
Improving KD-Tree Based Retrieval for Attribute Dependent Generalized Cases

Ralph Bergmann
University of Trier

54286 Trier, Germany
www.wi2.uni-trier.de

Email: bergmann@uni-trier.de

Alexander Tartakovski
Piterion GmbH

Hanns-Klemm-Str. 5
71034 Böblingen, Germany

Email: alexander.tartakovski@piterion.com

Abstract

Generalized cases are cases that cover a subspace rather than
a point in the problem-solution space. Attribute dependent
generalized cases are a subclass of generalized cases, which
cause a high computational complexity during similarity as-
sessment. We present a new approach for an efficient index-
based retrieval of such generalized cases by an improved kd-
tree approach. The experimental evaluation demonstrates a
significant improvement in retrieval efficiency compared to
previous methods.

Introduction

The design of a case-based reasoning (CBR) application is
strongly influenced by the nature, complexity, and number
of the cases. CBR applications in which cases can be repre-
sented adequately in a structured manner by a set of indepen-
dent features are quite well understood. Commercial CBR
tools (e.g. e:IAS by empolis) enable efficient similiarity-
based retrieval of huge case bases with millions of cases.

Several applications, however, require more sophisticated
case representations and thereby introduce a particular com-
plexity into similarity assessment, retrieval, and adaptation.
This paper deals with one such class of case representations,
namely attribute dependent generalized cases (Maximini,
Maximini, & Bergmann 2003). These are cases which are
generalized in the sense that they cover a (possibly infinite)
subspace rather than a point in the problem-solution space.
They are attribute dependent in the sense that all or some
attributes of an individual case depend on each other. The
kind of dependency may differ from case to case. A rep-
resentation of a generalized case therefore requires the use
of constraints, i.e. a case is described by a set of attributes
together with a set of constraints over these attributes. The
used constraints and the attributes which are constraint may
differ from case to case.

Attribute dependent generalized cases occur, for example,
in CBR applications for the recommendation of parameter-
ized or configurable products within electronic commerce
or brokerage services. A single generalized case represents
the different variants of a product and the dependencies in
the generalized case reflect the dependency of the product

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

features. Examples of such applications in our previous
work are brokerage of electronic chip designs (Mougouie &
Bergmann 2002) and sales support for life insurance policies
(Tartakovski, Schaaf, & Bergmann 2005).

In our previous research we investigated representa-
tion (Maximini, Maximini, & Bergmann 2003; Bergmann
& Vollrath 1999), similiarity assessment (Mougouie &
Bergmann 2002) and retrieval (Tartakovski et al. 2004) of
generalized cases. With prototypically implemented CBR
applications in the two above mentioned domains we could
demonstrate a sound approach for similarity assessment by
converting the similarity assessment problem into an opti-
mization problem (in the worst case a mixed integer non-
linear optimization problem). However, this approach intro-
duces a significant computational complexity for each sim-
ilarity assessment instance. Therefore, efficient retrieval re-
quires appropriate index structures that reduce the number
of similarity assessments requited to find the most similar
cases. We proposed the use of kd-trees (Wess, Althoff, &
Derwand 1993) as such index structures (Tartakovski et al.
2004) and demonstrated in principle their ability to improve
the retrieval (Tartakovski, Schaaf, & Bergmann 2005) by re-
ducing the number of required similarity assessments. How-
ever, the advantage of this kd-tree based retrieval is quite
limited, and particularly when the number of attributes in-
creases, its ability to speed up the retrieval nearly vanishes.

This paper continues this line of research by proposing
a new, significantly improved kd-tree based retrieval ap-
proach for attribute dependent generalized cases. The pro-
posed extensions of standard kd-trees by introducing prior-
ity queues and dynamic bounds during retrieval is original
and the experimental evaluation shows significant perfor-
mance improvements.

