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Abstract

We are motivated by building a system for an autonomous
robot companion that collaborates with a human partner for
achieving a common mission. The objective of the robot is to
infer the human’s preferences upon the tasks of the mission
so as to collaborate with the human by achieving human’s
non-favorite tasks. Inspired by recent researches about the
recognition of human’s intention, we propose a unified model
that allows the robot to switch accurately between verbal and
non-verbal interactions. Our system unifies an epistemic par-
tially observable Markov decision process (POMDP) that is a
human-robot spoken dialog system aiming at disambiguating
the human’s preferences and an intuitive human-robot collab-
oration consisting in inferring human’s intention based on the
observed human actions. The beliefs over human’s prefer-
ences computed during the dialog are then reinforced in the
course of the task execution by the intuitive interaction. Our
unified model helps the robot inferring the human’s prefer-
ences and deciding which tasks to perform to effectively sat-
isfy these preferences. The robot is also able to adjust its plan
rapidly in case of sudden changes in the human’s preferences
and to switch between both kind of interactions. Experimen-
tal results on a scenario inspired from robocup@home outline
various specific behaviors of the robot during the collabora-
tive mission.

Introduction

Robots will likely become increasingly familiar companions
in homes and the development of services and assistive robot
technology is essential for future personal domestic applica-
tions and for providing assistance to an increasing elderly
population. This is indicated by the large number of this
year participants to the RoboCup@Home league and by sev-
eral recent successful approaches for assistive human-robot
interaction, such as robot systems that interact with the el-
derly in a nursing home (Pineau et al. 2003) or a wheelchair
adaptive assistance (Taha, Miró, and Dissanayake 2008).

The increasing capabilities of these household robots re-
quire more and more sophisticated and manifold methods
of interaction with humans. These forms of Human-Robot-
Interaction vary between applications with different levels
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of relationships between the robot and the human. Hoey et
al. (2010) presented an automated system to help people
with dementia in completing daily life actions like washing
hands. The system as an assistant (advisor) recommends to
the human what he should do next in case it observes a con-
fusion or a mistake in the sequence of actions. In (Mouaddib
et al. 2010), a decision-theoretic approach for adjustable au-
tonomy is proposed where the control of decision making
can switch between the human and the robot when needed.

Others focused on applications where a robot collaborates
with a human partner to accomplish a common mission, as
a collaborative button-pressing task (Breazeal and Hoffman
2004) or assembling a piece of furniture (Dominey, Mallet,
and Yoshida 2009). In this form of interaction, commonly
known as Human-Robot Collaboration (HRC), the concepts
of master-slave or assistant relationship exist no more. The
robot and the human act jointly as equals to accomplish their
mission and must share the tasks of the mission. The robot
companion in this type of collaboration is designed to best
satisfy the mission success and both the human’s and the
robot’s preferences.

Assisting a human for a collaborative mission requires
the robot to be aware of its partner’s preferences upon the
tasks so as to effectively satisfy human’s desires during the
mission. Given that the human’s preferences are a state of
mind, a robot during its collaboration with a human should
be able to infer its partner’s preferences, or at least the proba-
ble human’s preferences. Using those information, the robot
should make better decisions for the collaborative mission,
that means performing the human’s non-favorite tasks. The
robot should also adjust its plan rapidly in case of a sudden
change in the human’s intentions during the mission.

Throughout the rest of this paper, we present a system that
infers the human’s preferences upon the tasks of the mission
and that decides which tasks to perform to effectively sat-
isfy the partners preferences during a common mission. A
natural approach to this problem could be to use partially
observable Markov decision processes (POMDPs) that can
model situations in which an agent acts without complete
knowledge of the current state of its environment. Using
POMDPs allows the robot to compute beliefs about the pref-
erences of the human based on observations and to act ac-
cordingly. They also provide policies that are adjustable to
all possible changes in the human’s preferences. The paper
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is organized as follows: we briefly introduce the POMDP
framework followed by a survey on related work about the
recognition of human’s intention for HRC. Then we present
how we used POMDPs to formalize our unified model for
verbal and non-verbal HRC. Finally, we propose a human-
robot interaction scenario inspired from RoboCup@Home
applications and some results we obtained using an approx-
imate POMDP solver that is appropriate to the problem.

