
Finding New Information Via Robust Entity Detection

Francisco Iacobelli and Nathan Nichols and Larry Birnbaum and Kristian Hammond
Intelligent Information Laboratory

Northwestern University
2133 Sheridan Rd.

Evanston, IL 60208, U.S.
f-iacobelli@u.northwestern.edu; ndnichols@gmail.com {hammond;birnbaum}@cs.northwestern.edu

Abstract

Journalists and editors work under pressure to collect relevant
details and background information about specific events.
They spend a significant amount of time sifting through docu-
ments and finding new information such as facts, opinions or
stakeholders (i.e. people, places and organizations that have a
stake in the news). Spotting them is a tedious and cognitively
intense process. One task, essential to this process, is to find
and keep track of stakeholders. This task is taxing cognitively
and in terms of memory. Tell Me More offers an automatic
aid to this task. Tell Me More is a system that, given a seed
story, mines the web for similar stories reported by different
sources and selects only those stories which offer new infor-
mation with respect to that original seed story. Much like a
journalist, the task of detecting named entities is central to
its success. In this paper we briefly describe Tell Me More
and, in particular, we focus on Tell Me More’s entity detec-
tion component. We describe an approach that combines off-
the-shelf named entity recognizers (NERs) with WPED, an
in-house publicly available NER that uses Wikipedia as its
knowledge base. We show significant increase in precision
scores with respect to traditional NERs. Lastly, we present
an overall evaluation of Tell Me More using this approach.

Introduction
Journalists and editors work under tight deadlines and are
forced to gather as much background and details as they can
about a particular situation or event. They have to keep track
of useful written sources and they have to be able to record
what aspects and what portions of the sources provided use-
ful information.

Often times their work requires reading, synthesizing,
contrasting and comparing the narratives of the same event
from different sources. They look for new information
among documents. They focus, among other things, in find-
ing new facts, testimonials and mentions of stakeholders,
such as people, places, companies, organizations, etc.

Because the internet has made available vasts amounts of
content about virtually anything, the journalist’s task of sep-
arating the relevant from the irrelevant becomes demanding
in terms of cognitive load and memory use. In particular,
keeping track of all the stakeholders they find and the dif-
ferent ways in which they can be referred to (e.g. “North

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Atlantic Alliance,” “NATO,” “North Atlantic Treaty Organi-
zation”) and learning new ones along the way are tasks that
exhibit decreasing performance with each additional docu-
ment that is analyzed (cf. Keppel and Underwood 1962).

Tell Me More (Iacobelli, Birnbaum, and Hammond 2010)
is a system that, given a seed story, augments it by finding
new information reported by other sources. It does this by
mining the web for stories that are similar to the seed story
and by comparing them to that seed story using a number of
metrics. It then presents only those paragraphs where stories
differ from each other, organized by categories that make
visible the criteria used to select them. Tell Me More has
been well received by a number of journalists, editors and
media companies who have tested it.

Recognizing new information, in general, is a computa-
tionally difficult task. To make this problem tractable Tell
Me More focuses on finding instances of numbers, quotes
and entities (people, places and organizations) that can be
reliable recognized and identified as new information. Be-
cause named entity recognizers (NERs) have a few draw-
backs for this task, such as poor consolidation of entities that
are referred to in different ways, it is of central importance
to have a robust approach to named entity recognition.

In this paper we present a brief overview of Tell Me More,
a detailed description and evaluation of its named entity
recognition algorithms and an overall evaluation of the al-
gorithms that determine what constitutes new information.
We finish with conclusions and future steps.

Architecture

Tell Me More employs five core modules to extract and
present new information to the user. What follows is a quick
and slightly updated summary of each module’s task. More
detail on each of these modules can be found in (Iacobelli,
Birnbaum, and Hammond 2010).

1. Content Gathering: This module gathers stories that are
similar to the seed story. It does so by developing a ba-
sic model of the source article through text analytics (see
module 3 below) and uses this to form a query that is
sent to a search engine (at this point the system can query
Google, Google News and Yahoo News). If there are no
results, this module employs several strategies to reformu-
late the queries to maximize the likelihood of obtaining

32

Proactive Assistant Agents: Papers from the AAAI Fall Symposium (FS-10-07)

relevant results (Budzik, Hammond, and Birnbaum 2001;
Iacobelli, Birnbaum, and Hammond 2010).