Representation and Similarity of Generalized

cases Revisited

We now briefly summarize the foundations of representation
and similarity assessment for attribute dependent general-
ized cases (Mougouie & Bergmann 2002; Maximini, Max-
imini, & Bergmann 2003; Tartakovski et al. 2004) as pre-
requisite for the subsequent description of the new retrieval
approach.

319

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

Representation

Let A be the (possibly infinite) representation space for
cases which is structured into n attributes with data types
T1 . . . Tn, i.e., A = T1 × . . . × Tn

A traditional case (also called point case) c is a point in
the representation space, i. e., c ∈ A. A generalized case
gc, however, is a subset of the representation space, i. e.,
gc ⊆ A. Hence, a generalized case stands for a possibly
infinite set of point cases. Depending on the structure of the
set, two sub-types can be distinguished. The simpler type is
the attribute independent generalized case (AIGC) defined
as the Cartesian product of some sets S1 ⊆ T1, . . . , Sn ⊆
Tn, each of which describes an independent set of values for
an attribute. Hence, AIGC = S1 × . . . × Sn.

The second sub-type is the attribute dependent general-
ized case (ADGC). This is the class of generalized cases
that cannot be represented as attribute independent general-
ized cases. Hence, a generalized case is attribute dependent,
if the subspace it represents cannot be decomposed into in-
dependent subsets for each attribute. Dependencies among
attributes must be represented by constraints with arity ≥ 2.
Applying constraints in CBR is not new. Particularly in de-
sign tasks, similar ideas can be found. In our work, we
use constraints for representing dependencies between at-
tributes. The vocabulary for representing generalized cases
consists of the representation space A = T1 × . . . × Tn and
of a set of variables V = {v1, . . . , vn}, one variable for each
attribute, such that vi holds values from Ti. A generalized
case is represented by a set of constraints:

GC = {C1, . . . , Cl}
such that Vi := Var(Ci) ⊆ V .1 Such a generalized case

represents the set of point cases whose attribute values fulfill
all constraints, i.e.,

gc = {(v1, . . . , vn)| ∀iCi is fulfilled by v1, . . . , vn}.
Similarity Assessment

For retrieving generalized cases, the similarity between a
query and a generalized case must be determined. As in tra-
ditional CBR, we assume that the query is a point in the rep-
resentation space that may be only partially described. We
further assume that a traditional similarity measure sim(q, c)
is given which assesses the similarity between a query q and
a point case c. Such a similarity measure can be extended in
a canonical way to assess the similarity sim∗(q, gc) between
a query q and a generalized case gc: The similarity measure

sim∗(q, gc) := sup{sim(q, c) | c ∈ gc}
is called the canonical extension of the similarity measure

sim to generalized cases.
Applying sim∗ ensures that those generalized cases are

retrieved that contain the point cases which are most similar
to the query. Rephrased more formally: given a case base
CB of point cases and a similarity measure sim, then for

1Var(C) denotes the set of variables of the constraint C; Vi is
an abbreviation for the set of variables that occur in Ci.

any case base CB∗ of generalized cases such that CB =⋃
gc∈CB∗ gc holds: if cret is a case from CB which is most

similar to a query q w. r. t. sim then there is a generalized
case gcret from CB∗ which is most similar to q w. r. t. sim∗

such that cret ∈ gcret.
This states that if we introduce generalized cases together

with sim∗, the same cases are retrieved during problem solv-
ing, independent from the clustering of point cases into gen-
eralized cases. This provides a clear semantics of gener-
alized cases defined in terms of traditional point cases and
similarity measures.

Similarity Assessment as Optimization Problem

Bergmann and Vollrath (1999) have shown that this simi-
larity assessment problem for attribute dependent general-
ized cases can be viewed as a specific optimization problem.
An optimization problem is the maximization or the min-
imization of some objective function, often under restric-
tions given through equalities and inequalities. In general,
optimization problems are defined as follows:

max
x

f(x)
s.t. x ∈ F

The function f is called an objective function and the set
of all feasible values F a feasible set, implicitly defined
through constraints. By defining an objective function
f(x) := sim(q, x) and the feasible set F := GC the simi-
larity assessment problem is transformed into an equivalent
optimization problem.

