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Abstract

We assume that the brain is some kind of a computer and look
at operations implied by the figurative use of language. Fig-
urative language is pervasive, bypasses the literal meaning of
what is said and is interpreted metaphorically or by analogy.
Such an interpretation calls for a mapping in concept space,
leading us to speculate about the nature of concept space in
terms of readily computable mappings. We find that map-
pings of the appropriate kind are possible in high-dimensional
spaces and demonstrate them with the simplest such space,
namely, where the dimensions are binary. Two operations
on binary vectors, one akin to addition and the other akin
to multiplication, allow new representations to be composed
from existing ones, and the “multiplication” operation is also
suited for the mapping. The properties of high-dimensional
spaces have been shown elsewhere to correspond to cognitive
phenomena such as memory recall. The present ideas further
suggest the suitability of high-dimensional representation for
cognitive modeling.

Overview

We first look at computing from a 60-year perspective, and
the challenges we face in understanding brains in comput-
ing terms as highlighted by human language. We then ad-
just the traditional model of computing to correspond more
closely to how brains deal with information as suggested by
the very size if their circuits. This leads us to regard a high-
dimensional vector as the basic unit on which to compute,
which in turn gets us looking into the properties of spaces
with tens-of-thousands of dimensions. The exercise then be-
comes mathematical: how to load specific data into these
vectors and how to extract data from them. We see that rel-
atively simple operations let us do it, so long as we can deal
with their approximate results. That, in turn, is possibly be-
cause of the very high dimensionality; the approximate re-
sults cannot be corrected reliably in low-dimensional spaces.
The packing and unpacking operations are then viewed as
mappings between points of the space—the representatives
of concepts—suggesting a mechanism for analogy, with the
analogy mapping being computed from examples. We then
replace variables that have a privileged position in formal
systems, by prototypes that are more in line with people’s
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use of language and with the power of learning from ex-
ample. After completing this picture we highlight research
leading to it and speculate on directions for future research
to take.

The Brain as a Computer

The electronic computer has been our premier model of the
brain for over half a century, and in turn we use mental terms
such as “know,” “believe,” and “try” to describe the behavior
of computers and their programs. Assuming that the brain,
and the nervous system at large, is some kind of a computer,
we are lead to speculate about the nature of the computing.
Something about it must be special because the behavior
produced by brains is so different from what we get from
our computers. One is flexible adaptive forgiving, the other
rigid and brittle.

The early computers had limited memory and speed, and
we thought that more of them would close the gap, but in-
creasing them a millionfold really hasn’t. We now conjec-
ture that quantum properties of matter might allow another
millionfold increase in computing power, so would that be
enough? Probably not, judging by the meager returns from
the first million, so long as we keep on computing the old
way. There is more to the brain’s computing than raw pro-
cessing power, something fundamentally different in how
the computing is organized.

This paper is about the nature of the representation or
code in terms of which we might come to understand the
brain’s computing. Equipped with such an understanding
we can hope one day to build computers with brainlike per-
formance. We are kept from doing so today, more by our
lack of basic understanding than by the amount of comput-
ing power we can build into silicon chips.

Although the brain’s code and mode of computing cannot
be resolved by direct observation, neuroscience and human
behavior provide us with ample clues. The problem then
becomes mathematical: of finding models that are capable
of producing the behavior and also suited for building into
neural-like physical systems. We will use human language
as the target behavior, as it is at once easily observed, reveal-
ing, and deeply enigmatic.
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Language as a Window into the Brain’s Computing

Language is a late arrival in animal evolution and it is built
upon a complex nervous system. Animals without a full-
fledged language have memory for places, events, actions,
and consequences, are capable of planning, can assume roles
in a coordinated organization, learn by observing role mod-
els, and display emotions; in other words, have a rich inner
life not necessarily all that different from ours. In terms of
this paper, complex computing is going on prior to language.
Language then gives us the ability to communicate and share
aspects of our inner lives with others by means of arbitrary
labels called words, and combinations thereof. That ability
could be the result of no more than one or two additional
functions for the brain’s circuits to accomplish, one or two
additional “tricks” in the computational repertoire that make
the recursive composition of abstract structure possible and
that allow mapping between composed structures. This view
equates the innateness of our language faculty with the avail-
ability of certain computational functions. We will look at
the likely nature of such functions, but first a few words
about the brain’s representation at large.