2. Content Filtering: This module filters results and elimi-
nates documents that are exactly the same as the seed doc-
ument or documents that are too different using a TF*IDF
(Salton and Buckley 1988) vector representations of each
paragraph. Content filtering also takes care of discarding
articles that look like compendia of articles or spam using
simple heuristics.

3. Text Analytics: This module is used to develop a statisti-
cal and heuristic model of each filtered document. For ev-
ery document that it examines, it extracts: (a) quotes; (b)
quantifiers for tangible things as denoted by the presence
of plural noun phrases in the sentences where numbers
appear; (c) a TF*IDF vector representation of each para-
graph; and (d) the names of people, places and organiza-
tions using a boosting approach to named entity recogni-
tion.

4. Difference Metrics After the text analytics for each new
paragraph are gathered, this module compares them with
the text analytics of the previously seen text and deter-
mines which paragraphs contain new information. Each
feature has specialized algorithms for comparison. These
comparisons are tracked by the difference metrics and the
dimensions of the differences are determined.

5. Presentation Research suggests that clustering search
results in sensible categories affords easier navigation
(Käki 2005). Our own experiments on categorization
of new information strongly suggest the same (Iacobelli,
Birnbaum, and Hammond 2010). Thus, the Presenta-
tion module categorizes and ranks the new information
based on the output of the Difference Metrics module.
To make the selection criteria of new information visi-
ble to users, the system recommends paragraphs in one
of four sections based on the difference metrics obtained
earlier: (a)“additional names:” new proper names, coun-
tries, cities and organizations not present in the seed story;
(b) “new numbers:” any quantifier not appearing in the
seed story; (c) “additional quotes:” quotes not appearing
in the seed story and (d) “supplementary information:”
paragraphs that are sufficiently dissimilar from any previ-
ously seen paragraphs, as measured by the cosine of their
vector representations.

While each of these modules is important for Tell Me
More, its core tasks are to obtain a robust representation
of the news stories and a reliable metric to determine dif-
ferences among documents. Therefore, its most important
modules are the Text Analytics and Difference Metrics mod-
ules.

Named entity recognition is a central part of Tell Me
More’s ability to create a representation of a news story.
Currently, the system uses a boosting approach to named
entity recognition. Tell Me More uses an off-the-shelf NER
and it boosts its performance using the Wikipedia Entity De-
tector (WPED), an in-house, publicly available NER that
performs very well in hard cases, such as consolidating pop-
ular entities that are referred to by different names.

In the following sections we provide background on the
challenges presented by automatic named entity recognition,
we describe our approach to overcome some of them and we
present an evaluation of the performance of the Difference
Metrics module.

Background: Named Entity Recognition

People can recognize the names of places, organizations and
other entities in text easily. Moreover, with some back-
ground knowledge, or judging from the text, they can link
different names as referring to the same entity. For exam-
ple, “Bill Clinton” and “President Clinton” or “GOP” and
“Republican Party.”

However, to annotate named entities automatically, NERs
have to overcome some challenges. First, NERs need to dif-
ferentiate between multi-word entities and many consecu-
tive entities. For example “Standard and Poor” is one entity,
but “Toyota and Ford” are two. Similarly, in the name “Sir
Elton John”, the “Sir” can be dropped, but in “Mr. Bean,”
the suffix “Mr.” is part of the named entity. NERs have
tried to overcome this problem by either including rule based
heuristics (Etzioni et al. 2005) or by gathering statistics from
large corpora. One such NER (Downey, Broadhead, and Et-
zioni 2007), attempts to solve this by accumulating n-grams
statistics on a web corpus and using capitalization cues. This
simple method called LEX++ outperformed more complex
statistical models such as conditional random fields (Laf-
ferty, McCallum, and Pereira 2001). It also outperformed
the entity detection module of KnowItAll, an unsupervised
rule based system for fact collection (Etzioni et al. 2005).
However, the cases where LEX++ failed were those where
distinct entities were often mentioned together. For exam-
ple “Intel and AMD.” These are precisely the cases where
our approach, presented in the next section, shows improve-
ments.