In mathematical optimization several classes of optimiza-
tion problems are known. They differ in computational com-
plexity, problem solution methods and problem formulation.
Therefore, it is important to find out the proper class and a
respective formulation as optimization problem. In the do-
mains we have investigated so far, cases are represented with
both symbolic (discrete) and numeric (integer and real val-
ues) attributes. The resulting optimization problems there-
fore belong to the class of mixed integer nonlinear optimiza-
tion problems (MINLP). Tartakovski (2008) developed gen-
eral framework for transforming a large class of typically oc-
curring constraints and similarity functions into an equiva-
lent MINLP formulation. Thereby, the similarity assessment
problem can in principle be solved at least approximately,
e.g. by using a commercial solver for MINLP problems,
such as GAMS/Baron, Xpress-SLP, and MINLP.

Retrieval of Generalized Cases

Because of the high computational complexity of the sim-
ilarity assessment problem for generalized cases by solv-
ing the respective MINLP problem (see e.g. (Tartakovski,
Schaaf, & Bergmann 2005) for experimental results), it is
very important to develop index-based retrieval approaches.
The overall strategy is to build an index structure in advance,
which helps finding the most similar generalized case with-
out the need to sequentially assess the similarity between the
query and each generalized case in the case base. The less
similarity assessment computations are needed, the faster
the retrieval is.

320

Buidling kd-Tree for Generalized Cases

We now introduce a retrieval approach which applies a kd-
tree (Bentley 1975; Friedman, Bentley, & Finkel 1977) as an
index structure for generalized cases. The application of kd-
trees for similarity-based retrieval in CBR was first proposed
by Wess et al. (1993); Tartakovski et al. (2004) sketched an
initial proposal of how it could be applied for generalized
cases.

The basic idea behind a standard kd-tree is to partition an
n-dimensional attribute space into some simple subspaces,
e.g. hypercubes having faces parallel to the coordinate
planes, and to search for nearest neighbors in that subspaces
excluding several of them from the search focus (see figure
1).

A

C

E

D

F

B

10 20 30 40 50 60 70 80

10

30

20

50

40

70

60

80

A1

A2

Q

A1

A2A2

A1 C D EF

A BA

�35 >35

�30 >30 �40 >40

�15 >15

Figure 1: kd Tree for Generalized Cases

A kd-tree is a binary tree with nearly the same structure
as a decision tree. Its inner nodes are labeled with attribute
names, the edges with separation constraints. The leave
nodes (also called buckets), are labeled with a disjoint subset
of the cases. Every node of a kd-tree represents a subset of
the case base. The root node represents the whole case base.
Each inner node, labeled e.g. with an attribute Ai, partitions
the represented set of cases into two disjoint subsets.

The construction of the kd-tree is organized recursively,
similar to the construction of a decision tree. Beginning
with a root node the represented set of cases is partitioned
according to a chosen discriminator attribute and a chosen
separation value. This recursive procedure carries on until a
certain termination criterion is fulfilled.

When applying this algorithm to generalized cases, the
methods for the selection of the discriminator attribute and
separation value as well as the procedure for partitioning the
cases that belong to a node into the respective subsets are
becoming different compared to standard kd-trees (Bentley
1975; Friedman, Bentley, & Finkel 1977). The first exten-
sion is made in the partitioning function. This function con-
tains a test checking if a given case belongs to a given sub-
space of the description space. This check is quite simple
for point cases, but not for generalized cases. A general-
ized case gc belongs to some subspace S if and only if their
intersection gc ∩ S is not empty. In general a set of general-
ized cases associated with a current node cannot be divided
into two disjoint subsets described above. The reason for
this is that a single generalized case may have non-empty

intersection sets with the both hypercubes given by the child
nodes (e.g. case A in figure 1). Hence, for case bases in-
cluding generalized cases the usual requirement of disjunc-
tive successor nodes must be dropped. The test providing
information whether there is an intersection between a given
generalized case and a hypercube is a special case of a fea-
sibility problem (Horst & Tuy 1993) and can be performed
by various optimization software.

