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Abstract

In multimedia information retrieval, where a document
may contain textual and visual content features, the
ranking of documents is often computed by heuristi-
cally combining the feature spaces of different media
types or combining the ranking scores computed inde-
pendently from different feature spaces. In this paper,
we propose a principled approach inspired by Quantum
Theory. Specifically, we propose a tensor product based
model aiming to represent text and visual content fea-
tures of an image as a non-separable composite system.
The ranking scores of the images are then computed in
the form of a quantum measurement. In addition, the
correlations between features of different media types
are incorporated in the framework. Experiments on Im-
ageClef2007 show a promising performance of the ten-
sor based approach.

Introduction

With rapidly increasing volume of digital image data, e.g.
in specialised image repositories, social photo sharing sites
and all sorts of multimedia documents on the Web, an effec-
tive search for images that satisfy users’ information needs
is becoming a challenging research topic.

In the early stage of image retrieval research, librarians
had to attach some keywords to each image in order to re-
trieve relevant images with text retrieval techniques. Nowa-
days, however, manual labelling becomes infeasible due to
the increasing size of the image collections. To circum-
vent such obstacle, content-based image retrieval (CBIR),
which uses visual features to measure the content similarity
between images, has been investigated. Typical visual fea-
tures include colour histogram, texture and shape, etc. An
image is represented as a vector in a feature space. For ex-
ample, each dimension in a colour histogram space corre-
sponds to a color bin along channels R-G-B or H-S-V, and
the value of an image on each dimension is the normalized
number of pixels in the image falling into the corresponding
bin. The similarity between two images can be measured
based on how close their corresponding vectors are on the
feature space, e.g. through the Cosine function. Neverthe-
less, even the start-of-art CBIR techniques can only achieve
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a limited performance because of the semantic gap between
the content and its high level semantics. Given that more and
more images and multimedia documents contain both visual
content and certain amount of text annotations (e.g. tags,
metadata, text descriptions, etc.), combining the textual and
visual features of images for image retrieval has recently at-
tracted increasing attention.

Three commonly adopted combination methods are: 1)
using textual data to retrieve images, then re-ranking the re-
trieval results with their visual feature (Yanai 2003); 2) or us-
ing visual feature to retrieve images, then re-ranking the re-
sults with their textual features (Tjondronegoro et al. 2005);
3) or combining linearly the feature spaces or the similarity
scores based on different features (Rahman, Bhattacharya,
and Desai 2009)(Matthew Simpson 2009)(Min 2004). All
these combination methods treat the textual and visual fea-
tures of images individually, and combine them in a rather
heuristic manner. Therefore it is difficult to capture the re-
lationship between them. Indeed, as both the textual and
visual features describe the same image, there are inherent
correlations between them and they should be incorporated
into the retrieval process as a whole in a more principled
way.

In this paper, we present a Quantum Theory inspired re-
trieval model based on the tensor product of the textual and
visual features. It describes an annotated image as a n-order
tensor in order to catch the non-separability of textual and
visual features. The order of the tensor depends on the vi-
sual features that are going to be incorporated in the image
retrieval. Currently we focus on 2nd-order tensor.

In practice, not every image is associated with a proper
textual annotation: some annotations do not describe the
content of the image at all and some images do not even con-
tain any textual information. Ideally, the problem can be al-
leviated by automatically annotating images with controlled
textual labels, usually through supervised learning from pre-
annotated training examples, at the pre-processing stage.

However, the automatic annotation is out of scope of this
paper, and is an ongoing research topic on its own. Instead,
in this paper, we are concerned about a finer-grained cor-
relation between the dimensions across the textual and vi-
sual feature spaces. We present two rather straightforward
statistical methods to associate dimensions (e.g. words) of
the textual feature space with the dimensions (e.g. the HSV
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colour bins) of the visual feature space, while the main focus
of the paper is to build and test the unified image retrieval
framework.

This paper is structured as follows. We first show how
to represent images with different media types using ten-
sor product. We then present a model for how to score the
images in the tensor space with a quantum-like measure-
ment and how the correlations between dimensions across
different feature spaces can be incorporated. Two statisti-
cal methods for deriving the cross-feature correlations are
proposed. We then report our experimental results on Im-
ageClef2007, a standard image retrieval benchmarking col-
lection, to demonstrate the potential of the proposed model.
Observations from the results are discussed, leading to our
conclusions and future work.

Tensor Product

Tensors are geometric entities introduced into mathematics
and physics to extend the notion of scalars, (geometric) vec-
tors and matrices. Tensor can express the relationship of
vector spaces.

The tensor product is used to construct a new vector space
or a new tensor. The result of tensor product of two Hilbert
spaces is another Hilbert space associated with a composite
system, which is constructed by the two single systems from
the two sub-spaces.