Large Circuits Suggest Wide Words

A prominent feature of advanced nervous systems is the
size of their circuits. The number of sensory neurons is in
the millions, motor control is accomplished by circuits with
tens of thousands of neurons, even apparently simple cog-
nitive functions employ circuits with hundreds of thousands
of neurons, and the parts of the brain that serve as memory
have billions of neurons. The immediate conclusion is that
the brain’s computing is some kind of mass action in which
many neurons are active at once and no individual neuron is
critical. Another possible conclusion is that the brain’s com-
puting cannot be analyzed at all in terms of smaller units; it
cannot be compartmentalized. That would make the brain’s
computing inscrutable, although new models of computing
could be developed from principles discussed in this paper.

A convincing case against the inscrutable brain may be
possible on anatomical, physiological, evolutionary, and
behavioral grounds, but that is not the point of this pa-
per. Instead, we will proceed with a model of computing
that uses very large patterns, or high-dimensional vectors—
dimensionality in the tens of thousands—as basic units on
which the computer operates, as that stands a chance of be-
ing a brain model, and we will look at how computing with
them could bring about flexible use of language. We call
it hyperdimensional computing on account of the high di-
mensionality, in contrast with conventional computing that
is done with bytes and words of usually no more than 32
bits.

The computing architecture we envisage is not wholly dif-
ferent from the conventional. It could use binary words, ex-
cept that now they would be 10,000 bits wide, or maybe
50,000 bits but no more than 100,000; in the discussion
below we will use 10,000. We will refer to such words
as 10,000-bit patterns or vectors, or points of a 10,000-
dimensional space, and we use the distance between points
as a measure of similarity of meaning. The binary represen-

tation is used here to illustrate principles that apply to com-
puting with high-dimensional vectors in general. The vec-
tors could be real or complex, for example, and the choice
of operations for them would, of course, depend on the kinds
of vectors used; or in place of vectors we could have mathe-
matical objects of some other kind.

A word/pattern/vector/point is the least unit with mean-
ing. The vector components take part in the meaning but
in themselves are meaningless or, rather, any part of the
vector—any subset of components—has the same meaning
as the entire vector, only that the meaning is represented
in lower resolution. The representation is highly redundant
and is in radical contrast to traditional representation that
eschews redundancy. Such a representation is appropriately
called holographic or holistic.

Memory for Wide Words

The computer would have a random-access memory for stor-
ing such words, and the memory would also be addressed
by them. A memory with 210 000 physical locations—one
for each possible address—is obviously impossible, nor is
one needed; sufficient capacity for storing the experiences
of a lifetime is all that is needed. If a moment of experience
lasting a second were represented by one such word, about
three billion (232) of them would cover a century, which falls
within the information capacity of the human brain. That
kind of memory can be realized as an associative neural net-
work that works approximately as follows: when the word
D is stored with the word A as the address, D can later be
retrieved by addressing the memory with A or with a “noisy”
version of it that is similar to A. The address A is also called
a memory cue.

Basic Operations for Wide Words

The computer would have circuits for a few basic operations
that take one or several vectors as input and produce a num-
ber or a vector as output. Such operations and their use for
computing is the essence of this paper. We will start with a
review of how a traditional data record composed of fields
is encoded holistically. This can be done with two opera-
tions, referred to descriptively as binding and bundling, no-
tated here with ∗ and [. . . + . . .]. Binding takes two vectors
and yields a third, U ∗ V , that is dissimilar (orthogonal) to
the two, and bundling takes several vectors and yields their
mean vector [U + V + . . . + W ] that is maximally similar
to them. With binary vectors, pairwise Exclusive-Or (XOR,
addition modulo 2) of the components can be used for bind-
ing and the majority rule can be used for bundling: the bi-
nary mean vector agrees with the majority in each of the
10,000 positions, with ties broken at random.

