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Abstract

The development of hand-crafted action and dialog genera-
tion models for a social robot is a time consuming process
that yields a solution only for the relatively narrow range of
interactions envisioned by the programmers. In this paper, we
propose a data-driven solution for interactive behavior gen-
eration that leverages online games as a means of collecting
large-scale data corpora for human-robot interaction research.
We present a system in which action and dialog models for a
collaborative human-robot task are learned based on a repro-
duction of the task in a two-player online game called Mars
Escape.

Introduction

Robots require a broad range of interaction skills in order
to work effectively alongside humans. They must have the
ability to detect and recognize the actions and intentions of
a person (Kelley et al. 2008; Gray et al. 2005), to pro-
duce functionally valid and situationally appropriate actions
(Breazeal 1998; Mutlu et al. 2009), and to engage in social
interactions through physical cues (Sidner and Lee 2007)
and dialog (Kulyukin 2004).

A number of robotic platforms capable of these types
of interactions have been developed for different applica-
tions, including museum guidance (Burgard et al. 1998),
reception desk assistance (Lee and Makatchev 2009) and
elder care (Graf, Hans, and Schraft 2004). Research for
action and dialog generation has also been conducted in
the gaming community in the context of character devel-
opment for role-playing games (McNaughton et al. 2004;
Kacmarcik 2005). All of the above approaches present suc-
cessful solutions for their respective applications based on
carefully hand-crafted models for action and dialog genera-
tion. While the time required for the development of these
models is not typically reported, in the case of one recent in-
teractive online game called Facade (which takes about 15
minutes to complete), development by two researchers took
approximately 5 years (Mateas and Stern 2005). The typical
result for this type of development process is a system that is
capable of natural and engaging interaction for some range
of topics, but only for those that were predetermined by the
programmers.
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Data-driven techniques present an alternate solution to
hand-crafted models. These approaches utilize datasets of
hundreds of example behaviors, often from a multitude of
different users, to generate appropriate responses to input.
Successful data-driven techniques have been demonstrated
in a number of interactive applications, such as dialog man-
agement systems trained to produce appropriate responses
based on recorded caller data (Gorin, Riccardi, and Wright
1997; Singh et al. 2002).

The question we explore in this paper is whether simi-
lar data-driven approaches can be developed for interactive
robotic systems. Can robot behaviors be crowdsourced to
produce natural, engaging and functionally appropriate ac-
tions and dialog based on data from hundreds of people?
Ideally, such an approach would benefit from the “power
of the masses”, requiring less total development time while
also producing a more general result by incorporating exam-
ples from many users.

The challenge for this approach is to develop a method for
gathering robot data on a large scale. One solution is to uti-
lize the Wizard-of-Oz technique in which data is recorded
as the robot is puppeteered through the task by a human
subject. The significant drawback of this approach is that it
requires extensive amounts of time to recruit and train sub-
jects, with the result that such studies are typically limited to
a few dozen participants.

In this paper, we propose the use of online games as a
means of generating large-scale data corpora for human-
robot interaction research. We present a system in which
action and dialog models for a collaborative task involv-
ing a person and a robot are learned based on a reproduc-
tion of the task in an online multiplayer game. Similar
to projects such as Games with a Purpose (von Ahn and
Dabbish 2008) and the ESP Game (von Ahn and Dabbish
2004), our goal is to make work fun in order to harness
the computational power of internet users. Our work is in-
spired by the Restaurant Game project (Orkin and Roy 2007;
2009), in which data collected from thousands of players in
an online game is used to acquire contextualized models of
language and behavior for automated agents engaged in col-
laborative activities.



Robot Task Domain and Data Collection

The goal of our research is to enable a robot to perform a
collaborative task with a human by leveraging a corpus of
example interactions collected in an online game. For eval-
uation we have selected a general search and retrieval task
in which the robot and human must work together to col-
lect multiple objects. The task has no strictly assigned so-
cial roles, however, the domain is developed to encourage
collaborative behaviors such as action synchronization, se-
quencing and dialog.

