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Abstract

Computational Narrative has provided several exam-
ples of how to process narrations using semantical ap-
proaches. While many useful concepts for computa-
tional management of stories have been unveiled, a
common barrier has hindered their development: se-
mantic knowledge is still too complex to handle. In this
paper, a focus shift based on narrative structure is pro-
posed. Instead of digging deeper into the possibilities
of semantic processing, analysing structural properties
of stories and keeping the semantic load to a minimum
can allow for a more efficient use of available narrative
corpora, even without mimicking human behaviour.

Introduction

Semantical processing of narrations tries to reach, from one
or another point of view, human understanding or genera-
tion of stories. This has been the predominant tendency
in automatic story generation systems and other studies in
the field (Meehan 1976; Turner 1992; Pérez y Pérez 1999;
Bringsjord and Ferrucci 1999; Riedl 2004). While nothing
prevents from success when reproducing the way in which
humans perform narrative generation or understanding, cur-
rent results evidence that this is not an easy task. Problems
affecting Artificial Intelligence in general (knowledge acqui-
sition bottleneck, efficiency for complex domains, and oth-
ers) also appear in Computational Narrative.

These drawbacks seem to block the computational imple-
mentation of concepts from modern narratology (Herman
2000) and other disciplines like Psychology (Kelly 1955),
which conceive narrations as cognitive processes not totally
describable in terms of structural properties of stories, as op-
posed to the structuralist point of view of classic narratol-
ogy (Propp 1928; Barthes and Duisit 1975). However, cur-
rent computational techniques are still far from being able
to model the inner processes that govern human understand-
ing of stories. Realizing advances in narratology as com-
puter programs is not directly feasible because narratology
assumes conceptual capabilities exceeding those currently
available in machines.

Nevertheless, much work has been done in the field of
cognitive approaches to computational narrative, although
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the previously introduced limits have set important bounds
on the final results. BRUTUS (Bringsjord and Ferrucci
1999), for instance, proposes a knowledge intensive sys-
tem whose results show high quality stories, non-easily dis-
tinguishable from a human work. From a simplistic point
of view it can be said that BRUTUS performs the gen-
eration based on a set of knowledge rules from different
fields (narrative, psychological, linguistic) that collect hu-
man knowledge. These rules, however, are only able to
generate a reduced set of stories. While these are rela-
tively complex, the effort of identifying, encoding and test-
ing these rules is probably much higher than the effort re-
quired to write the same amount of stories of similar qual-
ity by hand. Similar issues arise in other story genera-
tion systems with varying qualities and ratios between hu-
man effort and number of correctly processed (generated, in
most cases) stories (Meehan 1976; Turner 1992; Riedl 2004;
Dehn 1981).

It can be concluded, then, that the efficiency of creating
semantic systems for story processing, so far, is quite low.
Several years are usually needed to develop a new system.
Therefore, while research on the field of story processing
based on semantic is absolutely valuable, new perspectives
to solve the problem could help to build a more efficient
solution in terms of the required time to develop new, useful
systems.

As an alternative, there exist already some approaches
devoted to non-semantic processing of narrative content.
For example, Chambers and Jurafsky present a statistical
learning approach which tries to extract probabilities of se-
quences of events in their narrative context, with promising
results (Chambers and Jurafsky 2008; 2009). Their proposal
is restricted to the so-called narrative-chains, which, while
useful, do not allow for a fine grain use of the learnt con-
tent. Additionally, only narrative schemas are addressed, but
complete stories are not studied. This is discussed later.

Between these extremes to computational narrative,
namely cognitive and structural approaches, this paper pro-
poses a model in which the amount of management of cog-
nitive structures is kept to a minimum. While this option
gets far from the current conception of cognitive processes
for narratives, our knowledge about the way in which hu-
man psychology processes narrations is still too reduced to
be able to create a complete cognitive model.
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In order to increase the efficiency in computational narra-
tive systems, a structural relation defined in terms of heuris-
tics or rules of thumb is used in the model as a computation-
ally processable property of narrations. Since every aspect
of this property is defined in terms of observable features
(structural layout of a graph), the meaning of the facts is
ignored by the process. This means that any number of sto-
ries can be processed without adding additional knowledge
to the system in rules or whatever formalism. There is an
important loss when discarding the semantic properties of
stories, though, and this is discussed later. However, prelim-
inary tests show interesting results.

