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Abstract 

Future service robots applications in healthcare may require 
systems to be adaptable in terms of verbal and non-verbal 
behaviors to ensure patient perceptions of quality 
healthcare. Adaptation of robot behaviors should account 
for patient emotional states. Related to this, there is a need 
for a reliable method by which to classify patient emotions 
in real-time during patient-robot interaction (PRI). Accurate 
emotion classification could facilitate appropriate robot 
adaptation and effective healthcare operations (e.g., 
medicine delivery). We conducted and compared two 
simulated robot medicine delivery experiments with 
different participant age groups and robot configurations. A 
meta-analysis of the data from these experiments was to 
identify a robust approach for emotional state classification 
across age groups and robot configurations. Results revealed 
age differences as well as multiple robot humanoid feature 
manipulations to cause inaccuracy in emotion classification 
using statistical and machine learning methods. Younger 
adults tend to have higher emotional variability than elderly. 
Combinations of robot features were also found to induce 
emotional uncertainty and extreme responses. These 
findings were largely reflected in terms of physiological 
responses rather than subjective reports of emotions. 

 Introduction   

Service robots have been developed to assist nurses in 
routine patient services including healthcare related 
materials delivery. Although delivery robots have been 
implemented in many hospitals and nursing homes, current 
commercially available units are not capable of delivering 
medicines directly to patients. Existing robot designs do 
not support verbal and non-verbal interaction with patients. 
Prior research identified three key aspects of humanoid 
robot design (i.e., humanoid features) facilitating social 
interaction, including: face and/or head features; and voice 
and interactivity capabilities (Zhang et al. 2008). Empirical 
studies have been conducted to examine the effect of these 
features on user perceptions of robot humanness and 
emotional responses in simulated medicine delivery tasks. 
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The overarching goal of these studies is to provide a basis 
for robot expression adaptation according to current user 
emotional states, especially in hospital environments. 
Physiological signals from patients can be monitored in 
real-time in a hospital in order to determine patient status. 
Other research has been conducted to define methods by 
which to extract physiological responses and facilitate 
emotional states classification in real-time during PRI. 
Such systems would ensure that robots not only 
successfully perform tasks, but also provide positive 
emotional experiences for patients. 

Empirical Work 
In our first study (Zhang et al. 2010), we recruited 24 
senior subjects from two local retirement centers (mean 
age=80.5, SD=8.8) to interact with a mobile robot 
prototype (PeopleBot) and receive medication. Repeated 
trials were used to present two general types of robot 
configurations (abstract vs. humanlike) by manipulating 
face, voice and interactivity features (see Figure 1; Table 
1). All trials were completed at the senior centers. The 
facial feature was either an abstract face with two camera 
“eyes”, or a humanoid face with a smooth mask. The voice 
was either synthesized or digitized audio messages. 
Interactivity referred to user actions required by either 
reading verbal instructions from a tablet PC screen onboard 
the robot (i.e., message only) or pressing a button on the 
touchscreen to confirm delivery. The settings of each 
feature were presented in the absence of any other features. 
There was also a control condition in which none of the 
humanoid features were presented.   
 Subject emotional responses were evaluated using the 
self-assessment manikin (SAM; [Bradley and Lang], 1994) 
questionnaire or through physiological measures, including 
heart rate (HR) and galvanic skin response (GSR). The 
SAM questionnaire evaluated subject post-test valence 
(how happy they were) and arousal (how excited they felt) 
using rating scales with graphic characters as anchors. 
After each test trial, participants were instructed to recall 
their feelings when the robot opened its gripper (a 
medicine bag was attached to the gripper) and to select the 
character on a SAM scale best representing their emotions. 
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HR and GSR were collected in real-time from sensors 
attached to a subject’s chest and two non-dominant fingers.  
 Results revealed all interface manipulations lead to 
stronger positive emotional responses, as compared with 
the control condition. However, facial appearance appeared 
to have the greatest effect on the perception of robot 
humanness and was recommended for use in future service 
robot design for medicine delivery applications.  
 Our follow-on study (Swangnetr et al. 2010) investigated 
the effects of combinations of robot humanoid features on 
younger population emotional responses. Thirty-two 
subjects (mean age=23.16, SD=3.12) were recruited to 
interact with the medicine delivery robot in a lab 
environment. Similar to the first study, there were two 
general types of robot configuration (machinelike and 
humanlike) for each interface feature (i.e., face, voice and 
interactivity). In designing the specific robot conditions, 
we considered the face feature as the most important for 
perceptions of humanness. An abstract face was always 
coupled with a synthesized voice to represent robot 
conditions with lower “humanness”; whereas, a human 
face was always coupled with a digitized voice to represent 
higher humanness. Such manipulations were used to avoid 
inconsistency in robot design relative to user expectations. 
Integrating the interactivity feature, seven conditions were 
presented in this second study representing increasing 
levels of humanness (see Table 1). Physiological responses 
(HR, GSR) and SAM data were also collected in real-time. 
Subject instructions for both studies were comparable.  
 