Our project is organized into three phases. During the
first two phases we collect data using a custom-made online
two-player game called Mars Escape. The game records the
actions and dialog of two players as they take on the roles
of a robot and an astronaut on Mars. We then utilize the re-
sulting interaction corpus, consisting of data from hundreds
of online players, to learn action and dialog models for the
collaborative retrieval task. In the final phase of the study,
scheduled to take place in September, 2010 at the Boston
Museum of Science, we will evaluate the learned models by
using them to generate behaviors for an autonomous robot
in a real-world retrieval task. Each of the research phases is
described in detail in the following sections.

Online Mars Escape Game with Text-Based Dialog

Mars Escape is a two-player online game in which two
randomly-paired players take on the roles of a human as-
tronaut and a robot on Mars. The object retrieval task is
incorporated into the back-story of the game, in which the
players are told that they are located on a remote research
station on which the oxygen generator has failed. In order to
successfully complete the mission, the pair must locate and
salvage their five most valuable research items and return to
the spaceship before oxygen supplies run out. The list of re-
quired items is presented in a side-bar inventory screen. The
players have 15 minutes to complete the mission.

During the game, the players are able to navigate in the
environment, manipulate objects using a number of prede-
termined actions (e.g., look at and pick up) and communi-
cate with each other through in-game text-based chat (see
Figure 1). All player actions and dialog is recorded by the
system. At the completion of the game, the players are given
individual scores based on the number of items collected and
the time required to complete the mission. Players are also
asked to complete a survey evaluating their gaming experi-
ence and the performance of their partner. Players are asked
to rate how much they enjoyed working with the other per-
son, as well as to speculate on whether the other character
was controlled by a person or an Al

Although the game is designed to represent and provide
data for a real-world task, the virtual environment does not
represent a precise 3D model of our target domain because,
in this application, knowledge of abstract actions (e.g. as-
tronaut picked up the alien) is sufficient for modeling high-
level collaborative behavior. However, character attributes
must be chosen carefully in order for the in-game interac-
tions to accurately reflect real-world preferences. Specifi-
cally, since timing and the relative durations of actions plays
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Figure 1: A screenshot of the Mars Escape game showing
the action menu and dialog between the players.

a significant role in the selection of collaborative behaviors,
the movement speeds of the players and the durations of
certain actions are modelled from real-world data. Simi-
larly, the physical characteristics of the avatars in terms of
reach distance, lifting strength and climbing ability also re-
flect those of an average human and our robotic platform (the
MBDS robot, Figure 2). Finally, in Mars Escape the robot is
equipped with a special sensor, an ~organic spectral scan-
ner”, that enables it to detect things not visible to the human
eye. Together, these different characteristics of the avatars
influence the way in which players select who performs dif-
ferent elements of the task. Table 1 presents a list of the
five inventory items in the game, how they can be accessed
by each player, and how each object can be generalized to a
broader class of problems.

During the first three months of the release of the game!
we captured data from 558 two-player games. Of these, ap-
proximately 700 player logs are retained for analysis after
excluding logs in which a player exited the game prema-
turely. Below is an example transcript showing an interac-
tion in which the astronaut (A) and the robot (R) first retrieve
the alien and then attempt to find the sample box.

<robot go to boxes>

R: ”hey, look at that checkerboard thing on the wall...”
R: it seems to light up if you scroll over it”

R: “perhaps there is something there”

<astronaut go to boxes>

A: ’oh no. do you think that gadget is in one of these?!”
A: "there are a lot to check...”

R: "maybe, perhaps we will have to check all of them”
A: ”booo! i start from the bottom and you the top?”
<astronaut look at boxes>

<robot analyze boxes>

R: ”woot”

A: you find it!?”

R: ok, I have a special analyzer that helps me see”

A: ”lol. have you been holding out on me???”

R:”the object is in the box that is 3rd column from the right...
R: "and 4th row from the bottom”

”»

"http://www.robotic.media.mit.edu/MarsEscapeGame



Generalization

Located on a stack of boxes. Reachable only by the astronaut by

a task that can be performed
only by one of the players

Located in a cage on a raised platform. Reachable by either
player after lowering the platform using wall mounted controls.

a task that can be performed
by either player

Located near a spill of toxic biohazardous chemicals. Reachable
by either player, but the astronaut loses 10 points for coming in

a task for which one player is
better suited than the other

The appearance of this item is triggered by both players standing
on a weight sensor at the same time. Once active, this item can

a task that requires action syn-
chronization.

