
Mixed-Initiative Optimization in Security Games:
A Preliminary Report

Bo An, Manish Jain, Milind Tambe
Computer Science Department

University of Southern California
Los Angeles, CA 90089

{boa,manish.jain,tambe}@usc.edu

Christopher Kiekintveld
Department of Computer Science

University of Texas, El Paso
El Paso, TX 79968

cdkiekintveld@utep.edu

Abstract

Stackelberg games have been widely used to model patrolling
or monitoring problems in security. In a Stackelberg secu-
rity game, the defender commits to a strategy and the adver-
sary makes its decision with knowledge of the leader’s com-
mitment. Algorithms for computing the defender’s optimal
strategy are used in deployed decision-support tools in use by
the Los Angeles International Airport (LAX), the Federal Air
Marshals Service, and the Transportation Security Adminis-
tration (TSA). Those algorithms take into account various re-
source usage constraints defined by human users. However,
those constraints may lead to poor (even infeasible) solutions
due to users’ insufficient information and bounded rational-
ity. A mixed-initiative approach, in which human users and
software assistants (agents) collaborate to make security de-
cisions, is needed. Efficient human-agent interaction process
leads to models with higher overall solution quality. This pa-
per preliminarily analyzes the needs and challenges for such
a mixed-initiative approach.

Introduction

The last five years have witnessed the successful application
of game theory in reasoning about complex security prob-
lems. Stackelberg games have been widely used to model
patrolling or monitoring problems in security. In a Stack-
elberg security game, the defender commits to a strategy
and the adversary makes its decision with knowledge of
the leader’s commitment. Two systems applying Stackel-
berg game models to assist with randomized resource al-
location decisions are currently in use by the Los Ange-
les International Airport (LAX) (Pita et al. 2008) and the
Federal Air Marshals Service (FAMS) (Tsai et al. 2009).
The United States Transportation Security Administration
(TSA) is currently evaluating the application of a similar
system called GUARDS for use in scheduling airport se-
curity operations. At the heart of these deployed appli-
cations are the algorithms (e.g., DOBSS (Paruchuri et al.
2007), ERASER-C (Kiekintveld et al. 2009), ASPEN (Jain
et al. 2010a)) for computing the defender’s optimal strat-
egy given that the follower will behave strategically with
the knowledge of the defender’s strategy. Existence of var-
ious constraints makes it challenging to efficiently com-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pute the defender’s optimal strategy in Stackelberg security
games. For both the deployed applications (Pita et al. 2008;
Tsai et al. 2009), the defender has limited resources such as
the available vehicle checkpoints, canine units and air mar-
shals. In addition, when human users are faced with excep-
tional circumstances and/or extra knowledge, they add hard
constraints such as forced checkpoints at some locations or
requiring a minimum percentage of flights to be covered.
Current approaches will simply compute the optimal solu-
tion to meet all the constraints (if possible). Unfortunately,
these user defined constraints may lead to poor (or infeasi-
ble) solutions due to the users’ bounded rationality and in-
sufficient information about how constraints affect the solu-
tion quality. Significantly better solution quality can be ob-
tained if some of these constraints can be relaxed. However,
there may be infinitely many ways of relaxing constraints
and the software assistant may not know which constraints
can be relaxed and by how much, as well as the real-world
consequences of relaxing some constraints. Therefore, it is
promising to adopt a mixed-initiative approach in which hu-
man users and software assistants collaborate to make secu-
rity decisions.

However, designing an efficient mixed-initiative opti-
mization approach is not trivial and there are five major chal-
lenges. First, the scale of security games and constraints
prevent us from using an exhaustive search algorithm to ex-
plore all constraint sets. Second, the user’s incomplete infor-
mation regarding the consequences of relaxing constraints
requires preference elicitation support. Third, the decision
making of shifting control between the user and the software
assistant is challenging. Fourth, it is difficult to evaluate the
performance of a mixed-initiative approach. Finally, it is a
challenging problem to design good user interfaces for the
software assistant to explain how constraints affect the solu-
tion quality. This paper preliminarily analyzes the needs and
challenges for a mixed-initiative approach in security games.