 

 

  
 

  
Figure 1. Basic PeopleBot platform (left). Additional humanoid 
features (right), clockwise from top left: abstract face; humanoid 

face; confirmation; and message only. 

 Results showed that a robot with higher degrees of 
humanness lead to higher arousal and valence ratings and 
HR responses. We also found that additional humanoid 
features lead to higher GSR ratings, but the trend was not 
strictly linear. 

Emotional State Classification Algorithm 
A three-stage algorithm was developed for real-time 
emotional state classification based on the physiological 
and subjective rating data collected in the two experimental 
studies. Stages included: (1) physiological feature 
extraction and noise elimination; (2) statistical-based 
feature selection; and (3) machine learning modeling of 
emotional states. Analysis of physiological measures for 
emotion identification is generally conducted on an event 
basis, using brief time windows of data (4 seconds) after an 
event (Ekman 1984). In both of our previous studies, the 
robot opening its gripper to release the medicine to 
participants was selected as the event for analysis. This 
was a key event in the robot service as it requires 
participants to perceive the robot interface cues and 
understand how to interact with the robot. It also provided 
the greatest degree of emotion discrimination among robot 
configurations (Swangnetr et al. 2009). 
 Statistical features of HR, including mean HR and 
standard deviation of HR (SDHR), were examined. 
However, GSR signals were non-stationary and noisy and 
were further processed using wavelet analysis. Daubechies 
3 wavelet (db3) was selected as a mother wavelet due to 
the orthogonality property and shape resembling the GSR 
signal. Wavelet technology was also used for signal noise 
elimination. Based on decomposition of the GSR signal 
using the db3 wavelet, the coefficients representing the 
high frequencies (>0.5 Hz) of the signal (noise) were set to 
zero. A wavelet soft threshold shrinkage algorithm 
attenuated noise, which overlapped GSR frequency. Since 
the distribution of wavelet detail coefficients is better 
represented by a zero-mean Laplace distribution (Lam 
2004), we proposed the threshold of wavelet shrinkage to 
be 4.18�L. This threshold provides 99.73% confidence that 
noise will be eliminated from the signal. The � L of noise 
was estimated based on data collected individually during a 
rest period. As a result, a set of 24 wavelet coefficients was 
available to represent an entire 4-s GSR signal and to 
reveal time, amplitude and frequency features. 

 

 

Table 1. Robot configurations investigated in two prior studies. 
1st study 2nd study  Condition 

Face Voice Interactivity Face Voice Interactivity 
1  No No No No No No 
2  Abstract No No Abstract Synthesized No 
3  Human No No Abstract Synthesized Visual message 
4  No Synthesized No Abstract Synthesized Confirmation 
5 No Digitized No Human Digitized No 
6  No No Visual message Human Digitized Visual message 
7  No No Confirmation Human Digitized Confirmation 