Background on Markov Decision Processes

A POMDP (Cassandra, Kaelbling, and Littman 1994) is a
partially observable Markov Decision Process represented
by a tuple < S, A, T, Z, O, R, b0 > where: S is a finite set
of states, A is a finite set of actions, Z is a finite set of ob-
servations, T : S × A × S → [0, 1] is a state transition
probability distribution, O : S × A × S × Z → [0, 1] is a
discrete probability distribution over Z, R : S × A → �
is the reward function and b0(s) is a probability of being in
state s at time t = 0.

Given that the state is not directly observable, the sys-
tem instead maintains a belief distribution over S. bt(s)
is the probability that the system is in state s at time
t, given the history of all observations/actions the agent
received/affected and the initial belief state b0, bt(s) =
Pr(st = s|zt, at−1, zt−1, ..., a0, b0). Knowing the last ac-
tion at−1 and last observation zt, the agent calculates a new
belief state at each time step t by applying the following be-
lief update function:

baz
t (s′) =

Pr(zt|s′, at−1, bt−1)Pr(s′|at−1, bt−1)
Pr(zt|at−1, bt−1)

=
∑

s∈S O(s, at−1, s
′, zt)T (s, at−1, s

′)bt−1(s)
Pr(zt|at−1, bt−1)

(1)

where Pr(zt|at−1, bt−1) acts as a normalizing constant.
The goal of a POMDP planning is to find a sequence of

actions maximizing the expected sum of rewards. Such a
plan is called a policy π. An optimal policy specifies for
each b the optimal action to execute at the current step as-
suming the agent will also act optimally at future time steps.
The value of an optimal policy π∗ is defined by the opti-
mal value function V ∗ that satisfies the Bellman optimality
equation:

V ∗(b) = max
a∈A

[
∑

s∈S

R(s, a)b(s) + γ
∑

z∈Z

Pr(z|b, a)V ∗(baz)]

Related Work

Several successful approaches are interested in inferring the
human’s intention to enhance the collaboration between the
robot and the human and thus effectively satisfy human’s
desires during the mission. They vary between applications
with implicit or explicit communication for the collabora-
tion. Implicit communication is based on a non-verbal in-
tuitive HRC and explicit communication concerns spoken
dialog systems.

Intuitive Human-Robot Collaboration

Recent researches are motivated by building a system for a
collaborative robot assistant sharing a mission with a human
partner without explicit communication nor a shared plan.
They are based on an intuitive HRC inspired by the behav-
ior of people in human-human collaboration. In this way,
the robot is able to read the human’s non-verbal cues to in-
fer his intention. The key to the implicit non-verbal interac-
tion is to assume that human actions are directly caused by
his intentions, and thus the human’s intention is estimated
mainly with the observation of the human actions. A prob-
abilistic approach is used to compute the probable human’s
intentions from the observed human actions.

Schmid, Weede, and Wörn (2007) proposed to estimate
the human’s intention by observing his actions and using
Hybrid Dynamic Bayesian Networks. An appropriate robot
task is selected without requiring an explicit verbal commu-
nication. They also include pro-active actions, whose objec-
tive is to trigger a clarifying reaction from the human so as
to remove any uncertainty about the human’s intention.

Other approaches use a POMDP model to predict the
human’s intention for an elevator riding task (Broz, Nour-
bakhsh, and Simmons 2008), wheelchair navigation (Taha,
Miró, and Dissanayake 2008) or cleaning mission (Karami,
Jeanpierre, and Mouaddib 2010). Notably, Karami et al.
(2010) developed a model that helps the robot making the
best action towards the mission achievement considering its
belief over the human’s intentions and the priority of hu-
man comfortability. In order to link the human actions to
the possible human’s intentions, they calculate for each pos-
sible human’s action, a value that corresponds to the worth
of this action toward a possible intended task. To do that,
the authors compute human MDP policies, each of them in-
cludes one agent (the human) and one task (his intention).
Each human MDP policy calculates an action value function
that gives a value for each pair (state, human action). Having
those values for all possible intentions, the robot then calcu-
lates the probability of observing each human action given
his intention and uses it in the POMDP model to build a be-
lief over all possible human’s intentions given the observed
human actions.

Spoken Dialog Systems

Others are interested in building spoken dialog systems that
help humans achieve their goals via speech communication.
In those systems, the dialog agent should maintain an effi-
cient and natural conversation with the human. The objec-
tive of the agent is to interpret the dialog accurately so as to
discover the human’s intention. With this in view, it must de-
cide which sequence of actions to follow to gather accurate
information about the human’s intention and then, which fi-
nal decision to take to match this intention. Actions during
the dialog might include asking a question, confirming a hu-
man’s intention, or querying a database.