The heuristic for determining the discriminator attribute
aims at producing a balanced kd-tree and to reduce a back-
tracking during the search. It determines the projections of
generalized cases onto the attribute’s range (see figure 2). It
must be pointed out that the standard heuristic for kd-trees
cannot be applied since the projections are not points, but
intervals. The projection of a single generalized case can be
found by solving two special optimization problems. Analo-
gous to the standard kd-tree selection heuristic, our heuristic
prefers among other things attributes with a great dispersion
of projections of cases. Figure 2 shows two attributes hav-
ing a smooth dispersion of projections of cases. However,
there is a significant difference between them: the left at-
tribute allows to find a splitting value (here 45) such that the
two resulting partitions contain half of the original cases in
the node. The right attribute does not enable such a split-
ting. Our heuristic for attribute selection therefore, does not
only regard the dispersion, but also lengths and intersections
of the intervals. The details are described by Tartakovski
(2008).

10 20 30 40 50 60 70 80 A110 20 30 40 50 60 70 80 A1 10 20 30 40 50 60 70 80 A110 20 30 40 50 60 70 80 A1

Figure 2: Projections for different attributes

Retrieval Using Standard kd-Tree Search

During retrieval the kd-tree is traversed to find the most simi-
lar generalized cases for a given query q. This approach only
differs in minor details from the standard kd-tree retrieval for
point cases as described by Wess et al. (1993).

In a nutshell, the algorithm is a recursive tree search pro-
cedure starting at the root node of the kd-tree. It descends
the tree following the branch whose separation constraint
matches the current value for this attribute in the query. If
a bucket is reached, the similarity sim∗ between the query
and all generalized cases in the bucket is computed. A
sorted similarity list stores the k most similar generalized
cases determined thereby. Then, two particular tests, orig-
inally called Ball-Within-Bounds and Ball-Overlap-Bounds
test (Bentley 1975) are used to determine whether cases that
are more similar than the k most similar case identified so far
could exist in a neighbor bucket or subtree. In this case, the
sibling bucket or subtree is examined as well and traversed
to the buckets. This retrieval approach guarantees that the
k most similar cases are found. However, in the worst case
it can become necessary to search the whole case base de-
pending on the outcome of the two tests during retrieval.

321

Retrieval Using Priority Queues

Arya et al. (1993) present a completely different search al-
gorithm for original kd-trees called priority kd-tree search.
The main idea of this method is to estimate the shortest dis-
tances between a query and all regarded nodes/hypercubes
(see figure 1). The node having the shortest distance (high-
est similarity) to the query is considered as a node with a
high chance of containing the most similar elements in the
sub-tree below. Hence, it is examined before nodes with a
higher distance.

The original algorithm developed by Arya et al. imple-
ments a search for the first nearest neighbor only and is re-
stricted to the use of the Euclidian distance as a comparative
measure. We have adapted and transferred the idea behind
this algorithm for the purpose of retrieving the k most sim-
ilar generalized cases applying an arbitrary similarity mea-
sures. The algorithm (see figure 3), maintains a list nodes
of open nodes during search in the kd-tree data structure.
This is what Arya et al. calls a priority queue. This list is
sorted according to the similarity of the nodes (hypercubes)
to the query, such that the nodes with the hightest similarity
are listed first. Further, the algorithm maintains a list scq
of the already found k most similar cases sorted according
to their similarity to the query. Finally, a cache of cases is
introduced to avoid that the similarity of a case is computed
more than once. This is necessary since a generalized case
may be included in more than one kd-tree bucket.

