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Introduction

The ability to take intelligent actions in real-world domains
is a goal of great interest in the machine learning community.
Unfortunately, the real-world is filled with systems that can
be partially observed but cannot, as yet, be described by first
principle models. Moreover, the traditional paradigm of di-
rect interaction with the environment used in reinforcement
learning is often prohibitively expensive in practice.

An alternative approach simultaneously solves both of
these problems by using simulated interaction with the envi-
ronment rather than real-world experience. The simulation
in this approach is a computational model of a dynamical
system. The barrier to linking intelligent control with real-
world domains is, therefore, one of identifying high-quality
state-spaces and transition functions from observations.

From a dynamical systems perspective, this barrier is
analogous to the problem of finding high-quality manifold
embeddings and a rich literature of theory and practice ex-
ists to address it. The contribution of this work is two-fold.
First, we describe an approach for learning optimal control
strategies directly from observations using manifold embed-
dings as the intermediate state representation. Second, we
demonstrate how control strategies constructed in this way
can answer important scientific questions. As a concrete ex-
ample, we use our approach to guide experimental decisions
in neurostimulation treatments of epilepsy.

Neurostimulation Treatment of Epilepsy

Epilepsy afflicts approximately 0.5–1% of the world’s pop-
ulation (Kotsopoulos et al. 2002). Of those sufferers, ap-
proximately 30% do not respond to available anti-convulsant
drugs or are not candidates for surgical resection. Develop-
ment of new treatments, therefore, is a priority for epilepsy
research.

Neurostimulation shows promise as an epilepsy treat-
ment. In vitro studies have demonstrated that fixed-
frequency external electrical stimulation applied to sub-
structures within the hippocampus can effectively suppress
seizures (Durand and Bikson 2001). However, results of
in vitro experiments suggest that the suppression efficacy
of fixed-frequency stimulation varies across epileptic neural
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systems. It has also been shown that stimulation can nega-
tively impact neural tissue.

Neurostimulation experiments are constrained in three
ways that suggest that optimal treatment strategies should
be learned in simulation using manifold-based representa-
tions: 1) the complex dynamics of neural systems are typ-
ically observable only through low-dimensional time-series
corrupted by noise, whereas optimal control requires com-
plete state, 2) the lifespan of neural tissue in vitro is on the
order of a few hours, which limits the use of on-line system
identification, and 3) the best trade-off between suppression
efficacy and minimization of stimulation side-effects is dif-
ficult to determine a priori. Using simulated learning exper-
iments, we can describe the relationship between cost func-
tion parameters and experimental observations: seizure sup-
pression efficacy and effective stimulation frequency of the
adaptive policy. This knowledge allows epileptologists to
select cost function parameters that maximize the chance of
observing statistically significant adaptive treatment perfor-
mance compared to fixed-frequency treatments in vitro.

Simulation Construction

We summarize our approach for constructing a manifold-
based simulation of neurodynamics in Figure 1(a–d). Our
biological model of epilepsy is the hippocampal-EC slice
perfused with 4-aminopyridine. Field potential recordings
of epileptiform activity are recorded from the entorhinal cor-
tex (see Fig. 1(a) EC). External stimulation is applied to the
subiculum (see Fig. 1(a) Sub).

We collected a dataset of field potential recordings from
seven slices under fixed-frequency stimulation of 0.2, 0.5,
1.0, and 2.0 Hz as well as unstimulated (36,581 seconds in-
cluding 83 seizures). Examples of the dataset are shown in
Figure 1(b) for 0.2 Hz and 1.0 Hz fixed-frequency stimula-
tion.

Using spectral subspace identification (Galka 2000), we
extracted manifold embedding parameters of the dataset (see
Fig. 1(c)) and then projected the dataset onto this manifold
(see Fig. 1(d)). This manifold is the state-space of our sim-
ulation. We defined the transition function to be the local
time-derivative of the element of the dataset that is nearest
to the current simulation state (Parlitz and Merkwirth 2000).
Actions in the model are simulated by conditioning the se-
lection of the nearest neighbor derivative based on a desired
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Figure 1: (a) Schematic of the hippocampal-EC slice with placement of stimulation and recording electrodes, (b) examples of
field potential recordings observed under fixed frequency stimulation, (c) subspace identification spectrum, (d) neurostimulation
manifold, and (e) efficacy and effective frequency comparison between random fixed-frequency and adaptive neurostimulation.

action, either on or off. Each point in the dataset was labeled
with an action on or off during data acquisition.

Simulated Adaptive Control

We trained a neurostimulation agent using reinforcement
learning (RL), a strategy that optimally solves multi-step de-
cision tasks (Sutton and Barto 1998). We defined the con-
trol actions to be either 1.0 Hz or 0.2 Hz fixed-frequency
stimulation. We approximated the objective function by dis-
cretizing the manifold state-space. We defined the cost func-
tion, r, to penalize both stimulation frequency and the num-
ber of seizures observed: r = −β(rstim) − ρ(rseiz), where
rstim = 1 if a is 1.0 Hz, otherwise rstim = 0 and rseiz = 1
if the current state is a seizure state, otherwise rseiz = 0. Pa-
rameters β and ρ are tunable. We identified treatment strate-
gies using two different cost function parameter configura-
tions, β = 2 and β = 10 (ρ = 1). The parameters explore
how stimulation and seizure costs influence suppression per-
formance and effective frequency of the learned treatment.

As a reference, we also applied random control to the sim-
ulation. The random controller was implemented by uni-
formly sampling the actions (either the 0.2 or 1.0 Hz fixed-
frequency) according to a ratio determined by the desired
effective frequency. The ratio was varied to cover the entire
frequency spectrum 0.2–1.0 Hz.

The seizure suppression effects of random control are
summarized in Figure 1(e) as a distribution of seizure frac-
tions over effective stimulation frequency, plotted as a bold
gray line centered within a shaded region (mean±std. dev.).
Individual trials of the learned control strategies for both
β = 2 and β = 10 are plotted as open circles and × sym-
bols, respectively. Distributions (mean±std. dev.) over the
results of these two parameter configurations are plotted as
cross-hairs. Both adaptive control policies produce seizure
suppression outcomes that are significantly better (p < 0.05)
compared to random at the respective effective frequencies.

Discussion
The primary contributions of this work are: 1) to describe
how controllable simulations of complex, partially observ-
able, poorly understood dynamic domains, such as neural
systems, can be constructed, and 2) to demonstrate the util-
ity of simulated experience in guiding parameterization de-
cisions of real-world adaptive control experiments. Consid-
ering the expense, and in many cases the intractability, of
real-world experience, we propose simulating adaptive con-
trol experiments to identify cost function parameterizations
that will most likely produce significant results in real-world
adaptive neurostimulation experiments. In this application
manifolds play the critical role of state representation, pro-
viding RL algorithms access to real-world domains. We
have also applied this approach to real-world control prob-
lems (Bush and Pineau 2009).
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