Security Games with Constraints

In a Stackelberg security game there are two agents - the
defender (security force) and an attacker — who act as the
leader and the follower respectively. There are a set of tar-
gets, which the defender is trying to protect. Each target has
a reward and penalty for both the defender and the attacker.
Thus, some targets may be more valuable to the defender

8

Help Me Help You: Bridging the Gaps in Human-Agent Collaboration — Papers from the AAAI 2011 Spring Symposium (SS-11-05)



than others. To protect these targets the defender can allo-
cate its limited resources to execute a security activity. Once
a resource is allocated to a target, the target is marked as
covered, otherwise it is marked as uncovered. In a Stackel-
berg security game, the defender first commits to a strategy,
then the attacker decides its optimal attack with knowledge
of the defender’s strategy. Therefore, the defender’s goal
is to maximize its reward given that the attacker will attack
with knowledge of the defensive strategy the defender has
chosen. In most cases, the optimal strategy for the defender
is a randomized strategy in which it chooses a mixed strategy
over all its possible resource assignments. Randomized poli-
cies are unpredictable since even though the attacker may
know the overall strategy, the attacker is unable to predict
the exact resource assignment for any day.

Stackelberg security games have been applied in several
contexts to assist security forces. The ARMOR system (As-
sistant for Randomized Monitoring over Routes) deployed
at the Los Angeles International Airport (LAX) is used by
airport police to randomize the placement of checkpoints on
roads entering the airport, and the routes of canine unit pa-
trols in the airport terminals (Pita et al. 2008). The IRIS sys-
tem (Intelligent Randomization in Scheduling) is designed
to randomize flight schedules for the Federal Air Marshals
Service (FAMS) (Tsai et al. 2009). The security game mod-
els at the heart of ARMOR and IRIS are created based on
the data provided by human users including LAX police and
federal air marshals.

Human users also specify a variety of constraints about
resource usage. There are two types of constraints: non-
negotiable constraints and negotiable constraints. Non-
negotiable constraints must be obeyed at all times and can-
not be modified. One example of non-negotiable constraints
is a scheduling constraint. For instance, air marshals in
the IRIS application must be scheduled on tours of flights
that obey temporal constraints (e.g., the time required to
board, fly, and disembark). The Federal Air Marshals Ser-
vice (FAMS) also requires more complex reasoning about
logistical constraints in how resources are scheduled. For
example, a given marshal cannot be assigned to two flights
with overlapping time schedules and an air marshal that is
current in city A can only leave on flights that are outbound
from this area. In addition, the schedules that the air mar-
shals can actually fly are subject to other policy constraints.

Negotiable constraints can be modified at run-time by
human users and we only concern about negotiable con-
straints in this paper. There are different types of negotiable
constraints. The defender always has resource constraints.
In the ARMOR system, the numbers of available vehicle
checkpoints and canine units are limited. In the FAMS do-
main, there are limited number of marshals. In addition,
human users may place constraints on the defender’s actions
to affect the output of the game when they are faced with ex-
ceptional circumstances and extra knowledge. For instance,
in the ARMOR system there could be forced checkpoints
(e.g., when the Governor is flying) and forbidden check-
points. In the FAMS domain, there could be global con-
straints such as 30% of flights from city A should be covered
or all flights from city A to another city B should be covered.

It is a challenging problem to efficiently compute the de-
fender’s optimal strategy to meet all of these constraints
and the literature provides a number of solutions such as
DOBSS (Paruchuri et al. 2007), ERASER-C (Kiekintveld
et al. 2009), and ASPEN (Jain et al. 2010a). However,
those (negotiable) constraints defined by humans may lead
to poor (even infeasible) solutions due to users’ bounded ra-
tionality and insufficient information about how constraints
affect the solution quality. For instance, if there are a small
number of marshals in city A, an optimization algorithm
cannot find a solution to satisfy the constraint that 30% of
flights from city A should be covered. We may get signifi-
cantly better solution quality if we slightly relax some con-
straints. For instance, the user in the ARMOR domain may
alter the schedule by altering the forbidden/required check-
points. Therefore, it is promising to adopt a mixed-initiative
approach in which human users and software assistants col-
laborate to make better security decisions.

Mixed-Initiative Optimization in Security

Games

Mixed-initiative interaction refers to flexible interaction
strategy in which humans and software agents/assistants col-
laborate to achieve their objectives. The basic issues in-
volved in a mixed-initiative approach include how to di-
vide the responsibility between the human and the software
agent, how to adjust control between the human and the
software agent, and how to exchange knowledge and infor-
mation between the human and the software agent (Horvitz
1999; Tecuci, Boicu, and Cox 2007). Many of the chal-
lenges associated with mixed-initiative interaction have been
studied in recent years within the research area of adjustable
autonomy (Scerri, Pynadath, and Tambe 2002; Schurr et al.
2006; Schurr, Marecki, and Tambe 2009).

