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Abstract

Compressive spectral clustering combines the distance
preserving measurements of compressed sensing with
the power of spectral clustering. Our analysis provides
rigorous bounds on how small errors in the affinity ma-
trix can affect the spectral coordinates and clusterability.
This work generalizes the current perturbation results of
two-class spectral clustering to incorporate multiclass
clustering using k eigenvectors.

One of the most common and powerful techniques for ex-
tracting meaningful information from a data set is spectral
clustering. Spectral clustering uses local information to em-
bed the data into a space which captures the global group
structure. Standard learning techniques require an appropri-
ate transformation to higher dimension where dimensional-
ity reduction is done before clustering. Compressed sensing
provides a mathematically rigorous way to obtain optimal
dimensionality reduction for exact reconstruction. Hyper-
spectral images and MRIs are examples of high dimensional
signals where the true underlying data may only have a few
degrees of freedom or be sparse in some unknown basis. We
show that the meaningful organization extracted from spec-
tral clustering is preserved under the perturbation from mak-
ing compressed sensing measurements.

Background

Traditional spectral clustering uses local Euclidean distances
between data points to construct a graph with edge weights,

W (xi, xj) = exp

(
−‖xi, xj‖22

2σ

)
,

that define the symmetric affinity matrix

A = D−
1

2 WD−
1

2 (1)

where D(xi, xi) =
∑

k W (xi, xk) is a diagonal matrix of
row sums of W . The data can be bipartitioned by apply-
ing k-means to the coordinates of the second eigenvector of
the affinity matrix A (Ng, Jordan, and Weiss 2001). Multi-
class clustering is achieved by repeatedly bipartitioning us-
ing the second eigenvector or by applying k-means to the top
k eigenvectors of A (Jianbo, Yu, and Shi 2003).
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Compressed sensing is used for exact recovery of sparse
signals using fewer measurements than the ambient dimen-
sion. Compressed sensing provides a bound on the error
derived from making these few measurements of a signal.
Our goal is to take advantage of these compressed sensing
techniques to perform spectral clustering using much fewer
measurements than the ambient dimension (Donoho 2006;
Candès and Tao 2005).

Earlier perturbation results have shown that spectral clus-
tering using the second eigenvector is robust to small per-
turbation of the data (Huang et al. 2008). These results are
based on the following perturbation theorem.

Theorem 1 Given a perturbation of A Ã = A + E, let λi

and vi be the ith eigenvalue and eigenvector of A and ṽi be

the ith eigenvalue of Ã respectively, then

‖ṽ2 − v2‖ ≤ 1

λ2 − λ3

‖E‖+ O
(‖E‖2) . (2)

This applies provided the gap between the second and third
eigenvalue is not close to zero which is not the case of data
sets with more than two underlying clusters. The number
of eigenvalues close to one is equal to the number of sepa-
rate clusters. Our analysis generalizes the results of spectral
clustering on perturbed data to incorporate multi-class clus-
tering using the top k eigenvectors.

Compressive Spectral Clustering

Assume that there is an underlying r-sparse representation
yi of the data xi, where yi = Bxi is a known or unknown
unitary transformation of xi. Let Φ be a random K × N
matrix, with Gaussian N (0, 1) entries. Define the local dis-

tance d̃(xi, xj) = ‖Φxi−Φxj‖2 using m compressed sens-
ing measurements. Construct a graph with edge weights,

W̃ (xi, xj) = exp

(
−‖Φxi − Φxj‖22

2σ

)
.

Define the symmetric matrix

Ã = D̃−
1

2 W̃ D̃−
1

2 (3)

where D̃i,i =
∑

k W̃ (xi, xk). Use the first k eigenvectors

of Ã as a k low-dimensional representation of the data and
coordinates for clustering and classification.
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The perturbation of the local distances calculated in the

compressed domain, d̃(xi, xj), can be made arbitrarily close
to the true local distance d(xi, xj) by taking enough mea-
surements. This is guaranteed by the restricted isometry
property of compressed sensing. This small error can cause
large error between the true and perturbed eigenvectors,
‖vi − ṽi‖. With some conditions on the separation of eigen-
values, we show that spectral coordinates of first k eigenvec-

tors of Ã from taking compressed sensing measurements,
can be made arbitrarily close to the traditional spectral co-
ordinate when using the full ambient dimension. Thus the
meaningful organization extracted from spectral clustering
is preserved under the perturbation from making compressed
sensing measurements.

Theorem 2 Let A be the adjacency matrix from standard

spectral clustering defined in (1). If Ã is the adjacency ma-
trix formed by taking compressed sensing measurements de-

fined in (3), where W̃i,j = e−
‖Φxi−Φxj‖

2
2

2σ , the xis are r-
sparse and Φ satisfies the RIP with

δ =
ε

4 maxi,j

{
‖xi−xj‖22

2σ

} .

Then for 0 < ε < 1,

|Ãi,j −Ai,j | ≤ ε.

We show that the first k eigenvectors of Ã provide the same
low dimensional embedding as the k eigenvectors of tradi-
tional spectral clustering.

Let

V = [v1 v2 . . . vk] ,

where vl is the column eigenvector corresponding to the lth

largest eigenvalue of A and similarly define

Ṽ = [ṽ1 ṽ2 . . . ṽk] ,

for first k column eigenvector of Ã. Each data point can be

clustered by applying k-means to the rows of V or Ṽ .

Theorem 3 Let A and Ã be the affinity matrices from stan-
dard spectral clustering and from compressive spectral clus-
tering as defined above. If there is a α > 0 such that
λk − λk+1 ≥ α and λk ≥ α, then the canonical angle

Θ between the column space of the first k eigenvectors of Ã
and the column space of the first k eigenvectors of A will
satisfy,

‖ sinΘ‖F ≤ Nε

α
.

This bounds the low dimensional embedding of projecting

onto the first k eigenvectors of Ã,

‖PVk
− PṼk

‖F =
√

2‖ sinΘ‖F ≤
√

2

α
‖A− Ã‖F .

Theorem 4 Given V formed by the top k column eigen-

vectors of A and Ṽ , the matrix formed by the top k eigen-

vectors of Ã. If Q is the orthogonal matrix that minimizes

‖Ṽ − V Q‖F defined above then

‖Ṽ − V Q‖2 ≤ (1 +
√

2)
N

α
ε.

Thus Ṽ can be made arbitrarily close to a rotation of V .

Corollary 5 If v(i) is the ith row of V formed by the top k

eigenvectors of A and ṽ(i) is the ith row of Ṽ formed by the

top k eigenvectors of Ã. Then

‖ṽ(i)− v(i)Q‖2 ≤ (1 +
√

2)
N

α
ε

where Q is the orthogonal matrix that minimizes ‖Ṽ −
V Q‖F .

The rows of V and Ṽ provide interchangeable coordinates
for clustering and classification. Thus spectral clustering is
achievable in the compressed domain.
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