One of 100 identical boxes located on a high shelf. Astronaut
must pick up and look at each box until the correct one is found.
Robot can identify the exact box using its organic spectral scan-
ner, but can not reach the box due to its hight. Optimal solution
is for the robot to scan the boxes and then tell the astronaut the

a task that requires coupled
actions and dialog

Item Game Context
Research Journal climbing the nearby objects.
Captured Alien
Canister

contact with the chemicals.

Memory Chip
be retrieved by either player.

Sample Box

sample’s exact location.

Table 1: Description of the five objects players must obtain to successfully complete the game.

As can be seen from this example, players can engage in
problem solving dialog as they attempt to perform the task.
One challenge presented by the typed speech data, however,
is the frequent use of colloquialisms, slang, acronyms and
abbreviations that are rarely used in spoken dialog, such as
the use of “lol” and “woof” to convey amusement and cel-
ebration. In fact, we find that crowdsourced typed dialog
is better suited for identifying likely patterns and topics of
conversation and for building an initial language model than
for generating verbal speech. In the following section we
discuss how we leverage the strengths of the typed corpus to
develop a spoken dialog version of the game.

Online Mars Escape Game with Spoken Dialog

The second phase of our project aims to address the disparity
between typed and spoken dialog by introducing a modified
version of the game in which players are able to communi-
cate by speaking through a headset microphone. However,
instead of allowing one player to hear the other’s speech, as
in a phone conversation, we use speech recognition software
to transcribe the spoken language into text, which is then
displayed at the top of the player’s screen as in the original
version of the game.

The technique of using speech recognition was chosen
for several important reasons. First, it introduces minimal
changes to the game, modifying only the way in which play-
ers produce dialog but not the way in which it is received.
This allows us to use direct comparison between the two
game versions to identify changes in communication pat-
terns. Second, textual presentation preserves the anonymity
of the players and prevents characteristics such as age, gen-
der and nationality from impacting the interaction. Third,
this approach provides the listening player with exactly the
same information as what can be perceived by the robot. In
particular, this prevents users from utilizing social cues such
as tone of voice, which are typically too subtle for computer
systems to interpret correctly. Finally, users will be forced to
deal with the same speech recognition errors as will be en-
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countered by the robot during real-world experiments (e.g.,
incorrectly transcribing “scale” as “stale””). The user may
respond in different ways to such errors, possibly by ask-
ing for clarification, or by making an assumption as to the
intended meaning of the phrase given the objects in the en-
vironment. Such information will form an invaluable part
of the data corpus that will aid the physical robot in dealing
with similar errors.

To perform speech recognition we utilize the WAMI web-
based toolkit (Gruenstein, McGraw, and Badr 2008) from
which recognition results are communicated directly to the
Mars Escape game server. WAMI utilizes a constrained lan-
guage model based on the Java Speech Grammar Format
(JSGF)? standard, which enables the system to perform in-
cremental recognition in real time. We initialize the gram-
mar by seeding it with phrases that make up the typed di-
alog corpus, in effect limiting the range of possible recog-
nition results to previously observed utterances. We then
incrementally improve the grammar model by incorporating
manual transcriptions of games played with spoken speech
to grow the grammar corpus. In preliminary evaluation we
have found the post-game survey to be helpful in selecting
games for transcription based on ratings of communication
difficulty between players.

For data collection using the speech-based game, we have
deployed two Mars Escape gaming stations at the Boston
Museum of Science. We are currently in the process of
building the dialog corpus and not enough data has yet been
gathered to provide a full comparison to the text-based ver-
sion. Preliminary results indicate that the model works well
for common topics of conversation; critical key words are
often picked up that accurately convey the gist of the phrase.
However, recognition errors are frequent, often resulting in
semantically different output. Table 2 presents four example
recognition results based on the grammar derived from the

Zhttp://java.sun.com/products/javamedia/speech/forDevelopers
/JSGF



Spoken Phrase

Recognition Result

pick up the yellow canister

could you get the yellow canister

use the button

are you human

give me the alien

and get the alien

please put the alien in the yellow bucket

pick the alien and put in box

Table 2: Example WAMI speech recognition results based on grammar derived from text-based game corpus.

text-based game corpus.