A second, problem has to do with entities that do not fol-
low basic rules of capitalization. Some organizations and
locations are not often capitalized entirely, thus making it
hard for the NER to recognize the entire entity. Such is the
case of “Gulag archipelago,” for example. Semi supervised
methods, such as Li and McCallum (2005), that group con-
tent words leveraging part of speech tags may improve the
detection of such entities.

Lastly, NERs have trouble consolidating entities. For ex-
ample: the text “Farrah Fawcett, when married to Lee Ma-
jors, was known as Farrah Fawcett-Majors” contains two
entities: Farrah Fawcett and Lee Majors. however, most en-
tity detection systems will also expose one additional false
positive: Farrah Fawcett-Majors. Some systems, although
not NERs per se, can deal with many of these cases when
the entities are well known. For example, Yerva, Miklós,
and Aberer (2010) use several features derived from internet
searches to establish a similarity between two names to see
if they are actually the same entity. Their work, however,
has only been tested on people’s names. Another, more gen-
eral approach, is the case of wikifiers (e.g. Milne and Witten
2008), which leverage the knowledge of the internet commu-
nity by using Wikipedia as the main dictionary. Wikifiers,
however, do not have an ontology beyond the tags specified

33

by Wikipedia users. Moreover, these tags are largely incon-
sistent and significant work needs to be done to be able to
correctly identify people, places and organizations.

In the following sections we present a successful ap-
proach that uses OpenCalais, a freely available NER and
boosts its precision with a proprietary NER developed in
our lab: The Wikipedia Entity Detector (WPED). WPED
queries Wikipedia and is supported by a set of heuristics to
improve precision. Additionally, it builds an ontology on
top of Wikipedia entries, making it more useful for entity
detection than other Wikipedia based NERs.

Wikipedia Entity Detector

The Wikipedia Entity Detector (WPED) consists of two
main components: (a) a WPED Builder that prepares the
data to be queried efficiently; and (b) a web service that de-
tects entities by reading text and querying the data for po-
tential entities.

WPED Builder

Building WPED comprises two distinct phases. First, the
WPED builder parses an XML dump of Wikipedia 1 and
stores it in a MySQL database. The system stores basic
information about each “entry” (i.e. page in Wikipedia).
This information includes: (a) the name of the entry; (b)
other entries that link to it; (c) the categories the entry is in;
(d) alternate references (names) for a specific entry pulled
from Wikipedia’s explicit #REDIRECT pages and #DIS-
AMBIGUATION pages; and (e) how often the entry title
is capitalized in its own page. Because all entry names must
begin with a capital letter, this last feature allows us to deter-
mine whether the entry is commonly spelled with an initial
capital or lower case letter.

Second, once the XML is parsed, the builder structures
this information in memory and allows clients to issue re-
quests. At the core of the system is a large trie data struc-
ture (Fredkin 1960) that maps references and titles to list of
possible entities referred to by that title or reference. For ex-
ample, both “Bush” and “George W. Bush” map to a list of
entries that include “George W. Bush,” “Bush” the British
rock band, the last name, etc. When inserting entries into
the trie, the system may also choose to adjust word case
based on their frequency of capitalization within their entry.
For example, “Barack Obama” is always capitalized in his
own article, but “police” is typically lowercase in its article.
Therefore, when “police” is stored in the trie, it will be saved
in its lowercase form.

Although the trie works essentially like a dictionary, map-
ping entity names to a list of values, its short access time
allow us to continuously scan the text for these names. This
relieves us from relying on imperfect orthographic and lexi-
cal rules to suggest candidate entities.

Detection

The actual detection algorithm works as follows. The trie
data structure organizes text by forming a root node with its

1http://en.wikipedia.org/wiki/Wikipedia_
database

Figure 1: Trie Data Structure. The words FIAT and FIN are
represented. The dark nodes denote the boundaries of words
and are mapped to a dictionary. Triangles denote other sub-
trees

branches being all letters that may start an entity. Nodes that
mark the final letter of an entity contain pointers to the dif-
ferent disambiguations for that entity. When text is given to
WPED, it begins matching characters in the trie; it contin-
ues consuming characters until there is no longer a match. If
there are candidate entities in the trie at a node and it coin-
cides with the end of a word in the text, an entity is consid-
ered to be detected. The cursor is then advanced one word
in the text, and the process is repeated. For example, Fig-
ure 1 shows the word “Fiat” represented as the sub-graph
F → I → A → T where “T” is the leaf node. When the
system encounters this sequence of letters in the text, and if
after the “T” the system finds a space in the text, it will as-
sume an entity boundary because there is no space character
as a node of “T.” It, then, checks to see if the last accessed
node contains a pointer to the entity “Fiat,” the auto maker.
If it does, it recognizes the entity. Otherwise, the search pro-
cess starts over with the next character.