Given two Hilbert spaces A and B, their tensor product
A ⊗ B can be defined in the following, where we assume
that the dimensionality of the spaces is finite. Let {|ai〉 : i =
1...m} be the orthogonal basis of space A, and {|bj〉 : j =
1...n} be the orthogonal basis of space B. Then |ai〉 ⊗ |bj〉
constitutes the basis of the tensor space A ⊗ B.

Suppose two single systems can be represented as: |a〉 =∑
i αi|ai〉 and |b〉 =

∑
j βj |bj〉. Then the composite system

containing |a〉 and |b〉 in the tensor space can be expressed
as:

|φ〉 =
∑

i

∑
j

γij |ai〉 ⊗ |bj〉 or
∑

i

∑
j

γij |aibj〉 (1)

If each γij can be decomposed as αi ·βj , then |φ〉 = |a〉⊗
|b〉, which means that systems |a〉 and |b〉 are independent.
Otherwise they are entangled or non-separable.

Next let us look at how to represent a multimedia
document in the Hilbert space. Traditionally documents
are represented as vectors. For example, when a docu-
ment is represented by its textual feature, denoted dT =
(tf1, tf2, · · · , tfn)T , where tfn is the frequency that term
tn appears in the document d, and tfn is zero when term
tn does not appear in d. The visual feature representation
for the document can be in the same form, e.g. dF =
(f1, f2, · · · , fm)T , where F denotes the type of visual fea-
ture and fi refers to the feature value of ith-dimension in the
feature space.

In each individual feature space, a document can be writ-
ten as a superposition state. In text feature space, HT :
|d〉T =

∑
i wti

|ti〉, where
∑

i w2
ti

= 1. As the amplitude
wti

for each state |ti〉 should be proportion to the probabil-
ity that the document is about the term ti, it can be set as

normalized term frequency of ti, e.g. wti = tfi/
√∑n

j tf2
j .

Note that the amplitude wti
can be set up with any other

traditional term weighting scheme, e.g. TF-IDF. The only
restriction here is to make sure that the sum of w2

ti
should

be equal to one. Similarly a document can also be de-
scribed as a superposition state in a content feature space
HF : |d〉F =

∑
i wfi |fi〉.

When to measure probability that a document is about a
text or a visual feature, i.e. the probability that the super-
position document collapses to a certain state, we can ap-
ply the vector product P (ti|d) = |〈ti|d〉T |2 = w2

ti
, which

can be written as a projection to a space spanned by |ti〉:
P (ti|d) = 〈ti|ρd|ti〉 = w2

ti
, where ρd = |d〉〈d| is the den-

sity matrix of document d. We will describe density matrix
in more detail in the next section.

Naturally when we try to combine the textual and visual
systems, we use the tensor product to get a unified system:

|d〉TF = |d〉T ⊗ |d〉F =
∑
ij

γij |ti〉 ⊗ |fj〉

The tensor space opens a door to linking and expanding
the individual feature spaces as non-separable systems and
allowing the correlations existing between them to be natu-
rally incorporated in the unified theoretical framework.

When the visual feature and textual feature are indepen-
dent, the amplitudes in this composite system can be written
as i.e.γij = αi · βj . However, this is not always the case
in general. The features can be highly correlated in some
states, i.e. some keywords may be highly correlated with
some visual features. We will show later how we describe
such correlations in the formal model.

With a superposed multimedia document, the density
matrix of its sub-systems can be presented as ρdT

=∑
i α2

i |ti〉〈ti|, and ρdF
=

∑
i β2

i |fi〉〈fi|. When |d〉T and
|d〉F are independent, the density matrix for the composite
system is:

ρdT F
=

∑
ij

α2
i β

2
j |tifj〉 ⊗ 〈tifj | = ρdT

⊗ ρdF
(2)

As mentioned before, in most situations, the two systems
are not independent, i.e. ρdT F

=
∑

ij γ2
ij |tifj〉⊗ 〈tifj |. We

can always separate the correlation term:

ρdT F
= ρdT

⊗ ρdF
+ ρcorrelation (3)

How to compute the ρcorrelation is a challenging open re-
search question. Currently we use some simple statistical
methods for the purpose, which will be introduced in the
later sections.

Density Matrix and Measurement Operator

Density Operator: document

In quantum mechanics, a density matrix is a self-adjoint (or
Hermitian) positive-semidefinite matrix, of trace one, which
describes the statistical state of a quantum system.

1) Density matrix:

110



The formal density matrix definition is:

ρ = pi|φi〉〈φi| (4)

Where pi is the probability of the system being in the state
|φi〉, or the proportion of the ensembles being in the state
|φi〉. Density matrix can be used to describe both pure and
mixed state system.