A Story Generation System based on Semantic

Knowledge

León and Gervás (León and Gervás 2010) propose a story
generation system based on an evaluation function for nar-
ratives (León and Gervás 2010). The generation algorithm
was designed as a generate and test pattern in which ex-
haustive exploration of a space of stories is carried out. The
exploration returns those visited stories for which the evalu-
ation function yields that the story is “good”.

The system controls the generation through the applica-
tion of the evaluation function itself. This function receives
a story and outputs a value in the real range [−1, 1]. As refer-
ence, very bad stories receive the value −1 and great stories
are assigned the value 1, a correct but not exceptional story
receives the value 0.

The evaluation function in this described story genera-
tion system returns, as overall quality, the average value of
13 variables: interest, causality, compression, danger, love,
tension, humanity, action, hypotheses, empathy, funny, emo-
tion, chronology and overall quality. The definition of these
variables can be checked in the paper defining the genera-
tion system (León and Gervás 2010). The value of these
variables also ranges in the interval [−1, 1]. The evalua-
tion function sequentially traverses the events describing the
story in order, and iteratively updates the value for each one
of these variables until the last event in the story is evaluated.

Since, by design, the evaluation function was imple-
mented using a knowledge intensive approach, rules for the
definition of the domain have to be created. Considering that
nowadays no computational system is able to replace human
labour, this has to be done by hand.

In the way rules were created, the human programmer has
to consider the meaning of every event in the story and up-
date the values of the 13 variables depending on that mean-
ing. While this is complicated by itself because any event
can have several many possible interpretations, it has to be
taken into account that the meaning of a event depends also
on the context. For instance, in the Iliad, “Achilles killed
Hector” affects the interpretation of the story in a differ-
ent way than “Hector killed Achilles” would have affected
it, even considering that these two events contain the same
characters and the same verb.

Therefore, the development of the rule-base scales with
major problems: adding a new event implies checking the
whole set of rules to update all the events whose interpreta-

tion is affected by a context in which the new information is
included.

From Semantic to Surface Form Processing

The previously introduced system, despite of its inherent
limitations, suggests a possible change of focus. The ad-hoc
definition of the variables yield promising empirical results,
even being domain-specific. And the evaluative nature of the
solution offers explicit analysis of certain features of narra-
tions, some of them involving structural aspects of stories.
Since the definition of the features, while intendedly cogni-
tive, just modelled an approximation to evaluation of stories,
the study of the system led to the hypothesis that empirical
rules of thumb about properties of narrative could permit the
processing of narratives.

That is, it was hypothesized that just by taking into ac-
count surface properties of formalized story plots, stories
understandable by humans as such could be generated.

Studying the results collected from human evaluation in
the semantic story generator, it was detected that there was
a strong agreement between evaluators’ criteria in two vari-
ables: causality and chronology. Causality tried to represent
the perception that everything happens because of a reason,
and chronology rates the correct layout of events in time (for
instance, that causes happen before their effects). Being a
very simple domain easily interpretable by all evaluators, all
of them rated the quality about these two variables with very
few differences.

Additionally, there was a clear correlation between
causality, chronology and overall quality: stories receiving
causality and chronology rating above zero also received
rates for overall quality above zero. Zero was set as the
threshold between acceptable and non-acceptable stories.

This is a common psychological process when humans
understand narrative (Herman 2000), so it was considered
that correctness could be indirectly modelled by replicating
these kind of understanding processed.

Preconditional Links

A heuristic was created to capture this: the preconditional
link. Preconditional links try to describe the structural pat-
terns in narrations that are involved in the human recognition
of causality and chronology, ignoring the semantic content
of these two concepts. The preconditional link is defined
next:

In a story formalized as the sequence of events
{e1, · · · , en}, the events {ei, · · · , ej} are precondition-
ally linked to ek iff:

• they appear before ek in the sequence {e1, · · · , en},
• and the directed graph resulting from the precondi-

tional links for all events in the story converges to
the last event in the story,

where 1 ≤ i, j < k ≤ n.