Note: The ascending number of robot condition was not considered to represent an increase in the level of “humanness” in the first study. 
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 A stepwise regression procedure was used to reduce 
classification model complexity by selecting statistical and 
wavelet features with significant relationships with each 
class of subjective emotional state. Significant 
physiological features were then used as inputs in machine 
learning models (artificial neural networks) for arousal and 
valence state classification. The arousal and valence scores 
from the SAM ratings were converted to z-scores in order 
to address individual differences. The normalized ratings 
were then categorized as representing low, medium or high 
levels of valence/arousal (lower, mid and upper 33% of the 
normal distribution) and used as desired outputs. 
Backpropagation neural network models were constructed 
with a single hidden layer. The number of hidden layer 
nodes was optimized to achieve the highest percentage of 
correct classifications (PCC) in validation (from 20% of 
samples) for predicting subject emotional responses.  
  Analysis on the first study revealed overall PCCs in 
validation of the ANN for predicting arousal and valence 
to be 82% and 73%, respectively. However, the emotional 
state classification models for the second study produced 
PCCs for arousal and valence of 50% and 49%, 
respectively. The confusion matrix revealed a lack of 
prediction capability for the medium level of arousal and 
valence states. The PCCs for medium emotional responses 
were 22% for both arousal and valence. Consequently, we 
reconstructed models to predict only low and high level 
emotional states. Results revealed the overall PCC in 
validation to increase to 70% for arousal and 63% for 
valence. The overall PCCs for the best arousal and valence 
classification networks from both studies are presented in 
Table 2. All classification models were constructed with 5-
7 hidden nodes based on a set of 9-15 physiological inputs.   

Table 2. Summary of overall PCCs for arousal and valence 
classification networks. 

Classification Model Arousal Valence 
1st study with 3 emotion levels 82% 73% 
2nd study with 3 emotion levels 50% 49% 
2nd study with 2 emotion levels 70% 63% 

Motivation and Implications  

Reliability in patient emotional state classification is 
necessary in order to provide a basis for effective 
adaptation of service robot behaviors and expressions in 
direct interaction with patients. A challenge in developing 
human-robot dialog is the design of robots with the 
capability to adaptively service according to human 
expectations in specific cultural contexts or task 
environments (Breazeal 2003). With respect to non-verbal 
interaction, for example, Dautenhahn et al. (2006) 
investigated how a robot should approach a human in an 
object delivery task. Results showed that people preferred 
robots to approach from either left or right, but not the 
front, with approaching distances in a range comparable to 
human-human social distance (0.45-3.6m). Adaptive verbal 

communication between robots and humans also represents 
a potential application for a patient emotional state 
classification algorithm. Zhu and Kaber (2010) found that 
people expect different linguistic etiquette strategies during 
interaction with a service robot in a medicine delivery task, 
depending upon environment and system configuration. If 
a patient’s emotional state can be effectively classified as 
negative or positive, the robot may be able to use a 
linguistic strategy that is most effective for the user’s 
condition. Failure in emotion classification may lead to 
robot behaviors that do not conform with human 
expectations. This, in turn, could cause lower rates of 
compliance with robot requests during tasks (Cialdini 
2001). This is a critical issue in a healthcare context, as 
patient omission of medicine dosages can cause fatality 
(see Barker et al. 2002).  
 In general, high accuracy of user state classification 
models is important to ensure successful robot adaptation 
during HRI. However, results from our previous studies 
showed a substantial reduction in classification model 
(neural network) accuracy in the second study for 
predicting moderate user arousal and valence responses. 
We speculated the reduced accuracy might have been due 
to high emotional variability in younger participants and/or 
emotional uncertainty and intensity induced by the 
combination of robot humanoid features. Understanding 
underlying sources of user emotion variability is 
fundamental in designing adaptive robot dialog systems. 
The objective of the present study was to conduct a meta-
analysis on the results of the two studies described above 
to define a robust classification algorithm across age 
groups and robot configurations.    

 Detailed Hypotheses 

It was hypothesized that the age difference between the 
two participant groups might have led to emotional 
differences, reflected in both subjective and physiological 
responses (Hypothesis (H)1). Dissimilarities in the 
emotional patterns of age groups could cause failures in 
model classification of moderate emotional states. Beyond 
this, subjective ratings from younger participants in the 
second study were expected to have greater variability, as 
compared with senior ratings in the first study (H1.1). Prior 
research has found that emotional states in older adults 
tend to be more controlled and less variable (e.g., Gross et 
al. 1997; Lawton et al. 1992). This literature suggests older 
adults regulate emotions differently than younger adults in 
a way that promotes well-being. In addition, Bradley and 
Lang (1994) stated that there were differences in 
perceptions of arousal and valence among different age 
groups. For example, Backs et al. (2005) found younger 
adults rated greater arousal and pleasantness than older 
adults when presented with pleasant-aroused affective 
pictures. In this research, there was no difference in the 
way that younger and older participants used the SAM 
when rating pictorial stimuli. 