Once the entire text has been processed in this way,
WPED has a dictionary mapping the detected surface forms
to a list of possible entities. This dictionary is called a Re-
sultSet.

Disambiguation

At this point, WPED may have encountered several candi-
date entities for a given word (e.g. the word “Bush” maps to
the former presidents of the U.S., a band, etc.). To determine
the most likely entity, WPED currently has two disambigua-
tion strategies. The first, and simplest strategy is based on
popularity; that is, the candidate entry with the most incom-
ing links from other Wikipedia articles is chosen as the most
likely entity. This strategy can incorrectly identify some
“easy” entities; for example: in the text “George Bush was
President from 1988-1992 and his vice president was Dan
Quayle”, the popularity strategy maps “George Bush” to

34

his son, George W. Bush. However, popularity can be com-
puted very quickly and, more importantly, it performs fairly
well in practice, especially in the news domain. We present
an evaluation of this strategy later in the paper.

The second strategy, based on proximity, is slower but
more sound than the popularity strategy. The proximity
strategy exploits the idea that entities mentioned in the same
text are likely to be related; the “George Bush” that is men-
tioned near “Dan Quayle” is likely to be the George Bush
that worked with Dan Quayle, not his son. To determine
how closely related different Wikipedia entries are, we de-
fine a distance metric between any two entries. Specifically,
the distance from entry A to entry B is A→B

Atotal
where A → B

is the number of links from entry A to B and Atotal is the to-
tal number of outgoing links from entry A. Bigger numbers
indicate a better likelihood of being the target entity.

Unfortunately, WPED can detect everything that has an
entry in Wikipedia; this includes nearly every date, thou-
sands of common nouns, every first name, etc. To get rid
of these non-helpful “entities”, we have hand-coded a few
rules that eliminate the false positives. For example, if an
entity has a lowercase first letter, and the only surface form
used is a common dictionary word, that entity is discarded.
In practice, these are heuristics that improve WPED for our
purposes.

Classifications and Meta Information

For most applications that use NERs it is essential to know
the type of the entities detected. Although Wikipedia data is
categorized by users, this categorization can be frustratingly
inconsistent because it is not arranged in any kind of ontol-
ogy. To enable this sort of classification, we manually built a
higher-level classification system on top of Wikipedia’s cat-
egories. The system allows clients to create their own on-
tologies adding regular expressions that match user’s cate-
gories and apply classifications. Ontologies in WPED are
trees that can have any number of levels and nodes. For ex-
ample, any Wikipedia entry that is in a category whose title
ends with “lawyers” (American lawyers, European lawyers,
etc.) is classified as a Lawyer and any category whose title
ends with “politicians” is a politician At a higher level, one
can specify that every Lawyer and every politician is also a
Person.

After recording the classifications, WPED has a final list
of entities detected in the text along with meta information
about them. However, before it returns entities to the client
it performs a few small final tasks. First, it groups all the
terms found in the text that could refer to a single entity,
and associates them to that entity along with counts of each
term. The list of entities is then converted into XML and
then returned to the client.

Supplementing WPED with off the shelf entity

detection

Because WPED can only detect entities that are present in
Wikipedia, it obviously misses some entities; examples in-
clude names of regular people or officials that are not very

well known, and small company names such as a local pub
or bank.

A NER based on machine learning techniques and heuris-
tics is better suited for these types of detection. Instead of
over-complicating the implementation of WPED with such
functionality we decided to combine the power of one such
NER, OpenCalais2, with WPED.