The dialog management is complex for several reasons.
First the system observes the human utterances during the
dialog via automated speech recognition and language pars-
ing, which are imperfect technologies corrupting the obser-
vations. Second, each human utterance (even if it could be
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Figure 1: The architecture of our unified model for HRC.

observed accurately) provides incomplete information about
the human’s intention, so the system must assemble evi-
dence over time. Thirdly, because the human might change
his intention at any point during the dialog, inconsistent evi-
dence could either be due to speech recognition error or due
to a modified intention. Thus the challenge for the dialog
agent would be interpreting conflicting evidence in the hu-
man utterances to estimate his intention.

Finally, the agent must make trade-offs between the cost
of gathering additional information (increasing its certainty
of the human’s intention, but prolonging the conversation)
and the cost of making a final decision that might not match
the human’s intention. That is, the system must perform
planning to decide which sequence of actions to take to
best disambiguate the human’s intentions and achieve the
human’s goal. For all of these reasons, the spoken dia-
log system problem can be regarded as planning under un-
certainty. Many researchers have found POMDP frame-
works suitable for designing a robust dialog agent in spo-
ken dialog systems. These researches range from robot
system that interacts with the elderly in a nursing home
(Pineau et al. 2003), automated system that assists peo-
ple with dementia (Hoey et al. 2010), flight agent as-
sisting the caller to book a flight ticket (Williams 2006;
Young et al. 2010) or a wheelchair directed by her patient
(Doshi and Roy 2008).

Unified Model for Human-Robot

Collaboration

Existing approaches to infer the human’s intention so as to
enhance the collaboration between the robot and its human
partner use either intuitive human-robot interaction, or ex-
plicit verbal interaction. We propose to unify these both
kinds of interaction in a unified model for HRC. In the
framework of a collaborative mission, our unified model
should give the robot the opportunity to switch accurately
between inferring the human’s preferences using queries and
inferring the possible change in human’s intentions thanks to
non-verbal cues. Then it decides which tasks to perform to
effectively satisfy the human’s preferences.

The architecture of our unified model is shown in Figure

1. It is made up of a human-robot spoken dialog system
regarding as an epistemic interaction. Indeed, human’s pref-
erences are not observable. Robot’s actions during this inter-
action are queries asked to the human with potentially noisy
or ambiguous answers. The robot must choose queries that
supply information about the preferences such that the series
of questions aim at disambiguating the human’s preferences.
Using information obtained during the dialog, i.e. observed
responses of the human, the robot builds a belief over its
partner’s preferences despite uncertainty in the observed re-
sponses. Once sufficiently certain and based on this belief,
the robot should be able to decide which tasks to perform to
effectively satisfy the human’s preferences and then switch
to the task execution system to apply those decisions.

However, human’s preferences may change over the
course of the mission and one challenging issue is to de-
tect this change. This can be done by querying the hu-
man and assembling conflicting evidence in the human utter-
ances. But the robot should avoid to constantly ask queries
since too much questions could annoy the human; the dia-
log must only be used for gathering information about the
human’s preferences. We propose to use intuitive human-
robot collaboration during the task execution to detect the
change of preferences. Thus, the robot will avoid a sys-
tematic return to the dialog to check this change. Once in
the task execution system, the beliefs over human’s prefer-
ences (built during the dialog) should be reinforced by an
intuitive human-robot interaction based on observed human
actions. Indeed, the observed human actions may bring the
robot information concerning the current human’s intention
(Karami, Jeanpierre, and Mouaddib 2010).

Thus our unified model allows the robot to switch from
an explicit verbal interaction, that aims at disambiguating
the human’s preferences, to the task execution system where
the robot achieves the tasks of the mission which are as-
signed to it and at the same time, checks if the human has
changed his preferences. In case of a change in the human’s
preferences, the robot returns to the dialog system to infer
the new preferences of the human; otherwise, it continues to
execute tasks according to its belief over the human’s pref-
erences. Therefore the unified model provides an accurate
switch over both kinds of verbal and non-verbal interaction
that will be illustrated in our results.

The Unified POMDP Model

We now present a specific POMDP detailed model that cap-
tures the desiderata described above relating to our unified
verbal and non-verbal HRC. Our scenario, inspired from
RoboCup@Home applications, consists of a robot and a hu-
man in a house. They both share a mission M that includes a
list of N tasks {t1, t2, ..., tN}. Each of the tasks is matching
a specific kind of housework as gardening, cooking or clean-
ing. The human has preferences upon the tasks modeled as
his internal state sh which may change over the course of
the mission. Preferences are, for each task ti of the mission:

• sh(ti) = 0 if the human would rather do the task ti;

• sh(ti) = 1 if the human would rather the robot did the
task ti;

64



• sh(ti) = 2 if the human has not yet decided his preference
upon the task ti.
Next, we formalize our unified model using the POMDP

framework. We will assume that the state, action and obser-
vation sets are all discrete and finite.