2.) Trace invariant:
The basis φi does not have to be orthogonal. If the basis

for density matrix is not orthogonal, we can always change
the basis.

ρd =
∑

i

wi|φi〉〈φi| (5)

=
∑

i

wi

∑
j

Uij |ϕj〉
∑

k

〈ϕk|Uik (6)

=
∑
jk

ρjk|ϕj〉〈ϕk| (7)

where we have wi = α2
i , ρjk =

∑
i UijUikwi and

tr(ρd) = 1.
In this case the observed value is:

〈A〉 = tr(ρA) (8)

=
∑
jk

ρkjAjk

3) Density matrix of a document:
Similarly, when preparing a document density matrix, we

can assume each term as a state ti. If we assume each term
|ti〉 is a orthonormal basis:

〈ti|tj〉 = δij (9)

Then we do not need to change the basis, and the density
matrix of the document is:

ρd =
∑

i

wi|ti〉〈ti| (10)

This density matrix is a diagonal matrix with trace 1,
whose entry corresponds to the probability that the docu-
ment is about the term ti.

If we assume that |ti〉 are not orthogonal to each other,
then we can always represent the document with orthogonal
base like what we have showed in Equation 7.

ρd =
∑

i

|ti〉〈ti| (11)

=
∑

i

wi

∑
j

Uij |ej〉
∑

k

〈ek|Uik (12)

=
∑
jk

ρjk|ej〉〈ek| (13)

Observable: query

In quantum physics, a system observable is a property of the
system state that can be determined by some sequence of

physical operations. The mean value over the observable O
is:

〈O〉 = 〈φ|O|φ〉 (14)

=
∑

i

c2
i λi (15)

λi is the eigen value of observable O. As in quantum me-
chanic, only when an eigen value of the observable is mea-
sured, the system state can be postulated on which state it
collapsed.

The concept of measurement in quantum theory fits the IR
problem well: considering a query an observable, the higher
similarity value measured on a document, the higher rele-
vance of the document to the query.

The density of a query is:

O = ρq =
∑

i

q2
i |ti〉〈ti| (16)

If possible, we can use spectrum to represent the observ-
able:

O =
∑

i

λi|ei〉〈ei| (17)

(18)
|ei〉 is the eigen basis of observable O, and λi is the cor-

responding eigen value.

Measurement on a Document

To gain the expected value of O, we need to prepare the
document density matrix based on the eigen state of the ob-
servable:

ρ′d = UρdU
′ (19)

ρ′ and ρ define the same density matrix if and only if there
is a unitary matrix U with U ′U = I

|t′i〉
√

w′
i =

∑
j

Uij |ti〉√wi (20)

With quantum measurement :
〈O〉 = tr(UρdU

′UOU ′) (21)
= tr(UρdU

′UρqU
′) (22)

In this paper, we assume that |ti〉 are orthogonal, then

〈O〉 = tr(
∑

i

α2
i |ti〉〈ti|O) (23)

= tr(
∑

i

α2
i |ti〉〈ti|

∑
j

q2
j |tj〉〈tj |) (24)

=
∑

i

α2
i q

2
i (25)

Correlating Visual and Text Features
We now present how we identify the correlation between
text and visual features, and embed them into density ma-
trix of the composite system. Here, we are interested in the
correlation between the individual dimensions from the two
feature spaces: i.e., how some keywords in the text feature
space are correlated with certain colour bins in the HSV fea-
ture space. Two statistical methods have been developed.
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Maximum Feature Likehood

The assumption behind this method is: if some images are
about same or similar thing, they tend to have similar visual
features. For example, when an image contains sea, there is
usually a large area in the image being blue. Thereafter its
visual feature space should express as such.

When an image has no text information, we can check
whether this image has a distinctive visual feature value in
certain dimension. If the image has a very large value for
that particular dimension fj which correlate with sea, we
can conjecture that it is very likely that sea appears in the
image and would like to link it with the keyword “sea”. In
this way, an image initially without keyword “sea” can be
retrieved by a text query about sea.

Operationally, to associate the text with the maximal
likely visual feature dimension, we first group images by
keywords to find a subset St of images containing word t in
their annotations:

St = {di|t ∈ title(di)}. (26)

Within this subset, the feature dimension on which most
images have the highest feature values can be detected by
choosing a feature dimension having the highest average
feature value:

i = argmaxi({f̄1, f̄2, · · · , f̄n} (27)

Here, n is the dimensionality of the visual feature space. f̄i

is the average feature value on the i-th feature dimension
across the subset St. Thereafter, the dimension i of visual
feature will be associated with text t.