Input: kd tree root node T , query q
Output: Sorted list of cases scq

procedure Retrieve(T, q)
nodes: List of nodes sorted by similarity
scq: Sorted list of best k cases
cache: Set of cases
s : [0, 1]
T ′, T ′′: kd-tree nodes

begin
cache, scq, nodes := empty
add(nodes, < T, 1 >)
while k-th(scq).sim <first(nodes).sim do

T ′= first(nodes)
delete first(nodes)
if T ′ is inner node

then
for each node T ′′ of successors(T ′) do

s := sim∗(q, T ′′) (* similarity assessment *)
add(nodes, < T ′′, s >)

else (* T ′ is bucket *)
for each case c of T ′ do

if c /∈ cache
then
s := sim∗(q, c) (* similarity assessment *)
add(cache, c)
if s >k−th(scq).sim then insert(scq,< c, s >)

Figure 3: Improved kd-tree Retrieval

The search algorithm starts with an initialization of nodes
with the root node of the tree. Then the following proce-
dure is carried out iteratively: the node T ′ with the high-
est similarity is extracted from the open list nodes. If the
node T ′ is an inner node then its successors are inserted in
the priority queue according to their similarity to the query.
For determining the similarity between a query and a node,
the hypercube that the node represents is considered an at-
tribute independent generalized case itself. Hence, we can
apply sim* to compute its similarity, i.e. similarity between
the query and the closed point within the hypercube. Please
note that this similarity computation is highly efficient (Tar-
takovski 2008) and does not require to solve an optimization
problem. If node T ′ is a bucket, then the similarity values
between the query q and all cases the bucket includes are cal-
culated. These similarity computations involve solving the
respective expensive optimization problems. Here, the cache
is considered to avoid multiple similarity computations for
a generalized case. If new cases are found that are more
similar than the k-best known case in scq, they are inserted.
The search procedure terminates if the similarity between
the query q and the k-th best known case from the list scq
is greater than the similarity between the query and the first
node in the priority queue. Then, the not yet expanded nodes
cannot contain any cases that are more similar.

Improvement: Minimal Dynamic Bounds

As an improvement to standard kd-trees for the retrieval of
point cases, Wess et al. (1993) propose the use of minimal
dynamic bounds. The idea of this approach is to increase the
precision of the kd-tree structure and thereby to improve the
retrieval efficiency. We transferred this idea to the priority
k-d tree retrieval of generalized cases.

The main idea of this improvement is to define the bounds
of every node more accurately. While a node within a stan-
dard kd-tree is associated with a hypercube including all
cases belonging to the node, the minimal dynamic bounds
define the smallest hypercube including the same cases. An
example for such an improvement is demonstrated by fig-
ure 4. The left side of this figure demonstrates the standard
node/hypercube S, while the right side of this figure demon-
strates the minimal dynamic bounds that define the smallest
hypercube S’ including all cases of the node.

10 20 30 40 50 60 70 80

10

30

20

50

40

A110 20 30 40 50 60 70 80

10

30

20

50

40

A1

S
S‘

Figure 4: Dynamic Minimal Bounds Approach

The remaining area S - S’ contains no cases and can be
excluded from search. The minimal dynamic bounds can be
computed during the construction of the kd-tree. For case
bases consisting of traditional cases, the minimal bounds of
any node can be calculated as follows:

322

minBounds[i].Upper := max{c1[i], . . . , cm[i]}
minBounds[i].Lower := min{c1[i], . . . , cm[i]}

Here, the term {c1[i], . . . , cm[i]} denotes the set of all val-
ues of the attribute i occurring in cases c1, . . . , cm associated
with the regarded node (which is the total of all cases in the
buckets of the sub-tree below).