Physical Object Collection Task

In the final phase of this project, action and dialog mod-
els learned from the acquired interaction data corpus will
be evaluated in a real-world variant of the collaborative re-
trieval task. Evaluation will be performed at the Boston Mu-
seum of Science, where museum visitors will be recruited
to perform the task in collaboration with our autonomous
MDS robot Nexi (Figure 2). The MDS robot platform com-
bines a mobile base with a socially expressive face and two
dexterous hands that provide the capability to grasp and lift
objects. The robot is equipped with a biologically-inspired
vision system that supports animate vision for shared atten-
tion to visually communicate the robot’s intentions to human
observers. Auditory inputs support a microphone array for
sound localization, as well as a dedicated channel for speech
recognition via a wearable microphone.

Due to the complexity of the search and retrieval task, a
high precision offboard Vicon MX camera system will be
used to supplement the robot’s onboard sensors. The Vicon
system will be used to track the position of the robot, human,
and objects in the environment in real time using lightweight
reflective markers attached to object surfaces. This tracking
system will enable the robot to have a greater degree of envi-
ronmental awareness that is comparable to that of a human.
The human teammate will be fitted with uniquely marked
hat and gloves to enable the system to accurately identify
the direction of the person’s gaze and gestures. This infor-
mation will be critical for inferring the contextual meaning
of the user’s utterances.

The physical space in which the evaluation will be con-
ducted will resemble Mars Escape game in terms of the gen-
eral size and layout of the environment. It will contain five
objects that the players must collect, in similar placements
to their in-game counterparts.

Data Processing

Although the entire span of the project is not yet complete,
we have performed preliminary analysis on logs from ap-
proximately 700 players from the text-driven version of the
game. In the following sections we present separate mod-
els and analysis for the action and dialog components. Our
long-term aim is to combine both datatypes into a single
model for robot behavior control.

Action Processing

In our analysis of physical actions, we are interested in iden-
tifying statistically significant action transitions that repre-
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Figure 2: The MDS robot platform.

sent typical player behavior. To model what a “typical” in-
teraction might look like, we utilize the Plan Network rep-
resentation developed by Orkin and Roy for the Restaurant
Game (Orkin and Roy 2007). A Plan Network is a statis-
tical model that encodes context-sensitive expected patterns
of behavior and language. Given a large corpus of data, a
Plan Network provides a mechanism for analyzing action
ordering and for visualizing the graphical structure of action
sequences. Within our work, we have additionally extended
the representation to include temporal action information,
resulting in a Temporal Plan Network that extracts informa-
tion on action duration, providing an estimate of expected
time for each activity.

Using the current data corpus, we are able to detect signif-
icant patterns in the behavior of both player characters using
the Plan Network representation. Figure 3 presents the Tem-
poral Plan Network for the astronaut role in which all ac-
tion transitions with a likelihood of less then 0.08 have been
eliminated, resulting in a graph that shows only transitions
that were taken by more than 8% of the players. Numer-
ical values along graph edges represent the average num-
ber of seconds players take to transition between two ac-
tions. While many players choose to deviate from the norm
at some point in their gaming experience, aberrant interac-
tions wash away statistically when compared to the larger
number of examples of typical behavior.

In addition to providing a model of typical behavior, the
Plan Network can be used during task execution to detect
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Figure 3: A Temporal Plan Network visualizing typical be-
havior for the astronaut role across 350 games.

unusual behaviors performed by a user that are outside the
expected norms. Using likelihood estimates, the model is
able to score the typicality of a given behavior by evaluat-
ing how likely this behavior is to be generated by an agent
controlled by the learned model. Atypical behaviors not di-
rectly related to the task are highly likely to occur in many
instances of human-robot interaction. Providing the robot
with an ability to respond to such events appropriately may
have powerful impact on how the person perceives the robot
and on the overall success of the interaction. An interest-
ing direction for future work is to examine how the robot
should behave when its teammate goes “off-script”; politely
reminding the person to get back to work, or simply contin-
uing to perform the task alone are two possible options.