This definition is obviously structural, that is, it only cap-
tures surface properties of stories according to a synthetic
relation. As an example, if a story is composed by the
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events {a, b, c, d, e}, valid preconditional links would appear
in Figure 1, but not in Figure 2.

a b

c d

e

Figure 1: Valid set of preconditional links. The arrows rep-
resent preconditional links.

a b

c d

e

Figure 2: Non-valid set of preconditional links. The arrows
represent preconditional links.

The definition of preconditional link is only inspired by
the way in which, heuristically, humans perform story un-
derstanding, but it does not try to capture any cognitive pro-
cess. Instead, the current proposal defines it as a heuristic
for machines, and not for humans. That is, the definition is
strictly bound to computationally processable information:
not necessarily the information that humans use and not nec-
essarily processed in the way humans do.

Black Box Definition of Story Processing

Based on the previous relation, a definition of story process-
ing is proposed. In particular, story generation is addressed
as an example of automatic processing. Although it has not
been particularly studied, nothing prevents the definition of
preconditional links from being applied to story evaluation,
for instance.

The generation model is proposed as a black box approach
from the human cognition point of view. Following this
structural conception, it is assumed that humans must only
consider stories as generated items without taking into ac-
count how the stories were generated. This is a main as-
sumption for the model because humans, as it will be shown,
are involved in the proposed execution model.

Figure 3 depicts a schematic representation of the execu-
tion model. In it, a story or a set of stories written by humans
is translated into a machine processable sequence or to a set
of sequences. How this translation must be carried out in a
real scenario is not addressed in this paper from a theoret-
ical point of view. The prototype implementation has been
carried out by performing this translation by hand, which is
acceptedly a non-general approach. While there are some
tools that address this task (Klein and Manning 2003), the
details of this process are considered to be outside the scope

of this paper. Future work contemplates improving this area
of the model.

After the stories have been translated to formal sequences
(Figure 4 shows an example), the sequence is processed by
an identification process in which a valid set of precondi-
tional links are found, thus obtaining a representation of the
story similar to the one in Figures 1 and 2.

The proposed identification process has been imple-
mented for the prototype as a generate and test algorithm.
Candidate preconditional links in a story are generated and
only those which satisfy the constraint of converging to a
single event are considered valid sets of preconditional links
for a story. In the implementation, the first valid candidate
is chosen as output. It would make sense to test the whole
approach by considering more than the first candidate, but
this has not been addressed yet (it is planned as part of the
future work).

After the preconditional links have been collected, they
are abstracted in order to get preconditional rules. Precon-
ditional rules are a simple abstraction in which the particular
case a → b, for instance, is turned to α → β, in which α
and β are general cases of a and b. More specifically, if a is
“John goes to the shop” and b is “Mary buys a car”, α would
now be “someone goes to the shop” and β is “someone buys
a car”. The proposed theoretical model does not impose any
restrictions about how this abstractions must be done since
it is considered that it is dependent on the particular imple-
mentation.

In the particular implementation that has been pro-
grammed for testing the model, events are encoded as tu-
ples of verbs and arguments, in the form love(john, mary)
or take(mary, glass), meaning that “John loves Mary”
and “Mike takes the glass”, respectively. For a precondi-
tional link of love(john, mary) → take(mary, glass),
the abstraction process would generate rule in the form of
love(x?, y?) → take(y?, z?), where {x?, y?, z?} are vari-
ables which could be unified with terminal tokens in genera-
tion (these would be john, mary or glass, for instance). It
is important to note that the terminals in the preconditional
links are translated into variables in rules according to their
position in the links, following a simple variabilization pro-
cess (Charniak and McDermott 1985): john is translated to
x? for every appearance of john. This makes the rules keep
the form of the links, which has been proven to be empiri-
cally useful in the example story generation.