123



 Physiological responses from younger participants were 
also expected to have greater variation, as compared with 
older participations (H1.2). Related to Hypothesis 1.1, 
regulation and consistency of emotions in elderly adults 
was expected to lead to low emotional variation in terms of 
physiological responses. In general, the magnitude of 
change in physiological measures is smaller in older adults 
(Levenson et al. 1991). Maximum HR is strongly 
correlated with age; when age increases, maximum HR 
decreases (Tanaka, Monahan, and Seals 2001). However, 
the relationship between GSR and age groups has not been 
found to be consistent across studies. Drory and Korczyn 
(1993) reported a significant decrease in GSR amplitude in 
the elderly. Opposite to this, Baba et al. (1988) observed 
no age-dependent significant decrease in GSR amplitude.   
 It was also expected that use of different robot 
configurations in the two studies could have lead to 
problems in moderate emotional state classification (H2). 
ANOVA results on SAM ratings for the various robot 
configurations in the second study (Swangnetr et al. 2010) 
revealed particular sets of configurations (Ci) to yield 
different levels of arousal (referred to as “Arousal-based 
Groupings”) and different levels of valence (referred to as 
“Valence-based Groupings”) (see Table 3). On this basis, 
the set of robot conditions yielding moderate emotional 
responses was expected to produce higher variations in 
terms of subjective ratings and physiological responses, as 
compared with groups of robot conditions yielding low or 
high emotional responses (H2.1). 
 One motivation for this hypothesis was that there were 
several robot conditions, including multiple design 
features, which induced moderate emotional responses. 
Because of the combination of features, participants may 
have been uncertain about whether they felt aroused or 
happy. Such uncertainty could have produced high 
variations in both ratings and physiological responses. It is 
also possible that participants felt compelled by the rating 
scales to rate emotions in one direction or another. 
 Robot configurations in the second study may have 
generated more extreme emotional responses when 
compared with robot conditions in the first study (H2.2). In 
the first study, we examined user reactions to individual 
design feature manipulations. Low, medium and high 
emotional responses may have been dependent upon 
feature type. However, in the second study, conditions 
might have generated only low and high responses as a 
result of feature combinations.  

 Analytical Methodology and Results 

Age Effects  
In order to test the hypothesis of age differences in 
emotional regulation and variation, an unequal variance 
analysis (Bartlett’s test) was conducted on the subjective 
and physiological response data from the two studies. 
(Only data on the control condition were included in this 
analysis, as the robot configuration was constant across 

investigations.) Arousal and valence ratings from the SAM 
questionnaire were converted to z-scores. A 4-s window of 
HR and GSR data, recorded after the robot opened the 
gripper, was used for analysis. The data were extracted and 
normalized with respect to baseline. Maximum GSR and 
average HR were calculated for statistical analysis. 
 Contrary to our hypothesis (H1.1), results from 
Bartlett’s test revealed there to be no difference in the 
variance in SAM responses across studies (arousal 
�2

(1)=0.0071, p=0.93; valence �2
(1)=0.5905, p=0.44). This 

suggested the young and old participants were consistent in 
the emotional ratings.  
 Opposite to H1.2, the GSR variances for the senior 
participants were significantly higher than those for the 
younger participants (�2

(1)=78.08, p<0.0001). This could 
have been due to other reasons than age differences (such 
as subject conditioning; we say more about this in the 
discussion section). However, we did not consider this 
result as a basis for rejecting the general hypothesis on age 
effects (H1). Related to this, the variances in HR in the 
second study were significantly higher than those in the 
first study (�2

(1)=80.55, p<0.0001). Therefore, high emotional 
variability in terms of HR from younger participants could 
lead to classification inaccuracy (supporting H1.2).   