States

Our state space brings together the set of human’s prefer-
ences upon the tasks of the mission (non-observable) and
the status of each tasks (done or not yet done) that is observ-
able. The human’s preferences can be 0, 1 or 2 for any tasks
of the mission that has the status not done. The state s is
then characterized by a function that associates, at each task
(ti)i∈[1,N ] of the mission, either the human’s preference:
s(ti) ∈ {0, 1, 2}; or the status if ti is done: s(ti) = done.

For instance, a POMDP state for N = 5 tasks, can be
s =< 1, done, 2, 0, done > that means t2 and t5 are done,
the human would rather do t4, would rather the robot did t1
and has not yet decided his preference upon the task t3.

Actions

Possible actions for the robot include queries to the human
asked during the dialog. The robot can choose from three
kinds of queries: it can choose to ask a general question such
as “Which task should I do ?”, to confirm a preference upon
a specific task ti such as “Should I do the task ti ?” and to
greet the human and ask “How can I help you?”. The robot
can also choose to achieve a task of the mission. We assume
the robot has a list of predefined policies to accomplish cor-
rectly each task of the mission. The action do(ti) then leads
the robot to follow the corresponding policy. The robot may
also choose to wait, for instance because remaining tasks
are preferred by the human. The robot action set is: A =
{wait, do(t1), ... do(tN ), confirm(t1), ... confirm(tN ),
ask, greet}.

Observations

The observation set includes different ways of partially
or fully communicating the human’s preferences. In
reply to a general question or a greeting, observations
consist of N observations {prefdo(t1), ..., prefdo(tN )}
associated with each of the N tasks plus the prefdo(ø)
observation. Observations yes and no stand for positive
and negative confirmations in response to confirm queries.
Observations not yet stands for a not yet decided re-
sponse. The robot may also observe nothing. Finally,
the robot may observe hdid(ti) when the human has just
achieved the task ti. The robot observation set is: Z =
{hdid(t1), ... hdid(tN ), nothing, prefdo(t1), ... prefdo(tN ),
prefdo(ø), yes, no, not yet}.

Transition Function

The transition function T (s, a, s′) shows what the next state
s′ is likely to be given the current state s and the action a.
The effects of the robot action a on a state s are relatively
clear: when the robot does a task, the task status changes
to done. Other actions like queries or wait action do not
modify the state.

However, the transition from state s to s′ is not only de-
fined by the robot action, but also by the human actions and
intentions. Indeed, as we assume the human has a small
probability to change their preferences mid-dialog, the hu-
man’s preferences might change independently of the robot
action. As well, the task status that can change to done when
the human did a task. We suppose that: the human does only
tasks he would rather do, i.e. tasks whose preferences are 0
or 2; the human will keep same preferences with a probabil-
ity pKI; the human might do a task he is intended with a
probability pHDo; otherwise the human changes his prefer-
ences upon tasks that are not yet done to another preferences
chosen uniformly1. Thus:

• T (s, a, s′ = s) = pKI

• T (s, a, s′ ∈ hDo(s)) = pHDo
size(hDo(s))

• T (s, a, s′ ∈ hI(s)) = 1−pKI−pHDo
size(hI(s)) if size(hDo(s)) �= 0

• T (s, a, s′ ∈ hI(s)) = 1−pKI
size(hI(s)) if size(hDo(s)) = 0

where hDo(s) is the set of all reachable states from s when
the human does one task that he prefers; and hI(s) is the
set of all possible permutations of preferences upon not yet
done tasks in s. We obtain the same probabilities when a =
do(ti)i∈[1,N ] except that the status of the task ti in s′ is done.

Observation Function

Based on the most recent action a and the current and future
state (s, s′) of the system, the robot has a model of which
observation z it may receive. First the observation function
O(s, a, s′, z) gives in a deterministic way the observation
z = hdid(ti)i∈[1,N ] when the human just did a task ti. The
robot also observes nothing when it waits or does a task:
O(s, a ∈ {wait, do(ti)i∈[1,N ]}, s′, z = nothing) = 1.