The problem of mixed-initiative optimization in security
games is the collaboration between human users and soft-
ware assistants to make trade-offs between maximizing the
solution quality and minimizing the cost associated with re-
laxing constraints. Consider the following simple scenario
of the FAMS domain in which we need to decide patrol
schedules (i.e., assign FAMS to flights) for the flights from
city A to cities B, C, and D. There are three initial nego-
tiable constraints regarding resource usage: 1) There are 20
marshals in city A; 2) 30% of flights from city A to cities
B, C, and D should be covered; and 3) all the flights from
city A to city B should be covered. With this initial con-
straints, there may be no feasible schedule if there are too
many flights from city A. Then the software assistant and
the human user interact with each other to relax some con-
straints to improve the quality of the schedule. There are
many ways to relax constraints, e.g., having more resources
at city A, decreasing the coverage percentage, or allowing
some flights to city B not being covered. While the solution
quality of the schedule may increase if some constraints are
relaxed, the human user also suffers from a cost by relax-
ing constraints. For instance, it is costly to have more air
marshals.

Let the set of constraints provided by the human user be C.

9



The problem of computing the defender’s optimal strategy in
a security game can be formulated as follows.

max
x

f(x)

s.t. C,�
where x is defender’s policy, which consists of a vector of
the defender’s pure strategies, f(x) is the defender’s ex-
pected utility given its strategy x and the attacker’s best re-
sponse, and � is the set of constraints enforcing feasibility
of both agents’ strategy and optimality of the attacker’s strat-
egy (which could be for multiple attacker types) given the
defender’s strategy x.

Let x∗(C) be the defender’s optimal strategy given the set
of constraints C. Note that x∗(C) could be infeasible in case
that no strategy x can satisfy all the constraints C. We can
define the defender’s maximum utility f(C) with constraints
C as follows.

f(C) =
{
f
(
x∗(C)) if x∗(C) is feasible

−∞ otherwise

The human user may suffer from a cost while relaxing a
constraint (e.g., having more air marshals). Thus, the human
user has preference over different sets of constraints depend-
ing on factors such as the cost of relaxing each constraint and
the relative importance of different constraints. For the con-
venience of analysis, we represent preferences with a cost
function and let c(C) be the human user’s cost of having a
constraint set C. Then the optimization objective of both the
software assistant and the human user is as follows.

max
C

f(C)− c(C)
We can treat f(C) − c(C) as the overall utility of having

constraints C. Given the mixed-initiative optimization ob-
jective, the software assistant and the human user will col-
laborate to find the optimal constraint set that maximizes
the overall utility. In addition, we assume that the mixed-
initiative interaction has to terminate within a deadline T .
There are different interaction models depending on how to
decide the set of constraints to explore:

• The software assistant determines different constraint sets
to explore and reports to the human user the optimal util-
ity for each constraint set. The human user will make the
decision about the final constraint set considering the hu-
man user’s cost of relaxing constraints. This simple pro-
cess could involve asking the human user for clarification
or additional information.

• The human user always decides which constraint set to
explore and the software assistant simply reports the so-
lution quality of its optimal strategy after solving the se-
curity game.

• The software assistant and the human user together de-
cide the next constraint set to explore. This process is
more complex which involves both the human user and
the software assistant’s reasoning about the most promis-
ing direction of relaxing constraints.

The Challenges

Past work in mixed-initiative planning and scheduling, and
the related area of adjustable autonomy have pointed out
some of the exciting research challenges. Among these chal-
lenges a key challenge is that of addressing the uncertainty
in decision making faced by the planning/scheduling tool
or agent, and the cost/rewards of making correct/incorrect
decisions and the cost of bothering or interrupting a user.
While a decision-theoretic framework suggests itself as a so-
lution given such costs and uncertainties, decision-making
deadlines adds another layer of complexity. To solve this
problem, researchers have focused on frameworks such as
MDPs, continuous-time MDPs, dec-MDPs and others, to
provide an agent a policy to follow when interacting with
human users.

Our work faces many of these challenges, although we
may not face complex task structure, complex communi-
cation interface, and multiple users/agents faced by oth-
ers (Myers et al. 2007; Ferguson and Allen 2007; Scerri, Py-
nadath, and Tambe 2002; Rich and Sidner 2007). However,
a key differentiating factor is that underlying our research is
a game-theoretic solver. The major challenges of designing
a mixed-initiative approach for security games include:

• Scale of security games and constraints: There may be
a large number of constraints in the domain of security
games and for some constraints, there may be infinitely
many ways to relax a constraint such as the constraint
about flight coverage in the domain of FAMS. Therefore,
it is impractical to try all the constraint sets. In addition,
even the fast algorithm for solving security games may
need more than one hour due to scale of security games.
For instance, US commercial airlines fly 27,000 domestic
flights and over 2000 international flight each day. The
scale of the security games together with real-time re-
quirements preclude us from using an exhaustive search
algorithm to try different constraint sets since we need
to solve the security game for each constraint set. It is
more reasonable for the software assistant to determine
the next constraint set based on inferring its interaction
history with the human user.