Dialog Processing

The goal of our dialog system is to automatically generate
contextually appropriate responses to natural language input
by drawing from a corpus of hundreds of dialogues observed
between humans playing the online game. An agent may
respond to natural language input with a single utterance or
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a sequence of utterances.

Game logs are preprocessed to facilitate efficiently find-
ing responses to natural language input at runtime. Our
approach is inspired by Gorin et al.’s system for extract-
ing salient phrases from phone conversations correlated with
call routing decisions (Gorin, Riccardi, and Wright 1997).
In our game logs, we may find a dialogue composed of an
arbitrary number of utterances from one or both players be-
tween any pair of physical actions. We cluster these dia-
logues by their preceding physical action, which provides
context for dialogues. For each cluster, we extract all se-
quences, between one and five words long, observed in more
than some specified minimum number of game logs, and
store these in a phrase dictionary. The final preprocessing
step employs the phrase dictionary to abstract every utter-
ance from every game log into an unordered set of the salient
(recurring) phrases found within the line of text. This set
may contain phrases which overlap, or may be empty if no
salient phrases are found in the utterance. Abstracted dia-
logues are stored with their original associated text, and with
the physical action that concludes the dialogue.

At runtime, natural language input is abstracted into an
unordered set of recurring phrases through the same pro-
cess described above. This abstraction is then used to re-
trieve dialogues from the corpus containing the most sim-
ilar utterances, based on the number of shared recurring
phrases. These candidates are further filtered down to the
list of dialogues with histories that best match the interac-
tion observed at runtime, based on previously observed re-
curring phrases. One dialogue is arbitrarily selected from
the remaining candidates, and the utterance or action that
follows the matched input is selected for execution by the
agent. If the response is a physical action attributed to the
other player, this is treated as an expectation for the agent
to observe this action in the near future. In cases where
the utterance is completely unrecognized, the system can
make an assumption based on a previous recognized utter-
ance, and issue a response based on the assumed input. The
assumption may not be correct, but a contextually appropri-
ate response often allows the interaction to recover (and we
sometimes observe the Eliza-effect, where the human ex-
plains away the communication failure and continues, pos-
sibly rephrasing his/her input).

Below is an example conversation between a researcher
(regular text) and the dialog generation system (italicised
text) based on data acquired from 350 game logs:

: hello

:hi

: it is my first time

: ok great. can you get the canister?

: Sure

: what would you like me to do with it?
: put it in the yellow box by the door
ok

: thanks

: No problem

: now can you come stand on the scale here
: roger dodger

XERPREPII IR



The system successfully selects semantically meaningful
responses, even in the case of the rather unusual colloquial
phrase at the end. In the additional example below, dialog is
automatically generated for both sides of the conversation:

R: what do you want me to do?

A: find the items on the left

: place them in the yellow box by the door
: ok

: need an elektronic circuit

: and some box with a thing in it

> ah ha... my organic scanner thingy says that there is
something glowing

R: in one of the boxes

R: third row from the right

R: fourth box down

A: got it

R: thanks

A: lets get the alien now

XX

While our approach completely lacks any semantic inter-
pretation of the dialogue, the intuition is that if many players
said the same thing in the same context, it must be meaning-
ful at that moment. In previous work, we have shown quan-
titatively that this dialogue system preserves the texture of
human-human dialogue, but unsurprisingly does occasion-
ally lead the agent to say things out of context or repeat it-
self, due to the absence of semantics (Orkin and Roy 2009).
There are a number of ways we might address these prob-
lems in future work, including filtering out responses that
lead to actions that have already been observed in the in-
teraction, including some representation of current state in
the criteria for clustering dialogues, or incorporating a small
amount of human annotation to associate utterances with the
goals they help achieve.