After having gathered the set of preconditional rules
through an abstraction process, these are used to perform
simple story generation. The proposed model considers a
rule-set partitioned in good rules and bad rules. The set
of good rules contains those abstracted preconditional links
present in stories validated as correct by humans (as shown
below). The set of bad rules contains the abstracted pre-
conditional links which are present in stories classified as
non-correct if these abstracted preconditional links are not
in the set of good rules. If a rule is considered “bad” at some
stage, and then it is considered “good”, it is finally classified
as “good”. That is, the validation of a rule as “good” can not
be undone, but a “bad” rule can be considered good at some
later point.
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story sequence preconditional links preconditional rules

rule-set

computer generated story

identification abstraction

addition

generation

human
translation

human validation

Figure 3: Process of structural processing of stories.

That is, if a story si was considered correct, and it
led to the creation of the preconditional rules {r1, r2, r3}
and a non-correct story sj led to the creation of rules
{r1, r4, r5}, the resulting good subset would contain the
rules {r1, r2, r3} and the bad subset would contain the rules
{r4, r5}.

There are many more ways of creating the rule set, but for
prototyping the system and for explanation purposes this ap-
proach is simple and useful. The study of more sophisticated
ways will be addressed in further research.

Again, the particular way in which story generation can be
performed is outside the scope of this paper, and many ap-
proaches could make use of this information. The simplistic
algorithm that has been used for the preliminary evaluation
of this model is based on a simple application of the rules.

For instance, if an execution considers the rules α → β,
β → γ and γ → δ, valid instantiation of the variables (α as
a, β as b, and so on) would generate the stories {a, b, c} or
{a, b, c, d}.

The set of bad rules is used to prevent the appearance of
“wrong” preconditional links in the generation of stories.
If a generated story contains a sequence of events which
could be matched against a rule in the bad set, the story is
discarded. This can happen even in a direct application of
the good rules because many preconditional links can be in-
ferred in a story according to the definition and the generate
and test pattern used to find the preconditional links. In this
way, both good and bad rules are used.

Human validation is used after the generation to check
that the generated stories are correct. So far, the generated
stories could be acceptable or not according to the evalua-
tor’s criteria, but if the execution was concluded here, the
limits of cognitive story processing would have not been
addressed because this structural approach would generate
only a limited amount of data, those coming from the input
set of stories.

Therefore, the model is completed by a process that it-
eratively refines in a pseudo-automatic way the generative
capabilities of the algorithm shown in Figure 3 by collecting
preconditional rules at each step.

Acquisition of Preconditional Rules Through

Human Validation

Following the schematic depiction of the structural process-
ing of stories algorithm in Figure 3, it can be seen that there
is a feedback process from the computer generated story to
a new sequence. This feedback is proposed as supervised
validation of generated stories.

The underlying idea is based on the way in which humans
learn to write stories. In order to write stories that are ac-
ceptable by an audience, a writer must learn how to write.
Without the intention of developing a model of how this is
learnt, it can be intuitively observed that writers must receive
feedback from the audience to improve their skills. Without
this feedback, human writers are not able to develop their
abilities.

Making an analogy, and not trying to mimic the cognitive
processes driving human behavior, the model uses human
feedback for generated stories just by querying their accep-
tance about the story. That is, once the story is generated
and realised in a human readable form, the human evaluator
is asked whether she or he accepts the story as correct.

With this information, the story is classified and the sys-
tem can adapt itself. The adaptation process is carried out
following the next steps:

1. The sequence corresponding to the realised story is anal-
ysed and its preconditional links are identified.

2. The preconditional links are abstracted to preconditional
rules.

3. The preconditional rules are added to the current rule-set.

4. The current rule-set is used to perform an additional cycle
of the process by generation a new story.

5. This list of steps is executed until a particular percentage
of stories is rated as correct by the human evaluator.

The addition of the rules to the rule-set is carried out in the
way explained in the previous section. Following the previ-
ous list of steps, the rule-set keeps being updated through
the collection of human feedback.
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Preliminary Results

The proposed system has been built as a prototype in which
the explained processes have been implemented in a very
straightforward way, trying to match, to the possible extent,
the definitions previously introduced. The created program
was run as a loop in which a simple textual realization of
the automatically generated sequences through the use of the
rule-set was given to a human user.