Emotional Uncertainty 
To evaluate the hypothesis on unequal emotion variability 
induced by robot configurations (H2.1), the seven robot 
conditions were grouped into three levels, as presented in 
Table 3. A series of Bartlett tests was conducted to 
evaluate variance differences in SAM ratings and 
physiological responses across the levels. Results revealed 
robot conditions yielding low, medium or high emotional 
responses produced comparable variations in terms of 
SAM ratings (see Table 4). This suggested robot stimuli 
did not generate inconsistency in self-reported emotional 
ratings. In support of H2.1, significant differences were 
found for physiological response variances across three 
levels of stimuli (see Table 4). Specifically, HR induced by 
low-valence robot conditions and GSR induced by high-
arousal and high-valence robot conditions had the largest 
variances, as compared to other groups. The variability 
reduced the degree of emotional state discrimination in 
classification. 
 
Table 3. Sets of robot conditions from the second study induced 
different degrees of emotion.  

 Low Medium High 
Arousal-based Groupings C1 C2,C3,C4,C5,C6 C7 
Valence-based Groupings C1 C2,C3,C4,C5 C6,C7 

 
Table 4. Bartlett test results on SAM ratings and physiological 
responses across three levels of robot conditions. 

Robot Condition Arousal Valence HR GSR 
Arousal-based 
Groupings 

�2
(2)=3.36 

p=0.19 
 �2

(2)=5.03 
p=0.08 

�2
(2)=9.2 

p=0.01 
Valence-based 
Groupings 

 �2
(2)=0.95 

p=0.62 
�2

(2)=7.36 
p=0.025 

�2
(2)=19.79 

p <0.0001 
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Emotion Intensity  
We also hypothesized that the robot configurations in the 
second study would generate more extreme responses 
(H2.2). To test this, the ranges of SAM ratings as well as 
physiological responses were calculated for each subject in 
both studies. These ranges were compared across studies 
using standard t-tests because of small sample sizes.  
 Results revealed that the range of SAM responses in the 
second study was significantly greater than in the first 
study (arousal t(37)=-2.1544, p=0.0377; valence t(35)=-
2.09, p=0.0439). The range of HR responses in the second 
study was also significantly higher (t(53)=-6.65, 
p<0.0001). These results were consistent with our 
hypothesis that robot configurations in the second study 
generated more extreme emotions. However, the ranges for 
GSR were found to be comparable across studies 
(t(30)=0.428, p=0.6714).  
 To further test H2.2, a series of ANOVAs were 
conducted to determine the effects of robot conditions on 
the SAM ratings and HR responses in both studies. To 
make a comparable comparison across studies, the robot 
conditions in the first study were also grouped into three 
levels. The control condition was considered as a low 
emotional stimulus. Robot conditions with less human-like 
features (#2, 4 and 6 from Table 1) were categorized as 
medium emotional stimuli. Highly human-like robot 
conditions (#3, 5 and 7) were grouped into the high 
emotional stimuli category. Post-hoc analysis using 
Tukey’s test was used to compare groupings of the SAM 
ratings across studies, while a non-parametric version of 
the ANOVA (Wilcoxon Ranks Test) was used to compare 
groupings of physiological responses (see Table 5).  
   

Table 5. Tukey groupings across studies. 
Robot condition Arousal Valence HR 

Low 
Medium 

First study 
 

High 

A 
B 
C 

A 
B 
C 

A 
A 
B 

Low 
Medium 

Second study 
(Arousal-based 
grouping) High 

A 
B 
C 

A 
B 
C 

A 
B 
B 

Low 
Medium 

Second study 
(Valence-based 
grouping) High 

A 
B 
C 

A 
B 
C 

A 
B 
C 

 
 Results revealed three distinct Tukey groups for the 
SAM ratings across the three levels of robot stimuli in both 
studies. Although previous analysis showed the range of 
SAM ratings for the second study to be significantly 
greater, it did not provide evidence of which robot 
configurations generated more extreme emotions. Results 
on the HR data revealed low and moderate emotional states 
in the first study to be comparable in physiological 
response. However, in the second study, HR responses for 
low emotional states were significantly different from 
moderate and high emotional states. Since the low level of 
emotion was induced by the same robot configuration 
(control condition) for both studies, it served as a common 

base for comparison. It can be concluded that any 
combination of humanoid robot features (i.e., Conditions 2 
to 7 from the second study) yields more extreme HR 
responses, compared to the control condition, as well as 
individual machine-like features (i.e., Conditions 2, 4 and 6 
from the first study). 