For case bases including generalized cases, the bounds’
calculation has to be adapted. Since an orthogonal pro-
jection of a single generalized case gcj on any numeric
attribute’s range is an interval or a set of intervals, the
interval/s beginning gc minj [i] and the interval/s end
gc maxj [i] have to be determined. In order to obtain these
values two special optimization problems have to be solved:
gc minj [i] := min xi s.t.(x1, . . . , xi, . . . , xn) ∈ gcj ∩ S
gc maxj [i] := max xi s.t.(x1, . . . , xi, . . . , xn) ∈ gcj ∩ S

Here S is the hypercube associated with the current node,
and hence gcj ∩S is the fraction of the generalized case gcj

that is inside S.
Now, the minimal bounds can be calculated as follows:

minBounds[i].Upper := maxj=1...m gc maxj [i]
minBounds[i].Lower := minj=1...m gc minj [i]

These dynamic minimal bounds are used by the prior-
ity kd-tree retrieval algorithm in Fig. 3 when the simi-
larity between the query and a node is determined in line
s := sim∗(q, T ′′). Instead of the whole hypercube of T ′′,
the dynamic minimal bounds are used. The priority k-d tree
retrieval algorithm thereby excludes the area that does not
contain any cases and is therefore able to determine more
precisely the highest possible similarity between the query
and the generalized cases in the subtree below the node T ′′.

Experimental Evaluation
In an empirical evaluation we investigated the performance
of the proposed retrieval methods. The objective is to inves-
tigate how far the kd-tree-based retrieval with the proposed
improvements reduces the number of expensive similarity
computations compared to the sequential retrieval. For ex-
perimental purposes we used a case generator that is able to
produce artificial generalized cases with characteristics sim-
ilar to those that occur in the domain of brokerage of elec-
tronic chip designs (Mougouie & Bergmann 2002). This
case generator is able to produce generalized cases with a
predefined number of variables and constraints. We created
three case bases with increasing complexity in size and num-
ber of variables:

case base # cases # attributes
cb1 200 2
cb2 400 4
cb3 400 8

For each case base, the standard kd-tree-based retrieval, the
priority kd-tree search, and the priority k-d tree search com-
bined with the method of minimal dynamic bounds are com-
pared concerning the number of required similarity compu-
tations. All three methods implement a cache, which avoids

redundant computationally expensive similarity assessment
computations.

For each case base several kd-trees of different sizes are
constructed. For the construction of the trees the proposed
methods for selection of the discriminator attribute and the
separation value are used. The size of the trees is controlled
by a termination criterion during tree construction that re-
stricts the number of generalized cases in a bucket of the
tree. However, due to the potential overlap of generalized
cases, it is possible that the number of cases in a node cannot
be reduced to the required bucket size, even after a sequence
of nodes is introduced. In this case the tree construction in
that branch is terminated if for a number of times (defined by
a parameter called number of separation attemts) the num-
ber of cases in a node is not reduced.

In the experiment each of the three retrieval methods is
performed 100 times with random queries for each kd-tree.
The size of the result list is set to k=10 cases.

Case Base 1. Figure 5 shows the performance results for
case base cb1. For this case base the number of separation
attempts is set to 2 attempts, the bucket size varies from 2 to
10. The y-axis shows the percentage of similarity computa-
tions compared to the sequential retrieval for each retrieval
method dependent on the bucket size (x-axis).

Figure 5: Percentage of similarity computations for cb1

This experiment shows that all three retrieval methods are
quite efficient, when being applied to case bases with cases
having only two variables. However, there is a small advan-
tage for the priority k-d tree search combined with minimal
dynamic bounds.

Case Base 2. Figure 6 shows the performance results for
case base cb2. The bucket size varies from 10 to 1 and subse-
quently the number of separation attempts is increased from
2 to 6. This experiment shows that the standard kd-tree re-
trieval becomes inefficient for case bases containing cases
with four generalized attributes. Also the priority k-d tree
search has to perform many similarity computations, in av-
erage 15% of the similarity computation calls. However, the
priority k-d tree search combined with the method of min-
imal dynamic bounds requires in average only 4,25% (17
cases) of the similarity computation calls the sequential re-

323

trieval would perform. In the average, it regards only 7 cases
which are not included in the result list.