The observation function O(s, a, s′, z) also encodes both
the words the human is likely to use to reply to the queries
and the speech recognition errors that are likely to occur. We
suppose speech recognition errors are different according to
the kind of queries. If the robot made a general query or a
greeting, then it observes the right answer with a probability
pAsk. Thus, when a ∈ {ask, greet}:
• O(s, a, s′, z = prefdo(ø)) = pAsk if nbRDo(s′) = 0

and nbNYet(s′) = 0
• O(s, a, s′, z = not yet) = pAsk if nbRDo(s′) = 0 and
nbNYet(s′) �= 0

• O(s, a, s′(ti) = 1, z = prefdo(ti)) = pAsk
nbRDo(s′)

where nbRDo(s′) is the number of tasks in s′ that the robot
can do according to human’s preferences and nbNYet(s′)
the number of tasks in s′ upon which the human is not de-
cided yet.If the robot made a confirm query, then it observes
the right answer with a probability pConf . Thus, when
a = confirm(ti):
• O(s, a, s′(ti) = 1, z = yes) = pConf

1Once the human has decided his preference upon ti (s(ti) ∈
{0, 1}), he cannot return to a not yet decided preference (s(ti) =
2), yet s(ti) can switch between 0 or 1.
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state s action a R(s, a)
First step of dialog greet -1
First step of dialog �= greet -1000

Not first step of dialog greet -1000
s(ti) ∈ {0, 2, 3} do(ti) -1000

s(ti) = 1 and ∃j s(tj) = 2 do(ti) -1000
s(ti) = 1 and ∀j s(tj) �= 2 do(ti) 300

s(ti) ∈ {1, 2} confirm(ti) -50
s(ti) ∈ {0, 3} confirm(ti) -10

Not first step of dialog ask -20
∃j s(tj) ∈ {1, 2} wait -30
∀j s(tj) ∈ {0, 3} wait 30

Table 1: Reward function for our POMDP model.

• O(s, a, s′(ti) ∈ {0, 3}, z = no) = pConf

• O(s, a, s′(ti) = 2, z = not yet) = pConf

In both queries ask and confirm, the robot observes in
addition to the right answer an arbitrary response uni-
formly at random from the remaining possible replies
prefdo(ti), prefdo(ø), yes, no, not yet, nothing.

Reward Function

The reward function specifies what the “right” actions are in
different states. This function is given in Table 1. The robot
must greet the human only at the first step of the dialog. It re-
ceives a higher penalty for an incorrect confirmation than for
a correct one. The reward function also specifies how much
the human is willing to tolerate ask versus confirm queries
thanks to the choice of the reward for a general query. The
robot is penalized for doing a task already done or a human’s
favorite task. It is also penalized if it does a task although
there remains undecided tasks or if it waits although it would
better do a task or query the human. Finally, the robot gets
a high reward when it does a human’s non-favorite task and
all the human preferences upon the tasks have been given.
It also gets a high reward when it waits while all remaining
tasks are human’s favorite tasks.

Belief State and Human’s Intent Change

Initially, the belief state is uniform among all states where
all the tasks are not yet done. The belief of the robot over
the state at time t is bt(s) and is a probability distribution
over the human’s preferences upon remaining tasks of the
mission. It is updated given eq. 1.

When the robot is in the task execution system, it can de-
tect a change in the human’s preferences thanks to the ob-
servation of the human actions. Indeed, we use an intuitive
HRC method that builds a belief over all possible human’s
intentions given the observed human actions (Karami, Jean-
pierre, and Mouaddib 2010). If the beliefs over human’s in-
tentions computed with the intuitive method do no match the
beliefs calculated during the dialog, then the robot has de-
tected a change in the human’s intentions and should switch
to the spoken dialog system. To do that, the belief state is
reinitialized uniformly at random.

Experimental Results

The POMDP Solver

Finding an optimal policy over the entire belief space for
a finite horizon POMDP is PSPACE-complete, that is why
a lot of approximate solvers were presented for solving
POMDPs. We have chosen an approximate POMDP solver
to calculate a policy that profits from the topological struc-
ture in our scenario. Indeed, given that the action do a task
(by robot/human) is definitive, the sets of done/not yet done
tasks are topological sets that can be followed. For example,
the moment the task t1 is done by the human or the robot,
the system will move to another sub-belief-state space that
represents all possibilities with the task t1 done. After this
point, the sub-belief-state space that represents all possibili-
ties with the task t1 not yet done will no more be accessible.
The approximate and topological chosen solver is Topolog-
ical Order Planner (TOP) (Dibangoye et al. 2009): during
its policy calculation, it creates layers with pairs of (states,
belief states) and the possible paths between layers and be-
tween pairs of the same layer. Problems that create higher
number of layers are more interested to be solved with TOP.