OpenCalais, by Thomson-Reuters, is a freely available
NER, and we use it to detect an initial set of entities from
text. The same text is fed then to WPED. For each entity de-
tected, OpenCalais and WPED store all the terms in the text
that refer to that entity. These are called instances. For ex-
ample, the entity “George W. Bush” may have been referred
to by two instances “G. W. Bush” and “President Bush.” Af-
ter the entities have been detected, all instances of entities
detected by WPED are compared to those detected by Open-
Calais. If an entity detected by OpenCalais corresponds to
an instance of a WPED entity, then the entity detected by
OpenCalais is discarded and the parent entity detected by
WPED is added to the resulting set of entities. If an entity
is detected by OpenCalais and it does not correspond to any
entities detected by WPED, then it is added as-is to the re-
sulting set of entities. The meta information associated with
entities detected by both WPED and OpenCalais is equal to
the WPED ontology for that entity. For all other entities, the
OpenCalais ontology is kept.

Evaluation

To evaluate this approach we conducted a comparison of
entity detection using WPED (using the popularity disam-
biguation strategy), OpenCalais and Wikipedia Miner Wik-
ifier (WMW) (Milne and Witten 2008), a robust wikipedia
NER that detect entities by combining machine learning al-
gorithms with a Wikipedia dictionary. We used thirteen texts
taken from random news stories. The texts were annotated
with the names or people, places and organizations. A total
of 227 named entities were tagged to set the “ground truth.”
Precision and recall was computed for each NER based on
the metadata provided for each entity.

Precision, however, is the most important of these mea-
sures for Tell Me More. On the one hand, false positives
harm its performance because they mislead the user there-
fore, further complicating the task. On the other hand,
because our interest is to detect entities in online content,
which can be vast, even lower recall percentages across
many documents will still produce satisfactory output. For
these reasons, we will pay special attention to the compar-
isons of precisions scores.

A statistical comparison of precision was performed be-
tween OpenCalais and our boosted approach (OpenCalais +
WPED). Because results for precision are skewed (i.e. they
are very high) the distribution of the data is not normal. Be-
cause our approach depends on OpenCalais, the data is not
independent. Therefore, we used a paired Wilcoxon signed
rank test to compare precision scores of the 13 articles. The
test showed significant improvements of our approach at the
p < 0.05 level.

2http://www.opencalais.com

35

OC+WPED OC WPED WMW
Precision 0.95* 0.91 0.81 -

Recall 0.70 0.69 0.42 0.42
F-measure 0.80 0.79 0.55 -

Table 1: Precision, recall and F scores for OpenCalais
plus WPED (OC+WPED), OpenCalais (OC), WPED and
Wikipedia Miner (WMW). * Significantly different from
OC alone; p < 0.05

Results As Table 1 shows, a combined approach results in
a more precise named entity recognition. Looking closely at
the data, we realized that WPED improved OpenCalais per-
formance exactly where instances of the same entity were
not obvious. For example, the “Legal Defense and Educa-
tional Fund” and the “NAACP Legal Defense and Educa-
tional Fund” are the same entity. OpenCalais detected two
entities while WPED detected one entity with two instances.
Because the Wikipedia Miner Wikifier (WMW) does not
provide a comparable ontology for each entity, the table only
reports its recall measures on the dataset. The recall rate of
WMW was comparable to WPED’s which uses simpler al-
gorithms. Lastly, the low recall scores WPED and a well
established Wikifier underline the complexity of the task.

Evaluation of Tell Me More Difference Metrics

Preliminary user evaluations suggest that Tell Me More is a
viable system, well organized and able to provide relevant
background information and detail about news stories (Iaco-
belli, Birnbaum, and Hammond 2010).

In this section we focus on measuring precision and recall
of its Difference Metric module, which discovers new actors
(people, places and organizations), numbers and quotes. To
establish a gold standard we built a small corpus of 13 dif-
ferent news stories, selected at random from Google news,
that were covered by at least three sources each. For each
set of three news stories, one random story was designated
as a “seed” story. Then, we randomly chose two other ver-
sions of the same story to incrementally find paragraphs with
new information that the seed story did not report. A hu-
man coder read the seed story and the additional news sto-
ries sequentially and annotated actors, numbers and quotes
that were new with respect to previously read text.

After the corpus was tagged, we, proceeded to compare
the Tell Me More’s performance on the same corpus. We
computed precision, recall and two F scores, explained in
the next section, for stakeholders, numbers and quotes and
one other category of new information: “long quotes.”

