-
complete frequency information. IEEE Trans. Inform. The-
ory 52:489–509.

Chen, S. S.; Donoho, D. L.; and Saunders, M. A. 1999.
Atomic decomposition by basis pursuit. SIAM J. Sci. Com-
put. 20(1):33–61.

Donoho, D. 2006. Compressed sensing. IEEE Trans. In-
form. Theory 52(4):1289–1306.

Duarte-Carvajalino, J. M., and Sapiro, G. 2008. Learning to
sense sparse signals: Simultaneous sensing matrix and spar-
sifying dictionary optimization. IMA Preprint Series (2211).

Duda, H., and Hart, P. 2001. Stork, Pattern Classification.

Eldar, Y. C., and Bölcskei, H. 2009. Block-sparsity: Coher-
ence and efficient recovery. IEEE International Conference
on Acoustics, Speech, and Signal Processing 0:2885–2888.

Eldar, Y. C., and Mishali, M. 2009. Robust recovery of
signals from a structured union of subspaces. IEEE Trans.
Inform. Theory 55(11):5302–5316.

Eldar, Y. C.; Kuppinger, P.; and Bölcskei, H. 2010. Block-
sparse signals: Uncertainty relations and efficient recovery.
IEEE Trans. Sig. Proc.

Elhamifar, R. V. E. 2009. Sparse subspace clustering. IEEE
Conference on Computer Vision and Pattern Recognition.

Engan, K.; Aase, S. O.; and Hakon-Husoy, J. H. 1999.
Method of optimal directions for frame design. IEEE Int.
Conf. Acoust., Speech, Signal Process 5:2443–2446.

Gedalyahu, K., and Eldar, Y. C. 2010. Time delay estima-
tion from low rate samples: A union of subspaces approach.
IEEE Trans. Signal Process. 58(6):3017–3031.

Johnson, S. C. 1967. Hierarchical clustering schemes. Psy-
chometrika 32:241–254.

Landau, H. J. 1967. Necessary density conditions for sam-
pling and interpolation of certain entire functions. Acta
Math. 117(1):37–52.

Lesage, S.; Gribonval, R.; Bimbot, F.; and Benaroya, L.
2005. Learning unions of orthonormal bases with thresh-
olded singular value decomposition. IEEE Conf. on Acous-
tics, Speech and Signal Processing.

Ma, Y.; Derksen, H.; Hong, W.; and Wright, J. 2007. Seg-
mentation of multivariate mixed data via lossy coding and
compression. IEEE Transactions on Pattern Analysis and
Machine Intelligence 29(9):15461562.

Mallat, S. G., and Zhang, Z. 1993. Matching pursuits
and time-frequency dictionaries. IEEE Trans. Sig. Proc.
41(12):33973415.

Mishali, M., and Eldar, Y. C. 2009. Blind multiband sig-
nal reconstruction: Compressed sensing for analog signals.
IEEE Trans. Sig. Proc. 57(3):993–1009.

Mishali, M., and Eldar, Y. C. 2010. From theory to prac-
tice: Sub-Nyquist sampling of sparse wideband analog sig-
nals. IEEE Journal of Selected Topics in Signal Processing
4(2):375 – 391.

Olshausen, B., and Field, D. 1996. Natural image statis-
tics and efficient coding. Network: Comput. Neural Syst.
2(7):333–339.

Parvaresh, F.; Vikalo, H.; Misra, S.; and Hassibi, B. 2008.
Recovering sparse signals using sparse measurement matri-
ces in compressed dna microarrays. IEEE Journal of Se-
lected Topics in Signal Processing.

Rauhut, H., and Eldar, Y. 2010. Average case analysis of
multichannel sparse recovery using convex relaxation. IEEE
Trans. Inform. Theory 56(1):505–519.

Stojnic, M.; Parvaresh, F.; and Hassibi, B. 2009. On the re-
construction of block-sparse signals with an optimal number
of measurements. IEEE Trans. Sig. Proc. 57(8):3075–3085.

Tropp, J. 2004. Greed is good: Algorithmic results
for sparse approximation. IEEE Trans. Inform. Theory
50(10):2231–2242.

Vidal, R., and Ma, Y. 2006. A unified algebraic approach to
2-D and 3-D motion segmentation and estimation. Journal
of Mathematical Imaging and Vision 25(3):403–421.

Vidal, R.; Ma, Y.; and Sastry, S. 2005. Generalized principal
component analysis (GPCA). IEEE Transactions on Pattern
Analysis and Machine Intelligence 27(11).

Yang, A. Y.; Wright, J.; Ma, Y.; and Sastry, S. 2007. Fea-
ture selection in face recognition: A sparse representation
perspective. UC Berkeley Tech Report.

Yuan, M., and Lin, Y. 2006. Model selection and estima-
tion in regression with grouped variables. Journal of the
Royal Statistical Society: Series B (Statistical Methodology
68(1):49 – 67.

58

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