The purpose of the test was to test whether the system can
adapt itself to generate correct stories, at least for a restricted
domain and for a restricted type of stories. Also, it was im-
portant to partially check that the required amount of time
and effort to adapt to a new domain is significantly lower
than the corresponding version based on rule generation by
hand. Therefore, the algorithm informally shown in Figure
3 was implemented, and the program was set to stop when
the last 5 stories were rated as correct.

The chosen domain consists on short versions of opera
plots. The implementation abstracted rules based on the
verb of the event, therefore having rules in the form of
love(x?, y?) ∧ love(y?, z?) → kill(x?, z?). To reduce the
required amount of steps to learn significant information, 9
human written operas (adapted and formalized classic op-
eras from Verdi, Bizet, Puccini and Falla) were initially in-
put to the system. Short versions of operas were selected be-
cause the amount of verbs is reduced when compared to the
amount of available stories. Since themes in Verdi’s operas
follow similar patterns, operas were chosen for this proto-
type as a useful resource.

The translation from the opera to a processable formal-
isation was carried out by hand by the authors. This is a
source of influence of authors’ knowledge on the final re-
sults of the evaluation, and this must be addressed in further
research. Formalized short plot outlines of operas are en-
coded as shown in Figure 4.

ill(violetta)
love(violetta, alfredo)

together(alfredo, violetta)
forces(germont, violetta)
breakup(violetta, alfredo)
despise(alfredo, violetta)
forgive(alfredo, violetta)

die(violetta)

Figure 4: Example formalization of opera (Verdi’s La Travi-
ata).

For this implementation, the evaluation was carried out by
14 people, whose ages ranged between 25 and 60. They have
no superior studies about narrative, and all of them studied
at university. All the resulting plots show approximately the
same form, thus only one is shown to exemplify the kind of
output. This is assumed to happen because the opera plots
are very simple and there is not much room for different
opinions in such a simple domain. The effects of a more
complex content must be further studied. In such a case,
probably a higher number of evaluators will have to be used.

The results show two important facts: first, the incremen-
tal process converges to a state in which the proportion of
correct stories against non-correct stories is higher than in
the first iteration, so it is concluded that the approach is
promising, at least for domains with similar characteristics
as the short plots of operas.

Second, a saturation point has been identified. It has been
empirically shown that the amount of useful rules that can
be learnt is limited. Approximately after 20 evaluated sto-
ries (the number ranges between 16 and 23 stories for the
current experiment) the process is able to continue and new
stories are generated, but the proportion of correct stories
against non-correct stories does not raise. While more in-
depth study is required, it is concluded that this is due to
domain restrictions (13 types of actions are used) and the
way in which story generation is carried out. The applica-
tion of preconditional rules in generation is too restrictive
to be able to generate new content that can give rise to very
different rules.

The average required time for reaching the saturation
point was approximately 8 minutes and a half. This means
an average time of 25 seconds per story, approximately. Al-
though the creation of the rules by hand from the same
domain has not been carried out, it is claimed that this
pseudo-automatic process is much faster, based on experi-
ence. Therefore, the solution is promising according to its
objectives. At least, for simplistic domains as the one that
has been tested. It is planned to study more complex do-
mains as part of the future work.

Figure 5 shows an example plot representing the propor-
tion between coherent and non-coherent stories for the last 5
generations. This is the result of one of the evaluators, and it
is included here because it exemplifies well the behaviour of
all the participant evaluators. In this plot it can be seen how
the first iterations show varying results and, then, between
iterations 15 and 21, there is a period in which the system is
not able to improve its ratio according to the gathered rules.
Finally, after story 21, the system did generate several co-
herent stories per non-coherent story. After this point, the
saturation zone starts. The system was not able to improve
its behaviour in this zone.

The acquired set of preconditional rules after the execu-
tion of this experiment is large. It contains 108 elements in
the set of “good” rules and 10 elements in the set of “bad”
rules. For a short sample of the output of the system, next is
a fragment of the set of good rules:

breakup(x?, y?) ∧ together(y?, x?) → back(x?)
escape(x?, y?) → back(y?)

back(x?) ∧ ill(x?) → die(x?)
ill(x?) ∧ kill(x?, z?) → die(x?)

breakup(x?, y?) ∧ love(x?, y?) → die(x?)
chase(x?, y?) ∧ love(x?, y?) → die(x?)

despise(y?, x?) ∧ forgive(y?, x?) → die(x?)
kill(x?, y?) ∧ love(x?, y?) → die(x?)