Discussion 

On the basis of the meta-analysis, age appears to be a 
significant factor influencing accuracy in moderate 
emotional state classification in PRI. In support of our 
hypothesis, HR responses from a younger population had 
greater variation compared with an elderly population 
when interacting with the same robot configuration. 
However, GSR results were opposite to our expectation. 
We found greater variation in GSR from senior 
participants. This is possibly due to a training session 
included in the second study. Subjects were exposed to a 
robot without humanlike features before formal test trials. 
Participant familiarization with the control condition might 
have led to smaller GSR variation.  
 Contrary to hypothesis, no significant differences were 
found in the variability of subjective responses by younger 
versus older participants. However, this finding was in line 
with consistency in the use of the SAM, as reported in 
Backs et al. (2005) study. Both age groups were consistent 
in emotional ratings and such consistency was comparable 
across studies.    
 Robot condition, investigated in the second study, was 
also found to be a significant factor in emotional state 
classification accuracy. Although robot stimuli generated 
comparable variations in terms of SAM ratings, unequal 
variability was found between the sets of conditions 
yielding different levels of emotional responses in terms of 
physiological signals. Substantially higher physiological 
response variability induced by particular types of robot 
configurations may degrade the predictive utility of HR 
and GSR inputs in an emotional state classification model. 
The highest variability in HR was found when participants 
interacted with the robot without humanoid features; 
whereas, the highest variability in GSR was found when 
participants interacted with a robot integrating human face, 
voice and interactivity features. This indicated that 
extremely low or high degrees of humanness in a service 
robot can lead to inconsistency in emotional response. 
High emotion variability might have occurred with the 
very low degree of humanness robot (Condition 1) because 
some participants felt uncomfortable and/or disappointed 
with the lack of humanoid features, as compared to 
multiple feature robots. High emotion variability with the 
high degree of humanness robots (Condition 6 and 7) may 
have been due to user expectations regarding visual 
message and confirmation interactivity, based on prior HCI 
task experience. Participants might have felt these forms of 
interaction did not fit with human physical appearance and 
voices of the robot. 

125



 Conforming with hypothesis, robot configurations in the 
second study also generated more extreme emotional 
responses in terms of SAM ratings and HR responses, as 
compared with conditions in the first study. Results from 
Tukey’s test revealed combinations of robot features to 
yield extremely high HR responses, compared to the 
control condition as well as individual feature 
manipulations, including an abstract face, synthesized 
voice and visual message (in the first study). 
 The neural network models we constructed included 
different sets of input and output features and were capable 
of representing non-linear relationships. Although Tukey’s 
test is applied to data that can be represented using a linear 
model, results revealed highly separable levels of emotion 
(in terms of both subjective and physiological variables) 
for the second study. A linear classification model 
including mean HR and maximum GSR as inputs may 
provide good predictive utility for three categorical levels 
of arousal and valence responses, especially for a younger 
population.  

Conclusion 

In order to achieve healthcare service robot behavior 
adaptation in real-time when interacting with patients, a 
reliable algorithm is needed for classification of patient 
emotional states. Any classification approach should be 
robust across age groups and robot configurations. Based 
on our results, emotional state classification inaccuracy 
may stem from high emotion variability in younger 
participants and emotion uncertainty and intensity induced 
by multiple humanoid features in robot design. However, 
such extreme variability in user responses is only reflected 
through physiological signals. The SAM ratings were 
found to be consistent and comparable across age groups.   
 To account for age differences, the classification method 
should be customizable for individual patients. An 
alternative is to develop specific emotional state 
classification models for particular age groups. Similarity 
of physiological response characteristics should be 
considered as a basis for selecting demographic groups for 
data collection and model construction. 
 To account for robot configuration differences, research 
needs to indentify a set of robot features that yields specific 
emotional states. Caution should be used when designing 
service robots with extremely low or high degrees of 
humanness since particular robot feature combinations may 
induce different responses in different user groups. Future 
research should also design service robots to accommodate 
a wide range of users in terms of machine expressions in 
order to work effectively in public healthcare environments.  
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