Parts of dialogs

We chose a scenario with a mission composed of 5 tasks
(|S| = 1025, |A| = 13, |O| = 15). TOP created 244 layers
and 1200 minutes were required to calculate the policy in-
cluding the TOP solver preparations for creating layers and
paths values. The model parameters used were pKI = 0.9,
pHDo = 0.05, pAsk = 0.7 and pConf = 0.9. Table
2 shows a dialog between the human and the robot during
the achievement of the mission and following the computed
policy. Those parts outline various specific behaviors of the
robot during the collaboration. We note in step 4 the rein-
forcement of the preference upon the task 0 which is due to
the increased probability of the change of the human’s in-
tention since the last confirmation (step 1). In step 10 and
13, we notice that the robot has switched to the dialog sys-
tem for two different reasons. At step 10, after finishing all
the non-preferred tasks, the root checks the possible change
in the human’s preferences that might have occurred dur-
ing the execution period. At step 13, the robot receives an
observation from the intuitive system that declares an ob-
served human’s intent change. For this, it reinitializes all the
remaining tasks to an equal probability and switches to the
dialog system to infer the new preferences.

Conclusion

In this paper, we have presented a unified model that al-
lows an autonomous robot companion that collaborates with
a human partner to infer the human’s preferences and to
switch accurately between verbal (epistemic system) and
non-verbal (intuitive system) interactions. We presented
an example of the POMDP policy for 5 tasks that shows
how the robot optimally switches between the epistemic
and the intuitive systems, in addition to its good choice of
type of queries at each dialog interaction. We aim to im-
prove these results by exploring how robust our solution is to
varying levels of model uncertainty and by trying missions
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POMDP HIDDEN STATE ROBOT ACTION HUMAN ACTION/REPLY

Greeting at the beginning of the dialog:
1 < 1, 2, 0, 2, 0 > ROBOT: Hello, how can I help you ? HUMAN: I’d rather you do the task 0.
2 < 1, 2, 0, 2, 0 > ROBOT: Should I do the task 2? Human does task 2.

The robot confirms all remaining (not yet done) and ambiguous tasks:
3 < 1, 0,done,1, 0 > ROBOT: Should I do the task 4? HUMAN: No.
4 < 1, 0,done,1, 0 > ROBOT: Should I do the task 0? HUMAN: Yes.
5 < 1, 0,done,1, 0 > ROBOT: Should I do the task 3? HUMAN: Yes.
6 < 1, 0,done,1, 0 > ROBOT: Should I do the task 1? HUMAN: No.

Switch from the epistemic interaction to the intuitive interaction to do the human’s non-preferred tasks:
7 < 1, 0,done,1, 0 > Robot does task 0.
8 <done,0,done,1, 0 > Robot does task 3.
9 <done,0,done,done,0 > Robot waits.

Switch from the intuitive interaction to the epistemic interaction to check if the human has changed his preferences:
10 <done,0,done,done,0 > ROBOT: Which tasks should I do? HUMAN: I’d rather you do nothing.

Switch from the epistemic interaction to the intuitive interaction:
11 <done,0,done,done,0 > Robot waits.
12 <done,1,done,done,1 > Robot waits. INTUITIVE SYSTEM: Change in human’s intentions.

Switch from the intuitive interaction to the epistemic interaction responding to the intuitive system observation:
13 <done,1,done,done,1 > ROBOT: Should I do the task 4? HUMAN: Yes.
14 <done,1,done,done,1 > ROBOT: Should I do the task 1? HUMAN: Yes.

Switch from the epistemic interaction to the intuitive interaction to do the human’s non-preferred tasks:
15 <done,1,done,done,1 > Robot does task 1.
16 <done,done,done,done,1 > Robot does task 4.
17 <done,done,done,done,done>

Table 2: A dialog example between the human and the robot during the achievement of the mission.

with more tasks; indeed, POMDP policies for such missions
could be calculated but with time periods that exceed a day.
We also plan in future work to structure the problem such
as the mission is divided into a group of tasks, each of them
includes a number of similar kind of tasks, hoping by this
to solve problems with much higher number of tasks. We
also plan to enhance our unified model by adding the possi-
bility that the robot proposes to do accurate tasks instead of
waiting even if the human’s preferences were to do all the
remaining tasks, in cases where it believes that it is the best
for the mission achievement.
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