And this is a fragment of the set of “bad” rules:

breakup(z?, x?) ∧ love(x?, y?) → die(x?)
despise(y?, x?) ∧ love(x?, y?) → breakup(y?, x?)

help(z?, y?) → breakup(z?, x?)
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Figure 5: Learning curve from the execution example.

ill(x?) ∧ kill(z?, y?) → forces(z?, x?)
want(z?, x?) → kill(z?, y?)

ill(x?) → love(y?, x?)
together(y?, x?) → want(z?, x?)

Figure 6 shows the average refinement curve gathered
from all the experiments. The average relation between cor-
rect and non-correct stories is shown. It can be seen how
the proportion between coherent and non-coherent stories al-
most lineally raises during the execution of the tests, which
indicates that, for the chosen working domain and according
to the proposed experiments, the system is “learning” a set
of preconditional rules that creates coherent stories. This is
done without crafting the rules by hand.

Discussion

This proposal does not intend to replace semantic process-
ing in computational narrative. Much work has been done
so far and all the gathered knowledge is very valuable. Hav-
ing identified this particular barrier in knowledge acquisi-
tion, structural analysis only offers additional tools. In gen-
eral, the authors hypothesize that the joint effort of these two
approaches can be key to successful story processing in the
large.

Narratives are based on many more aspects than plain
structure and this is accepted by the authors. Human inter-
pretation, viewpoint, emotions and other concepts are heav-
ily involved in our conception of narrative, and these are not
representable in term of a lineal structure. Therefore, the
proposed system is unable to tackle all aspects of narrations
in its current form.

Regarding other work in structural study of narrative
(Chambers and Jurafsky 2008), we propose the present study
as complementary content. The work by Chambers and Ju-
rafsky seems very promising, but (just as this one does) it
has its own intrinsic limitations. In particular, we think that
the short script narrations considered by Chambers and Ju-
rafsky lack the properties of full stories, which are addressed
in this work by the use of a definition of coherence that takes
them into account. Additionally, the outcome of the learn-
ing process in our proposed solution are rules, and they can

be edited by hand if needed in a more fine-grained way than
complete scripts because the former are slightly more inde-
pendent from the rest of the learnt content. All these ideas
and the relation between these two projects must be further
studied.

Also related to that research, it has to be said that the cur-
rent proposed model in this paper is only able to tackle short,
simple stories. Processing of complex narrative patterns
are still outside the capabilities of the learning algorithm.
Therefore, there is as yet only a small difference between
the particular forms that short stories and narrative schemas
take. However, something that is considered very important
is handled in this work: since some sense of coherence is
proposed, stories must be complete, they have to be totally
coherent as a story, and not only as narrative fragments or
scripts.

An important drawback of this approach is the extent to
which it can lead to generation of very good stories. From
a general point of view, the change of perspective from se-
mantic management of information to structural processing
implies some loss of expressive power. Whatever particular
corpus is used, there can always be some structures that will
never be learnt. These are likely to be those structures that
are not commonly used. And, sometimes, these are specially
the exceptional ones. Therefore, exceptional quality is hard
to reach through structural or statistical methods.

To support the argument of the use of the surface analy-
sis approach, it could be claimed that hand-crafting rules can
more easily lead to these seldom present structures. But, par-
ticularly in the case of story generation, we claim that story
generation has not yet reached the point where exceptional
stories are the target, and we hypothesize that this is due to
the current perspective about how story generation should
be addresed, at least in part.

It has been assumed that the structural definition of pre-
conditional links empirically describes correctness for sto-
ries, but many other definitions would be valid, specially
taking into account that cognitive models are intentionally
avoided. Following this approach, any definition yielding
good results in evaluation could be valid. This perspective
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Figure 6: Average proportion of coherent vs. non-coherent stories during the refinement process. The proportion of the last 5
stories is shown.

of Artificial Intelligence has produced useful results in some
fields like Information Retrieval (Korfhage 1997), and this
works hypothesizes that it could be useful for computational
narrative to study the possibilities of this kind of models.