Sometimes, however, the maximal value of a feature di-
mension is not distinctively greater than other dimensions,
or the maximal value occurs due to the fact that many images
have very high value in this dimension. To avoid such sit-
uation, only the feature dimensions whose average value is
substantially (e.g., 2 standard deviation) higher than the av-
erage value on all the dimensions can be associated with the
text. For example, for the subset St with average feature val-
ues {f̄1, f̄2, ..., f̄n} and highest feature value dimension x =
argmaxi({f̄i}), the necessary condition to associate the x-
th dimension with term t is f̄x ≥ average(f̄i) + 2std(f̄i).
Also across the subset, the feature value for this dimension
{f1x, f2x, ..., fmx} should take a t-test to make sure that the
high average feature value is not due to few images having
very high feature value on this dimension.

It is also possible that some dimensions could be associ-
ated with too many words. To avoid this, we set up a thresh-
old for each word to decide whether it needs to have a fea-
ture dimension association. Currently we choose the words
occurring in more than 25 and less than 65 images. This is
because if a term occurs in too few documents, the corre-
lation between the term and visual feature could be a casual
relation. While if a term occurs in too many documents, then
this term may not be a good informative term, and will not
help much in the retrieval even if these terms do associate
with certain visual feature dimensions.

This method is straightforward and aims to solve the prob-
lem that some images do not have annotation. Neverthe-
less, we should bear in mind that such processing can bring

the textual noise to the images. It can also miss some ap-
propriate text which does not associate to the maximal fea-
ture value, but the moderate feature value. We observed that
sometimes the textual feature does not necessarily associate
with the highest visual feature value.

In the next step, we explore the word-feature co-
occurrence method.

Feature and Word Mutual Information Matrix

To discover the visual and textual feature’s semantic con-
nection, we use the mutual information matrix. The mutual
information of two random variables is a quantity that mea-
sures the mutual dependence of the two variables. Here we
use it to describe the dependency between the visual and tex-
tual features. Each visual feature dimension is possible- to
associate with each text with certain degree.

The entry of the matrix is the mutual information of fea-
ture on dimension fi and text on ti, which is defined as the
follows:

FTij = MI(fi, tj) = log2

P (fi, tj)
P (fi)P (tj)

(28)

Here are the definitions of each probability:
• P (fi, tj) is the the probability that a document con-

tains word tj and pixels in HSV bin i, P (fi, tj) =
NP ixel(fi,tj ,c)

NP ixel(c)
.

• P (tj) is the probability that term tj appears in the collec-
tion. We use geometric distribution P (tj) = 1− (1− p)k

to represent the term distribution, which fits to the term
occurrence distribution of our test collection. Here, p is a
shape parameter and p = 0.5, k is the frequency of term
tj occurring in the collection.

• P (fi) is the probability that a pixel falls into feature bin
i, P (fi) = NP ixel(fi,c)

NP ixel(c)
.

The mutual information matrix is used to compute the as-
sociation score between a term and a image, while based on
the term’s correlations with each visual feature dimension.
When the mutual information is summed up with respect to
a word t, according to an image’s visual feature, an associa-
tion score between the image and the word can be derived.

score(d, t) =
∑

i

P (fi|d) · MI(fi, t) (29)

Suppose the document has a feature vector F =
(f1, f2, ...fn), then the expected association score for each
word will be C = F · FT , which in turn can be used to
build density correlation between textual and visual features
ρcorrelation:

|d〉expand
T =

∑
i

ci|ti〉, C = F · FT (30)

ρd
correlation =

∑
ij

ciβj |tifj〉〈tifj | (31)

In practice, we can only choose top n highly scored words
to create the correlation density matrix, in order to reduce
the computational cost. The setting of n varies from 5 to 30
in our experiment.
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Experimental Settings and Results

Settings

The image retrieval experiments based on a tensor space are
carried out on ImageClef2007, a widely used benchmark-
ing collection for image retrieval. This collection has totally
20,000 images, each with an annotation file including fields
such as title, description and note, etc. 60 test queries are
provided, together with the ground truth data. Each query
consists of 3 sample images and a text description.

Figure 1 shows an example image and its annotation file.

Figure 1: Image 112.jpg

<DOC>
<DOCNO>annotations/00/112.eng</DOCNO>
<TITLE>Excursion with the godchildren</TITLE>
<DESCRIPTION></DESCRIPTION>
<NOTES></NOTES>
<LOCATION>Quilotoa, Ecuador</LOCATION>
<DATE>April 2002</DATE>
<IMAGE>images/00/112.jpg</IMAGE>
<THUMBNAIL>thumbnails/00/112.jpg</THUMBNAIL>
</DOC>

In each annotation file, the informative texts mainly ap-
pear in the title and location fields. A small portion of
images also have some short notes or descriptions. There-
fore, in our experiments, the texts are extracted from “title”,
“notes” and “location” fields.