Composing with Wide Words

A data record consists of a set of variables (attributes, roles)
and their values (fillers); for example, the variables x, y, z
with values a, b, c, respectively. The variables of a tradi-
tional record are implicit—they are implied by their loca-
tions in the record, called fields—whereas the values are en-
coded explicitly in their fields. The holistic encoding is done
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as follows. The variable–value pair x = a is encoded by the
vector X ∗ A that binds the corresponding vectors, and the
entire record is encoded by the vector

H = [(X ∗ A) + (Y ∗ B) + (Z ∗ C)]

which includes both the variables and the values explicitly,
and each of them spans the entire 10,000-bit vector—there
are no fields.

The operations have two very important properties: (1)
binding is invertible (XOR is its own inverse but with other
kinds of vectors the inverse is a different operation), and (2)
binding (and its inverse) distributes over bundling:

D ∗ [U + V + . . . + W ]
= [(D ∗ U) + (D ∗ V ) + . . . + (D ∗ W )]

(this is only approximately true for XOR if the sum is over
an even number of vectors). These properties make it possi-
ble to analyze a composite vector into its constituents. For
example, we can find the value of X in the bound pair X ∗A
by X ∗ (X ∗ A) = (X ∗ X) ∗ A = A (because XOR is as-
sociative and its own inverse). We can also find the variable
that binds A in X∗A by (X∗A)∗A = X∗(A∗A) = X . Be-
cause binding distributes over bundling, we can further find,
for example, the value of X in the holistic record vector H:

X ∗ H = X ∗ [(X ∗ A) + (Y ∗ B) + (Z ∗ C)]
= [(X ∗ X ∗ A) + (X ∗ Y ∗ B) + (X ∗ Z ∗ C)]
= [A + R1 + R2]
= A′

≈ A

Here we assume that the variables and the values
are represented by approximately orthogonal vectors
A, B,C, X, Y, Z, as they would be if chosen independently
at random. Then also R1 and R2 are approximately orthog-
onal to each other and to the rest and so they act as random
noise added to A. The system would rely on the noise toler-
ance of an associative memory to retrieve A when cued with
A′—we assume that the original vectors have been stored in
memory.

Holistic Vectors as Mappings

So far we have seen examples of vectors representing vari-
ables, values, bound pairs, and records—i.e., objects or
properties of some kind. Nothing particularly new or revolu-
tionary might be expected from the holistic representation of
these things alone. The interesting possibilities arise when
the vectors are used also as mappings between objects. This
brings the geometric properties of the representational space
to play and has no equivalent in traditional computing.

Binding with XOR provides a ready introduction to the
mapping. When the variable X is bound to the value A by
X ∗ A, X maps A to another part of the space. Similarly,
binding X to some other value A′ maps that vector to an-
other part of the space. The geometric property of interest is
that the mapping preserves distance:

d(X ∗ A, X ∗ A′) = d(A, A′)

where d is the (Hamming) distance between two binary vec-
tors. Thus, if a configuration of points—their distances
from each other—represents relations between their respec-
tive objects, binding them with X moves the configuration
“bodily” to a different part of the space. Thus XORing with
X serves as a mapping in which the relations are maintained.
This is suggestive of analogy in which a set of facts is inter-
preted in a new context, and what is communicated are the
relations between concepts. Furthermore, a mapping vector
can be computed from examples, which suggests a mecha-
nism for learning from examples.

Mapping Between Analogical Structures

Learning by analogy and analogical use of language are so
pervasive and natural to us that we hardly notice them. Here
we are looking for a mechanism that would be equally ef-
fortless and natural. Would mapping with holistic vectors
do?

Let us look at an example where countries are represented
with vectors that encode their name, capital city, and mon-
etary unit. The variables will be represented by the vectors
NAM, CAP, and MON, and the holistic vectors for the United
States and Mexico would be encoded by

USTATES = [(NAM ∗ USA) + (CAP ∗ WDC) + (MON ∗ DOL)]
MEXICO = [(NAM ∗ MEX) + (CAP ∗ MXC) + (MON ∗ PES)]

As before, the nine vectors that appear inside the brackets
are assumed to be approximately orthogonal, and then also
USTATES and MEXICO will be. If we now pair USTATES with
MEXICO, we get a bundle that pairs USA with Mexico, Wash-
ington DC with Mexico City, and dollar with peso, plus
noise:

FUM = USTATES ∗ MEXICO

= [(USA ∗ MEX) + (WDC ∗ MXC)
+(DOL ∗ PES) + noise]

The derivation of FUM is straight-forward using distributiv-
ity and canceling an inverse. The vector FUM can now be
used for mapping, to find, for example, what in Mexico cor-
responds to our dollar. We get

DOL ∗ FUM = DOL ∗ [(USA ∗ MEX) + (WDC ∗ MXC)
+(DOL ∗ PES) + noise]

= [(DOL ∗ USA ∗ MEX)
+(DOL ∗ WDC ∗ MXC)
+(DOL ∗ DOL ∗ PES) + (DOL ∗ noise)]

= [noise1 + noise2 + PES + noise3]
= [PES + noise4]
≈ PES

The thing to note is that the mapping vector FUM is a simple
function of two other vectors, and mapping with it is like-
wise done with a simple function, all of it made possible by
the geometry of high-dimensional space and the operations
it allows.
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From Variables to Prototypes

There is something peculiar about the mapping. Although
the abstract notions of variable (i.e., name, capital, mone-
tary unit) are represented in the vectors USTATES and MEXICO,
they play no role in the mapping vector FUM —they merely
contribute to the noise term. The mapping vector has the
same form as the holistic record H introduced earlier, ex-
cept that in place of abstract variables we have an exemplar:
the particulars for the United States, USA, WDC, and DOL, play
the role of the variables in terms of which the Mexican data
are interpreted. This agrees with our common use of lan-
guage when we refer to the peso as the Mexican dollar, for
example. The “Mexican dollar” is immediately understood
even if there is no such a thing, literally speaking, and we
know that it does not exist.

Let us look at another example of mapping, starting with
Sweden:

SWEDEN = [(NAM ∗ SWE) + (CAP ∗ STO) + (MON ∗ KRO)]

The mapping

FSU = SWEDEN ∗ USTATES

then “interprets” the United States in terms of Sweden.
When it is paired with FUM that interprets Mexico in terms
of the United States, we get the mapping

FSU ∗ FUM = (SWEDEN ∗ USTATES) ∗ (USTATES ∗ MEXICO)
= SWEDEN ∗ MEXICO

= FSM

that interprets Mexico in terms of Sweden. This example
resembles translating a text from one language to another
through a third, from Swedish to English to Spanish, and
suggests the idea that different parts of a concept space can
contain similar structures, and that traversing between the
structures is by relatively straight-forward mapping. Or per-
haps that the readily available mapping operations determine
the kinds of concept spaces we can build and make use of.
To go a step further with speculation, the emergence of such
mapping functions could have lead to the development of
human language. Language operates with labels that are
largely arbitrary, and with structures built of labels, yet refer
to and evoke in us images and experiences of real things in
the world. This requires efficient mapping between superfi-
cial language and the inner life, a mapping that is not found
in animals at large. In this paper we argue that the properties
of high-dimensional spaces make such mapping functions
possible.

Let us look at one more example of a computed mapping
without referring to variables, this one in the context of an
IQ test: “United States is to Mexico as Dollar is to what?” It
is usually displayed as

United States : Mexico : : Dollar : ?
Knowing the money of each country gives us

Peso : Mexico : : Dollar : United States
From this we can compute the sought-after mapping of
Dollar. First, some function F maps DOL to USTATES, F ∗
DOL = USTATES, and the same function maps PES to MEXICO,

F ∗ PES = MEXICO; we will ignore here the structure encoded
into USTATES and MEXICO above. By solving the two for F we
get that

USTATES ∗ DOL = MEXICO ∗ PES

“Multiplying” both sides by (the inverse of) MEXICO then
gives us

MEXICO ∗ USTATES ∗ DOL = PES

In other words, MEXICO ∗ USTATES maps DOL to PES and solves
the IQ puzzle.