Conclusions

In this paper, we propose a novel data-driven approach to be-
havior generation for interactive robots based on a data col-
lection method that utilizes online multiplayer games. While
the full scope of this work has not yet been completed, pre-
liminary results in action sequence analysis and dialog gen-
eration show promising ability to identify typical behaviors
and produce contextually meaningful output. We believe
that this approach of crowdsourcing behavior data has poten-
tial to provide solutions to a broad range of computationally
challenging problems in human-robot interaction research.

Acknowledgments

This research is partially supported by ONR grant NO0014-
09-1-0112 and by the Singapore-MIT GAMBIT Game Lab.
Additionaly, the authors wish to thank Elisabeth Morant for
her assistance with the project.

References

Breazeal, C. 1998. A motivational system for regulating human-
robot interaction. In AAAI/IAAI, 54—62. Menlo Park, CA, USA:
American Association for Artificial Intelligence.

19

Burgard, W.; Cremers, A. B.; Fox, D.; Hihnel, D.; Lakemeyer,
G.; Schulz, D.; Steiner, W.; and Thrun, S. 1998. The interactive
museum tour-guide robot. In AAAI/IAAI 11-18.

Gorin, A. L.; Riccardi, G.; and Wright, J. H. 1997. How may I
help you? Speech Commun. 23(1-2):113-127.

Graf, B.; Hans, M.; and Schraft, R. D. 2004. Care-o-bot II—
development of a next generation robotic home assistant. Auton.
Robots 16(2):193-205.

Gray, J.; Breazeal, C.; Berlin, M.; Brooks, A.; and Lieberman, J.
2005. Action parsing and goal inference using self as simulator. In
Workshop on Robot and Human Interactive Communication (Ro-
Man05), 202-209. 1EEE.

Gruenstein, A.; McGraw, I.; and Badr, I. 2008. The wami toolkit
for developing, deploying, and evaluating web-accessible multi-
modal interfaces. In ICMI, 141-148. New York, NY, USA: ACM.

Kacmarcik, G. 2005. Question-answering in role-playing games.
In Workshop on Question Answering in Restricted Domains, AAAI-
05.

Kelley, R.; Tavakkoli, A.; King, C.; Nicolescu, M.; Nicolescu, M.;
and Bebis, G. 2008. Understanding human intentions via hidden
markov models in autonomous mobile robots. In HRI, 367-374.
New York, NY, USA: ACM.

Kulyukin, V. 2004. Human-robot interaction through gesture-free
spoken dialogue. Auton. Robots 16(3):239-257.

Lee, M. K., and Makatchev, M. 2009. How do people talk with a
robot?: an analysis of human-robot dialogues in the real world. In
CHI, 3769-3774. New York, NY, USA: ACM.

Mateas, M., and Stern, A. 2005. Procedural authorship: A case-
study of the interactive drama facade. In Digital Arts and Culture.

McNaughton, M.; Schaeffer, J.; Szafron, D.; Parker, D.; and Red-
ford, J. 2004. Code generation for ai scripting in computer role-
playing games. In Challenges in Game AI Workshop at AAAI-04.

Mutlu, B.; Shiwa, T.; Kanda, T.; Ishiguro, H.; and Hagita, N. 2009.
Footing in human-robot conversations: how robots might shape
participant roles using gaze cues. In HRI, 61-68. New York, NY,
USA: ACM.

Orkin, J., and Roy, D. 2007. The restaurant game: Learning social
behavior and language from thousands of players online. Journal
of Game Development.

Orkin, J., and Roy, D. 2009. Automatic learning and generation
of social behavior from collective human gameplay. In AAMAS,
385-392.

Sidner, C., and Lee, C. 2007. Engineering Approaches to Conver-
sational Informatics; Attentional Gestures in Dialogues between
People and Robots. Wiley and Sons.

Singh, S.; Litman, D.; Kearns, M.; and Walker, M. 2002. Opti-
mizing dialogue management with reinforcement learning: experi-
ments with the NJFun system. J. Artif. Int. Res. 16(1):105-133.

von Ahn, L., and Dabbish, L. 2004. Labeling images with a com-
puter game. In CHI, 319-326. New York, NY, USA: ACM.

von Ahn, L., and Dabbish, L. 2008. Designing games with a pur-
pose. Communications of the ACM 51(8):58-67.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [630.000 810.000]
>> setpagedevice