When creating density matrix for each document, we set
the probability of each term with the normalised TF-IDF.
The visual feature that we are using here is HSV color his-
togram, which is the cylinder representation of RGB color
space. In the cylinder, the angle around the central vertical
axis corresponds to hue, the distance from the axis corre-
sponds to saturation, and the distance along the axis corre-
sponds to lightness or brightness. Hue and saturation com-
ponents help to retain light independent color properties.
The HSV color histogram of an image is computed as three
independent distributions. Firstly, we split the image into
individual color channels (grayscale representations of pri-
mary colors). Next, we discretize the colors and count how
many pixels belong to each color bin. The mapping between
color and bin index can be defined as i = f(h, s, v).

Note that the feature space can be replaced by any other
visual feature in the future. The tensor space can also be
expanded with more visual feature space when needed.

Clearly, each dimension of the HSV color space is orthog-
onal to the others, as the color in one dimension (a HSV
color bin) does not overlap with the color in another dimen-
sion. However, this is not true for textual feature space, in
which the dimensions are words. Because some words can
have same or similar meanings, e.g. mug and cup both count
when people search for some tableware in the picture. Ac-
tually they may refer to the same thing most of the time.
This can be sought by replacing the synonyms by one unique
term, or using LSI to find its latent semantic space. As a first
step, in this paper, we simply assume that the words are or-
thogonal, and focus on the tensor model itself.

Image Ranking

In our experiments, we compare the proposed tensor product
based model with methods based on the pure visual and pure
textural features individually. We also compare with the use
of simple concatenation of textual and visual feature vectors.
Because of the slight adjustment of each model during the
experiments, we list the name of each individual run and its
explanation as follows:

• cbF: pure visual feature based method using the city block
distance measure (following the recommendation from a
systematic study on distance measurements in (Liu et al.
2008)).

• cosT: pure text-based method using cosine similarity

• cos T+F: cosine similarity based on the concatenation of
textual and visual features

• cosT(e)+F: cosine similarity based on the concatenation
of textual and visual features (Each image will be anno-
tated with some associated words first.)

• tensor(T+F): quantum-like measurement in tensor space

• tensorT(e)+F: quantum-like measurement in tensor space
(A correlation density matrix will be included into each
image’s density representation.)

Suppose we have a document and a query, each of them
are represented by feature vectors: dT = (t1, t2, ...tn) and
dF = (f1, f2, ...fm). m and n are visual and textual fea-
ture dimensionality respectively. Then the retrieval func-
tions used in our experiment are given as follows.

1. City block (for cbF)

sim(d, q) =
m∑

i=1

|fd
i − fq

i | (32)

2. Cosine similarity
For cosT:

sim(d, q) =
n∑

i=1

tdi · tqi (33)

For cosT+F and cosT(e)+F:

sim(d, q) =
n∑

i=1

tdi · tqi +
m∑

i=1

fd
i · fq

i (34)
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Our cosine similarity measurement is an approximate co-
sine similarity, as it can be observed that the similarity
score in Equation 34 is not divided by vector length. We
report the result of this model rather than the standard co-
sine similarity for two reasons: the feature values have
been normalized within their own feature space; and our
experimental results show that the approximate cosine
similarity has better performance than the standard one.

3. Measurement in the tensor space.
Based on quantum measurement, we score a document
according to the observable’s expectation on the docu-
ment. With orthogonal assumption of textual basis |ti〉
and visual feature basis |fi〉, we have:

sim(d, q) = tr(
∑

i

(tdi · fd
j )2|tifj〉〈tifj |

· (tqi · fq
j )2|tifj〉〈tifj |) (35)

= trace(ρd · ρq) (36)

=
∑
ij

(tdi · fd
j )2(tqi · fq

j )2 (37)

This shows the same result of transition probability, which
is explained as the probability that a system in state d will
be found in state q (Aharonov, Albert, and Au 1981), and
it is computed as P (q|d) = |〈q|d〉|2. When this classical
quantum view is applied to retrieval model, |〈q|d〉|2 can be
explained as the probability that a document can be observed
containing the information described by the query.

Let us still take the superposed document and query as an
example:

|d〉 =
∑
ij

γd
ij |tifj〉, |q〉 =

∑
ij

γq
ij |tifj〉 (38)

Then the transition probability between them is:

sim(d, q) = P (d → q) (39)

= |〈d|q〉|2 (40)

=
∑
i,j

(γd
ij)

2(γq
ij)

2 (41)

In such case, the measurement on the document den-
sity matrix is the same as the inner product of two states,
which equals to the cosine similarity of two flattened ten-
sors, where the document and query are represented in a
tensor form. This is also our current experimental setting.