Long quotes are a subset of all quotes. They have five or
more words. The reason for this distinction is that we find, in
practice, that they tend to provide better evidence of people’s
opinions as opposed to terms or short expressions which pro-
vide only partial evidence of those opinions. For example,
contrast the text of one news source: (...) and said there
was still “a path available” with the full quote reported
on a different source: “We have provided a path whereby
[some country] can reach out to the international commu-
nity, engage, and become a part of international norms,” Mr.

Obama said. “What we’ve been seeing over the last several
days, the last couple of weeks, obviously is not encouraging
in terms of the path.” It is clear that the longer quote pro-
vides a more accurate depiction of Mr. Obama’s thoughts,
while the shorter quote “a path available” serves to soften
these remarks.

Results and Discussion In addition to precision and re-
call, we computed two F scores. The traditional F1 score
and a weigthed Fβ score. F1 weights precision and recall
equally. However, as we mentioned earlier, Tell Me More’s
success is more concerned with precision than recall. There-
fore, we used the weighted Fβ measure as in Schiffman and
Mckeown(2004) to favor precision.

From Table 2 we can see that our Fβ scores are very high
for all categories and, in fact, this is due mainly to preci-
sion scores above 80% percent. Recall around 60% in most
categories is due to common hard problems in NLP such as
co-reference resolution in the case of names and some num-
bers, and correct part of speech (POS) tagging in the case
of numbers. For example, the POS tagger used did not con-
sidered the word “million” to be a noun and, because such
tagging is essential in the detection of quantifiers, the system
failed to detect many money amounts. The system also ig-
nored spelled out numbers. Fβ for longer quotes (more than
5 words) is very high, 0.91. Longer quotes are a meaningful
distinction because they are usually the ones bearing more
information. This high precision results in the retrieval of
genuinely new and more comprehensive opinions. Perhaps
this explains, to an extent, why previous research suggested
that the new quotes category was well liked by users (Iaco-
belli, Birnbaum, and Hammond 2010).

Category Precision Recall F1 Fβ

New Actors 0.83 0.58 0.68 0.79
New Numbers 0.81 0.55 0.66 0.77
New Quotes 0.93 0.57 0.71 0.87
New “long” Quotes 0.95 0.69 0.8 0.91

Table 2: Standard IR Scores in five categories.

Related Work

Significant research on detecting new information has been
conducted at the TREC novelty track competitions. In this
task, the highest precision and recall measures were around
0.55 and 0.78.(Soboroff and Harman 2003).

New information detection research has largely been used
for news summarization software (Sweeney, Crestani, and
Losada 2008; Schiffman 2005), however, other approaches
include augmenting news stories with information on partic-
ular people and events. For example Wagner et al. (2009)
mined the web for stories of kidnappings and used situa-
tion frames to store information. This allowed users to get
augmented information on kidnapping stories such as time-
lines and people involved. NewsJunkie (Gabrilovich, Du-
mais, and Horvitz 2004) utilizes vector representations and
entity detection to judge novel content in news. This is used
to provide readers with updates, developments and recaps of

36

news stories. Newsjunkie, however, does not specify what
exactly is new information in the articles presented. A simi-
lar problem is present in Park, Lee, and Song (2010), where
the system attempts to cluster stories about the same event
based on points of view. However, the clusters are not la-
beled and the system is unable to provide meta information
about them. In contrast, Tell Me More not only detects new
information, but presents it in a way that makes the selection
criteria visible to the user.

Conclusion and Future Work

Tell Me More is a news reading system that displays items
of new information alongside with a news story. These items
are categorized in a way that makes the editorial decisions of
the recommendation clear to the user. Tell Me More relies
on sound algorithms to create a representation of the news
stories it processes. Named entity detection is, therefore,
crucial to its success.

In this paper we have presented Tell Me More’s entity
detection approach and showed that it results in improved
recognition when compared to state of the art off-the-shelf
NERs. In particular, this approach improves precision when
there is a need to consolidate different instances of the same
entity and when entities appear in lower case. The contribu-
tions of our approach are twofold: (a) it offers an ontology
that allows programmers to “make sense” of the entities de-
tected; and (b) WPED and our boosting approach are easy
to replicate due to the simplicity of its algorithms and use of
high performance off-the-shelf tools.