It is not claimed, however, that structural or surface form
applications only can lead to human-like works. But a hybrid
approach could make it possible to process stories in large
numbers, which has been an long standing goal of the com-
putational narrative community. Models like the one pro-
posed in this paper and others try to unlock the hypothetical
potential of non-cognitive solutions.

Additionally, it must be taken into account that creating
narrations that are completely human-like need not be the
only objective of computational narrative. Completely mim-
icking human behaviour is arguably useful, but computer
generated stories that are recognizable as computer works
could also be useful, perhaps in fields or aspects of soci-
ety beyond those where classic narrations are currently em-
ployed. This, of course, should be further discussed in depth.

The issue of saturation is worth mentioning. It intuitively
captures the idea of having gathered all possible informa-
tion from a domain, even if this information does not handle
the conceptual meaning of the concepts involved. Indirectly
tweaking the threshold of saturation by modifying the way
in which stories are automatically generated, for instance, or
perhaps introducing some kind of noise into the system in
order to slightly prevent local maxima, could heavily affect
the behaviour of the system.

If saturation happens too early, not much information
would have been collected, but the efficiency of the system
could be considered high because only a small amount of
time would have been spent. On the other hand, the capabil-
ities of the final rule-set would be quite limited because it is
likely that only a small amount of relations was learnt.

If saturation happens too late, the amount of processed
stories would have been large, so the quality of the rules
could be, in principle at least, high. But that would have
required a long training process, thus having comsumed sig-
nificant amounts of user’s time, perhaps to the point where
other approaches would have been more efficient.

Concluding, it makes sense to study the possibilities of
searching for an optimum point of saturation in which the
quality of the rules is acceptable but the required time to
gather them is correctly adjusted to the user’s availability.

It has been previously said that the current approach in-
tends to keep the semantic load of computing narrations to
a minimum. In order to realize this, a synthetic relation has
been defined with no underlying cognitive model. However,
this relation, the preconditional link, has been inspired by
the way in which humans apply heuristic knowledge when
interpreting and understanding stories. For instance, the def-
inition of the preconditional link establishes that for a list
of events to be preconditionally linked to another one, they
must appear before in the story. This suggest that human be-
haviour has been partially included in the definition, since
humans tend to assign causal and chronological links be-
tween near events in a story.

Therefore, the extent to which the proposed model only
considers surface form of narratives must be further studied
and discussed. While it is claimed that surface structure can
be valid as a complementary improvement of the efficiency
of computational narrative systems, it is clear that the sepa-
ration between cognitive and structural is not totally defined
in formal terms.

Conclusions and Future Work

This paper has presented a proposal for complementing clas-
sic approaches to computational story processing, which
are based mainly on semantic approaches, with techniques
based on structural content of narrations. While the pre-
sented model is oriented to story generation, the concepts
can be applied to story understanding. The results of a proto-
type implementation of the theoretical ideas underlying the
model is shown, and the main conclusions are presented and
discussed.

Much is still to be done in this area. The presented model
is only applicable for short stories, which, while containing a
closed message, are still too similar to narrative scripts. The
preliminary results are promising, but it is clear that the cho-
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sen domain does not include any sophisticated narrative fea-
tures such as humans use. Future work contemplates study-
ing new approaches to broaden the scope and applicability
of this kind of solutions.

The implementation has involved certain steps where
knowledge has been inserted in the loop, for instance, the
translation of the source stories to formal sequences by hand.
At this stage, authors’ intuition has affected the empirical re-
sults, and this must be improved for future versions.

In contrast, the simplistic implementation of the steps of
the model has provoked very low saturation levels in the rule
gathering execution. More sophisticated implementations
could be carried out in order to inform the algorithm. This
would mean inserting knowledge in the system, therefore
creating a kind of hybrid approach between cognitive and
structural approaches. Authors hypothesize that this could
be the way to achieving efficient systems for computational
narrative.

Additionally, it is important to discuss what are the limits
of structural and cognitive approaches in narrative. Apply-
ing knowledge from narratology could help to broaden the
perspective about what these two concepts really mean, what
is the relation between them and how to apply them formally
in computational narrative.
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