Performance Indicators

We use two widely adopted IR performance measures: Av-
erage Precision (AP) and Precision at top 10 retrieved doc-
uments (P@10). Precision measures the percentage of rel-
evant document in the whole returned document list. How-
ever, being able to return the relevant documents in higher
rank is also a desirable performance for a retrieval system.

Average precision measures both, it is the average of pre-
cisions computed at the point of each of the relevant docu-
ments in the ranked list:

AvgPrecision =
∑N

r=1(Precision(r) × relevant(r))
number of relevant documents

(42)
where r is the rank, N is the number retrieved document,

relevant(r) a binary function on the relevance of a document
on rank r, and Precision(r) is the precision at a given cut-off
rank r:

Precision(r) =
|{relevant retrieved document of rank r or less}|

r
(43)

Note that the denominator in equation 42 is the number of relevant
documents in the entire collection, so that the average precision
reflects performance over all relevant documents, regardless of a
retrieval cut-off.

Currently we focus on testing the effectiveness of the model, and
therefore do not include additional efficiency measures. Nonethe-
less, the tensor model is obviously computationally more expen-
sive than standard approaches. How to reduce the computational
cost will be an important issue in our future work.

Experimental Results

Table 1, the list of evaluation result for each run, shows
that the pure content based retrieval, especially with simple
features, e.g. HSV histogram, has the lowest performance.
Pure text retrieval on images are far more better than content
based retrieval. However, the content feature can help to im-
prove the text retrieval performance while just concatenated
with textual feature without changing retrieval function.

The tensor of visual feature and textual feature can cap-
ture certain relationship between the textual and visual fea-
tures. Even the pure tensor product without taking into ac-
count the correlation between text and visual feature, can
improve mean AP by 17% compare to cosT+F, and 34 in-
dividual queries have better retrieval results. Still for some
queries, their APs drop down compared with the cosine sim-
ilarity on the feature concatenation.

When using text or content feature alone can not retrieve
any relevant image, the pure tensor product can not retrieve
any relevant image either. This can be observed on queries
06, 24, 30, 41, 49, and 56. This is not a surprise, as when
a document does not project to the space spanned by |ti〉, it
will not project to the space spanned by |tifj〉 either. There-
fore, the pure tensor product will not solve the problem that
the images without proper annotation will be ranked low.
For example, even if an image has very distinctive house vi-
sual features but without the word “house” appearing in its
text description, its ranking score will be low with respect
to a query whose text contains of “house”. However, the
same image can be ranked high through the correlation of
its visual feature with text “house”. This shows the reason
why detecting and applying the correlation between visual
and textual features is an important aspect of image retrieval,
which can bridge the semantic gap of content features.