Figure 6: Percentage of similarity computations for cb2

Case Base 3. The results obtained with case base cb3,
shown in figure 7 demonstrate that the priority k-d tree
search combined with minimal dynamic bounds is the best
of all approaches and requires in average 13,5% of the sim-
ilarity computation calls the sequential retrieval would per-
form. However, the absolute retrieval time is still about 9.7
seconds on a Pentium 4 PC (3 GHz, 3 GB RAM). The stan-
dard kd-tree retrieval method regards all cases even for the
largest index-structure and requires on average about 72 sec-
onds retrieval time.

Figure 7: Percentage of similarity computations for cb3

Conclusion

We proposed several new improvements for kd-tree based
retrieval of attribute dependent generalized cases. Our ex-
perimental evaluation shows that the most efficient retrieval
method is the priority k-d tree search combined with the
method of minimal dynamic bounds. This method improves
the retrieval step significantly compared to any other index-
based retrieval method known. From our experience with
two application domains we are quite confident that this
method enables efficient retrieval of generalized cases for

medium sized applications with cases bases of a few hun-
dred cases on a single high-performance server PC.

We think that further significant improvements are hardly
possible by further optimizing the index structure. A dif-
ferent and more promising route in this direction could be
to investigate methods that enable to subdivide generalized
cases into several sub-cases in such a way that the resulting
similarity assessment problem leads to optimization prob-
lems of smaller complexity.

References

Arya, S., and Mount, D. M. 1993. Algorithms for fast vec-
tor quantization. In Storer, J. A., and Cohn, M., eds., Pro-
ceedings DCC’93 (IEEE Data Compression Conference),
381–390.
Bentley, J. L. 1975. Multidimensional binary search trees
used for associative searching. Communications of the
ACM 18(9):509–517.
Bergmann, R., and Vollrath, I. 1999. Generalized cases:
Representation and steps towards efficient similarity as-
sessment. In Proceedings of the 23rd Annual German Con-
ference on Artificial Intelligence: Advances in Artificial In-
telligence, volume 1701, 195–206.
Friedman, J. H.; Bentley, J. L.; and Finkel, R. A. 1977. An
algorithm for finding best matches in logarithmic expected
time. ACM Transactions Math. Software 3:209–226.
Horst, R., and Tuy, H. 1993. Global Otimization: Deter-
ministic Approaches. Springer.
Maximini, K.; Maximini, R.; and Bergmann, R. 2003.
An investigation of generalized cases. In Ashley, K. D.,
and Bridge, D., eds., Proceedings of the 5th International
Conference on Case Base Reasoning (ICCBR’03), volume
2689 of LNAI, 261–275. Trondheim, Norway: Springer.
Mougouie, B., and Bergmann, R. 2002. Similarity assess-
ment for generalizied cases by optimization methods. In
Proceedings of the European Conference on Case-Based
Reasoning ECCBR-02. Springer.
Tartakovski, A.; Schaaf, M.; Maximini, R.; and Bergmann,
R. 2004. Minlp based retrieval of generalized cases. In
Funk, P., and Calero, P. A. G., eds., Advances in Case-
Based Reasoning, LNAI3155, 404–418. Madrid, Spain:
Springer Verlag, Berlin-Heidelberg.
Tartakovski, A.; Schaaf, M.; and Bergmann, R. 2005.
Retrieval and configuration of life insurance policies. In
Munoz-Avila, H., and Ricci, F., eds., Sixth International
Conference on Case-Based Reasoning (ICCBR 2005), vol-
ume 3620, 552–565. Chicago, Illinois (USA): Springer.
Tartakovski, A. 2008. Reasoning with Generalized Cases.
Dr. Hut Verlag, Muenchen, PhD Thesis.
Wess, S.; Althoff, K.-D.; and Derwand, G. 1993. Us-
ing kd-trees to improve the retrieval step in case-based rea-
soning. In Wess, S.; Althoff, K.-D.; and Richter, M. M.,
eds., Topics in Case-Based Reasoning. Proc. Of the First
European Workshop on Case-Based Reasoning (EWCBR-
93), Lecture Notes in Artificial Intelligence, 837, 167–181.
Springer Verlag.

324