We also conducted a small evaluation of Tell Me More’s
difference metrics module. Preliminary user studies (Iaco-
belli, Birnbaum, and Hammond 2010) and the results re-
ported here suggest that Tell Me More is able to find gen-
uinely new information that is also perceived as relevant by
users. Future work will target recall, the ranking of new in-
formation, and a more comprehensive system evaluation.

Acknowledgements

This research is based upon work supported by the National
Science Foundation under Grant No. III-0917261.

References

Budzik, J.; Hammond, K. J.; and Birnbaum, L. 2001. Infor-
mation access in context. Knowledge-Based Systems 14(1-
2):37–53.
Downey, D.; Broadhead, M.; and Etzioni, O. 2007. Locating
complex named entities in web text. In In Proc. of IJCAI.
Etzioni, O.; Cafarella, M.; Downey, D.; Popescu, A.-M.;
Shaked, T.; Soderland, S.; Weld, D. S.; and Yates, A. 2005.
Unsupervised named-entity extraction from the web: an ex-
perimental study. Artif. Intell. 165(1):91–134.
Fredkin, E. 1960. Trie memory. Commun. ACM 3(9):490–
499.
Gabrilovich, E.; Dumais, S.; and Horvitz, E. 2004.
Newsjunkie: providing personalized newsfeeds via analy-
sis of information novelty. In WWW ’04: Proceedings of the

13th international conference on World Wide Web, 482–490.
New York, NY, USA: ACM Press.
Iacobelli, F.; Birnbaum, L.; and Hammond, K. J. 2010. Tell
me more, not just ”more of the same”. In IUI ’10: Proceed-
ing of the 14th international conference on Intelligent user
interfaces, 81–90. New York, NY, USA: ACM.
Käki, M. 2005. Findex: search result categories help users
when document ranking fails. In CHI ’05: Proceedings of
the SIGCHI conference on Human factors in computing sys-
tems, 131–140. New York, NY, USA: ACM.
Keppel, G., and Underwood, B. 1962. Proactive inhibition
in short-term retention of single items. Journal of Verbal
Learning and Verbal Behavior 1(3):153–161.
Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Con-
ditional random fields: Probabilistic models for segment-
ing and labeling sequence data. In Proc. 18th International
Conf. on Machine Learning, 282–289. Morgan Kaufmann,
San Francisco, CA.
Li, W., and McCallum, A. 2005. Semi-supervised sequence
modeling with syntactic topic models. In AAAI-05, The
Twentieth National Conference on Artificial Intelligence.
Milne, D., and Witten, I. H. 2008. Learning to link with
wikipedia. In CIKM ’08: Proceeding of the 17th ACM con-
ference on Information and knowledge management, 509–
518. New York, NY, USA: ACM.
Park, S.; Lee, S.; and Song, J. 2010. Aspect-level news
browsing: Understanding news events from multiple view-
points. In Intelligent User Interfaces (IUI2010), 41–50.
Salton, G., and Buckley, C. 1988. Term-weighting ap-
proaches in automatic text retrieval. In Information Process-
ing and Management, 513–523.
Schiffman, B., and Mckeown, K. R. 2004. Columbia uni-
versity in the novelty track at trec 2004. In Proceedings of
the TREC 2004.
Schiffman, B. 2005. Learning to identify new information.
Ph.D. Dissertation, Columbia University.
Soboroff, I., and Harman, D. 2003. Overview of the TREC
2003 novelty track. In Proceedings of TREC-2003. Citeseer.
Sweeney, S.; Crestani, F.; and Losada, D. 2008. ’show me
more’: Incremental length summarisation using novelty de-
tection. Information Processing & Management 44(2):663–
686.
Wagner, E. J.; Liu, J.; Birnbaum, L.; and Forbus, K. D. 2009.
Rich interfaces for reading news on the web. In IUI ’09:
Proceedings of the 13th international conference on Intelli-
gent user interfaces, 27–36. New York, NY, USA: ACM.
Yerva, S. R.; Miklós, Z.; and Aberer, K. 2010. Towards
better entity resolution techniques for web document collec-
tions. In Proceedings of 1st International Workshop on Data
Engineering meets the Semantic Web, co-located with ICDE
2010.

37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