Unfortunately, our two simple methods for correlating vi-
sual and textual features did not bring any improvement to
the retrieval results. We observed that some words we as-
sociated to the feature dimensions do not match any query
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cos T+F cos T cb F cos T(e)+F tensor T+F tensor T(e)+F
Qid AP P@10 AP P@10 AP P@10 AP P@10 AP P@10 AP P@10
01 0.1395 0.4000 0.0811 0.4000 0.0070 0.0000 0.1161 0.4000 0.0906 0.6000 0.0890 0.6000
02 0.0038 0.0000 0.0050 0.0000 0.0229 0.2000 0.0094 0.0000 0.0134 0.0000 0.0065 0.0000
03 0.0576 0.0000 0.1646 0.0000 0.0003 0.0000 0.0798 0.2000 0.1993 0.0000 0.1656 0.0000
04 0.0187 0.2000 0.0108 0.0000 0.0022 0.0000 0.0168 0.0000 0.0100 0.0000 0.0144 0.2000
05 0.0065 0.2000 0.0040 0.0000 0.0024 0.0000 0.0160 0.2000 0.0208 0.2000 0.0180 0.2000
06 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
07 0.4916 1.0000 0.4141 0.8000 0.0025 0.0000 0.4998 0.8000 0.4369 0.8000 0.4338 0.8000
08 0.5173 0.8000 0.5651 1.0000 0.0059 0.2000 0.4934 0.8000 0.3929 0.8000 0.3913 0.6000
09 0.0002 0.0000 0.0002 0.0000 0.0006 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.2374 0.8000 0.5474 0.6000 0.0012 0.0000 0.2826 0.8000 0.5829 0.0000 0.5816 0.0000
11 0.8284 1.0000 0.0685 0.0000 0.7115 1.0000 0.9135 1.0000 0.7548 0.4000 0.7523 0.4000
12 0.0110 0.0000 0.0185 0.0000 0.0000 0.0000 0.0254 0.2000 0.0449 0.2000 0.0459 0.2000
13 0.1137 1.0000 0.0998 1.0000 0.0001 0.0000 0.0964 0.8000 0.0753 0.8000 0.0758 0.8000
14 0.0032 0.0000 0.0055 0.0000 0.0588 0.2000 0.0236 0.0000 0.0042 0.0000 0.0043 0.0000
15 0.3720 0.6000 0.5572 1.0000 0.0061 0.0000 0.2680 0.0000 0.2313 0.0000 0.2294 0.0000
16 0.1385 0.0000 0.1367 0.0000 0.0004 0.0000 0.1409 0.0000 0.2280 0.6000 0.1926 0.2000
17 0.1611 0.6000 0.1563 0.2000 0.0031 0.0000 0.1571 0.2000 0.2674 0.2000 0.2693 0.2000
18 0.2423 0.6000 0.2378 0.4000 0.0048 0.0000 0.2844 1.0000 0.2962 1.0000 0.2950 1.0000
19 0.0198 0.2000 0.0096 0.2000 0.0139 0.2000 0.0318 0.2000 0.0463 0.2000 0.0459 0.2000
20 0.0055 0.0000 0.0098 0.0000 0.0000 0.0000 0.0096 0.0000 0.0341 0.4000 0.0241 0.2000
21 0.2822 0.2000 0.2669 0.0000 0.0153 0.2000 0.2892 0.0000 0.4504 0.6000 0.3319 0.0000
22 0.0004 0.0000 0.0010 0.0000 0.2804 1.0000 0.0319 0.0000 0.0143 0.2000 0.0114 0.2000
23 0.0212 0.2000 0.0267 0.0000 0.0015 0.0000 0.0891 0.6000 0.1272 0.0000 0.1258 0.0000
24 0.0000 0.0000 0.0000 0.0000 0.0015 0.0000 0.0080 0.0000 0.0000 0.0000 0.0000 0.0000
25 0.0012 0.0000 0.0016 0.0000 0.0019 0.0000 0.0015 0.0000 0.0025 0.0000 0.0025 0.0000
26 0.0000 0.0000 0.0530 0.0000 0.0019 0.0000 0.0000 0.0000 0.0530 0.0000 0.0530 0.0000
27 0.5682 0.8000 0.3932 0.0000 0.1154 0.6000 0.6863 1.0000 0.6657 0.8000 0.6618 0.8000
28 0.1008 0.4000 0.1119 0.6000 0.0087 0.0000 0.0916 0.4000 0.1796 0.8000 0.2029 1.0000
29 0.0975 0.0000 0.1557 0.0000 0.0074 0.0000 0.1139 0.0000 0.1320 0.0000 0.1283 0.0000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
31 0.0605 0.8000 0.0427 0.2000 0.0018 0.0000 0.0696 0.4000 0.1076 0.8000 0.1071 0.8000
32 0.2017 0.4000 0.2779 0.6000 0.0003 0.0000 0.2204 0.6000 0.2922 0.4000 0.2926 0.4000
33 0.0290 0.0000 0.0001 0.0000 0.0475 0.0000 0.0909 0.0000 0.0001 0.0000 0.0001 0.0000
34 0.0810 0.2000 0.0865 0.2000 0.0019 0.0000 0.0785 0.2000 0.0542 0.2000 0.0537 0.2000
35 0.1765 1.0000 0.2202 1.0000 0.0329 0.2000 0.2133 1.0000 0.2500 1.0000 0.2495 1.0000
36 0.5584 0.8000 0.5392 0.8000 0.0171 0.2000 0.5790 0.8000 0.5766 0.8000 0.5769 0.8000
37 0.1213 0.4000 0.0957 0.2000 0.0490 0.6000 0.1415 0.4000 0.1256 0.4000 0.1090 0.4000
38 0.1698 0.4000 0.1058 0.0000 0.0382 0.0000 0.1976 0.2000 0.2769 0.6000 0.2780 0.6000
39 0.0015 0.0000 0.0007 0.0000 0.0012 0.0000 0.0008 0.0000 0.0008 0.0000 0.0008 0.0000
40 0.0049 0.2000 0.0012 0.0000 0.0027 0.0000 0.0031 0.0000 0.0010 0.0000 0.0010 0.0000
41 0.0003 0.0000 0.0002 0.0000 0.0003 0.0000 0.0006 0.0000 0.0004 0.0000 0.0004 0.0000
42 0.2484 0.0000 0.2798 0.0000 0.0016 0.0000 0.2931 0.0000 0.3256 0.0000 0.3231 0.0000
43 0.2097 0.4000 0.1767 0.4000 0.0231 0.2000 0.2163 0.4000 0.1583 0.4000 0.1479 0.4000
44 0.0429 0.4000 0.0606 0.4000 0.0044 0.2000 0.0643 0.8000 0.0634 0.2000 0.0636 0.2000
45 0.0491 0.4000 0.0243 0.4000 0.0377 0.2000 0.0511 0.4000 0.0698 0.6000 0.0698 0.6000
46 0.0021 0.0000 0.0019 0.0000 0.0075 0.0000 0.0031 0.0000 0.0109 0.0000 0.0066 0.0000
47 0.0143 0.2000 0.0048 0.0000 0.0028 0.0000 0.0286 0.2000 0.0143 0.2000 0.0143 0.2000
48 0.1106 0.0000 0.0931 0.0000 0.0385 0.2000 0.1252 0.0000 0.1805 0.4000 0.1913 0.4000
49 0.0004 0.0000 0.0000 0.0000 0.0172 0.2000 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000
50 0.0919 0.4000 0.0270 0.0000 0.0004 0.0000 0.1550 0.0000 0.1956 0.0000 0.1917 0.0000
51 0.0921 0.6000 0.0867 0.6000 0.1321 0.6000 0.0990 0.6000 0.0896 0.6000 0.0896 0.6000
52 0.0012 0.0000 0.0001 0.0000 0.0003 0.0000 0.0024 0.0000 0.0001 0.0000 0.0001 0.0000
53 0.2254 0.8000 0.1463 0.6000 0.0049 0.0000 0.2656 1.0000 0.2477 0.6000 0.2452 0.6000
54 0.0584 0.2000 0.0575 0.0000 0.0243 0.2000 0.1008 0.2000 0.1033 0.0000 0.0925 0.0000
55 0.1323 0.2000 0.0013 0.0000 0.2829 0.8000 0.2468 0.8000 0.0211 0.4000 0.0212 0.4000
56 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
57 0.9751 1.0000 0.9536 1.0000 0.0004 0.0000 0.9255 0.8000 0.9255 0.8000 0.9073 0.8000
58 0.2491 0.8000 0.2050 0.6000 0.0044 0.0000 0.3272 1.0000 0.3057 0.8000 0.3148 0.8000
59 0.0513 0.0000 0.0727 0.2000 0.0021 0.0000 0.0858 0.0000 0.0918 0.2000 0.0908 0.2000
60 0.2394 0.4000 0.2132 0.4000 0.0691 0.4000 0.2136 0.4000 0.2640 0.4000 0.2389 0.2000
mean 0.1440 0.3167 0.1313 0.2300 0.0354 0.1267 0.1596 0.3133 0.1685 0.3067 0.1638 0.2867