Discussion

The notion that the most significant computing by brains
takes place far below the language level has been advocated
forcefully by Hofstadter (1985). His work and that of his
research group has focused on the central role of analogy in
human mind and language, and on its illusiveness and resis-
tance to capture in cognitive models (Hofstadter 1995, Hof-
stadter et al. 1995, Mitchell 1993). Analogy at large is an
important topic in cognitive science (e.g., Gentner, Holyoak,
& Kokinov 2001), and models of mapping implied by it in-
clude ACME (Holyoak & Thagard (1989) and MAC/FAC
(Gentner and Forbus 1991). The contrast between the literal
meaning of what is said and the intended massage that is
understood, is highlighted in metaphor (Lakoff & Johnson
1980). The literal image created by the words is intended to
be transferred to and interpreted in a new context, exempli-
fying the mind’s reliance on prototypes: the literal meaning
provides the prototype. When the mind expands its scope in
this way it creates an incredibly rich web of associations and
meaning.

The above models of analogy do not make significant use
of the properties of high-dimensional space. A major move
in that direction was made in 1994 in Plate’s PhD thesis on
Holographic Reduced Representation (HRR). It contains es-
timates of analogical similarity based on high-dimensional
holistic vectors, and it includes mapping with holistic vec-
tors (Plate 2003). Plate discusses two kinds of HRR vectors,
real and complex. Their components are independent and
identically distributed (i. i. d). The binding operator ∗ is cir-
cular convolution for real vectors and pairwise multiplica-
tion of the components for complex vectors. The bundling
operator [. . . + . . .] is a vector sum that is normalized. Un-
like XOR that is a self-inverse, the binding operator and its
inverse are different in both real and complex HRR.

The Binary Spatter Code (Kanerva 1996) has been used in
this paper to demonstrate the principles of HRR. It is equiv-
alent to a special case of the complex HRR, namely, when
the complex components of the vector are restricted to the
values 1 and −1. By mapping the binary 0 to the “com-
plex” 1 and the binary 1 to the “complex” −1, the XOR
becomes ordinary multiplication and the majority rule be-
comes the sign function of the vector sum. The Multiply–
Add–Permute (MAP) model of Gayler (1998) works with
real vectors and binds two vectors with the pairwise prod-
uct of their components. In all these models, binding of two
vectors is done by reducing their outer product matrix, and
bundling is done by superposition, and the idea is to keep
the dimensionality constant. Binding with the outer product
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but without the reduction appears in the work of Smolensky
(1990). Aerts, Czachor, and De Moor (2006, 2009) describe
Geometric Algebra analogs of Holographic Reduced Repre-
sentation and its kin and make a significant addition to the
repertoire of mathematical spaces with which to model con-
cepts and cognition.

So far in this paper we have dealt with the properties of
high-dimensional spaces as to their suitability for composi-
tion and mapping of representations. We should also point
to their suitability for learning from data. The resurgence of
interest in artificial neural networks and parallel distributed
processing in the 1980s was primarily about their ability to
learn from data, vividly exemplified in NETtalk (Sejnowski
& Rosenberg 1986) and the learning of past tenses of En-
glish verbs (Rumelhart & McClelland 1986). Later develop-
ments include Latent Semantic Analysis (Landauer & Du-
mais 1997) and Random Indexing (Kanerva, Kristoferson &
Holst 2000), with possible applications in text search such
as provided in Google (Cohen et al. 2010).

The above “neural-net” models include only superposi-
tion: the representations are vector sums, and when they are
accumulated from text and refer to words, as in latent seman-
tic analysis, they are said to capture “bag-of-word” seman-
tics. We are beginning to see models that include these map-
pings in their semantic vectors (Jones & Mewhort 2007), and
then the semantic vectors can be interpreted not only based
on distances between them but also based on the mappings;
a mapping allows us to identify semantic vectors that en-
code the same or similar structure but involve different sets
of objects. This opens up the possibility of learning the un-
derlying structure of data, for example, learning to produce
grammatical sentences. As a long-term goal, we hope to
capture important aspects of the brain’s computing in an ar-
chitecture for hyperdimensional computing (Kanerva 2009).
It calls for treating concepts as entities in an abstract space
(Gärdenfors 2000) with their relations expressed in its ge-
ometry (Widdows 2004).

Acknowledgment I thank AAAI for providing a forum for
ideas about computing that relate human intelligence to the
properties of abstract mathematical spaces and to the kinds
of computing operations they make possible.
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