Table 1: AP and P@10 for each query
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text. As a result, the ranking scores for the images would
not change at all. There are some reasons. For example, the
annotation of some image does not account the content of
the image. e.g., “the destination of the tourist”. The query
text sometimes does not associate to any specific the content
feature, e.g., “Asian traffic”. Extracting correlation informa-
tion for each query sample can be a solution. Another reason
can be that the simple visual feature such as color histogram
is not suitable to be associated with semantic meanings, as
(Wang, Hoiem, and Forsyth 2009) also claimed that the as-
sociation identified by the simple feature normally will not
improve the retrieval performance.

Conclusion and Feature Work

In this paper, we introduced a quantum theory inspired mul-
timedia retrieval framework based on the tensor product
of feature spaces, where similarity measurement between
query and document follows quantum measurement. At the
same time, the correlations between dimensions across dif-
ferent feature spaces can also be naturally incorporated in
the framework. The tensor based model provides a formal
and flexible way to expand the feature spaces, and seam-
lessly integrate different features, potentially enabling multi-
modal and cross media search in a principled and unified
framework.

Experiment results on a standard multimedia benchmark-
ing collection show that the use of quantum-like measure-
ment on a tensored space leads to remarkable performance
improvements in term of average precision over the use of
individual feature spaces separately or simple concatenation
of them. However, the incorporation of dimension-wise cor-
relation across feature spaces in the tensor model does not
lead to performance improvement. Further investigation is
needed in this direction.

In current experiments, we assumed each word is orthog-
onal, but this assumption can be relaxed. We can either re-
place the synonyms with one representative word, or apply
dimensionality reduction in our tensor model. This is also
sensible from a practical point of view, as too high dimen-
sionality in textual feature space will make it infeasible to
compute ranking scores on a large large collection. Further,
we would like to test the tensor product model on a wide
selection of visual content features.
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