• Knowledge acquisition: It is possible that the human
user does not have perfect knowledge of the cost of con-
straints. If the software assistant reports the optimal util-
ities for different constraint sets, the human user needs to
reason about the consequence of adopting different con-
straint sets and the benefit of having a higher utility at the
cost of relaxing some constraints. It may be difficult for
the human user to tell whether one constraint is more im-
portant (and in what degree) than another constraint. It is
even more difficult for the human user to directly measure
the exact difference between having a 20% flight cover-
age and setting the flight coverage to a 15%. Therefore,
preference elicitation support is necessary for the mixed-
initiative approach.

• Shift of control: Recall that there are three interaction
models depending on who is deciding the next constraint
set to explore. While the human user may have superior

10



decision-making expertise, it often has bounded rational-
ity and the software assistant may provide good sugges-
tions based on its inference/learning capability. Deciding
who decides the constraint set depends on many factors
such us the human user’s uncertainty, the software assis-
tant’s knowledge, and the potential cost of switching con-
trol.

• Evaluation: It is also difficult to evaluate the perfor-
mance of a mixed-initiative approach. In addition to com-
mon difficulties in evaluating security systems such as
security concerns in making evaluations of security poli-
cies publicly available and ethical concerns in not provid-
ing the best security possible to a control group (Jain et
al. 2010b), mixed-initiative interaction brings some new
difficulties. For instance, the performance of a mixed-
initiative interaction model depends on the type of the
human user and it is very costly and time consuming to
evaluate different user types. We also need to compare
the overall system’s performance of the mixed-initiative
approach versus fully automated optimization and alter-
native mixed-initiative approaches.

• Explanation: Traditionally, the software assistant never
has to explain to the user how the problem formulation
maps to the domain of the user and how it is solved. In
a mixed-initiative model, a software assistant may need
to explain the reason why there is no feasible solution to
assist the human user to decide how to relax constraints. It
is a challenging problem to design good user interfaces to
facilitate the human-agent interaction and to explain how
constraints affect the solution quality.

Conclusion

This position paper argues for the development of a mixed-
initiative approach for solving security games, in which hu-
man users and software assistants collaborate to make secu-
rity decisions. Research on methods for supporting mixed-
initiative interaction in security games will undoubtedly lead
to new applications of mixed-initiative interaction.

Future research will focus on different components of a
mixed-initiative approach including sensitivity analysis for
understanding how different constraints affect the solution
quality, inference/learning for discovering directions of re-
laxing constraints, search for finding constraint sets to ex-
plore, preference elicitation for finding the human user’s
preference of different constraint sets, and interface design
for explaining the game theoretic solver’s performance. Our
approach will be tested on real data from deployed applica-
tions.

References

Ferguson, G., and Allen, J. 2007. Mixed-initiative systems
for collaborative problem solving. AI Magazine 28(2):23–
32.
Horvitz, E. 1999. Principles of mixed-initiative user inter-
faces. In Proceedings of the SIGCHI conference on Human
factors in computing systems, 159–166.

Jain, M.; Kardes, E.; Kiekintveld, C.; Ordonez, F.; and
Tambe, M. 2010a. Security games with arbitrary schedules:
A branch and price approach. In AAAI.
Jain, M.; Tsai, J.; Pita, J.; Kiekintveld, C.; Rathi, S.; Tambe,
M.; and Ordonez, F. 2010b. Software Assistants for Ran-
domized Patrol Planning for the LAX Airport Police and the
Federal Air Marshals Service. Interfaces 40:267–290.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Tambe, M.; and
Ordonez, F. 2009. Computing optimal randomized resource
allocations for massive security games. In AAMAS, 689–
696.
Myers, K.; Berry, P.; Blythe, J.; Conley, K.; Gervasio, M.;
McGuinness, D. L.; Morley, D.; Pfeffer, A.; Pollack, M.;
and Tambe, M. 2007. An intelligent personal assistant for
task and time management. AI Magazine 28(2):47–61.
Paruchuri, P.; Pearce, J. P.; Tambe, M.; Ordonez, F.; and
Kraus, S. 2007. An efficient heuristic approach for security
against multiple adversaries. In AAMAS.
Pita, J.; Jain, M.; Western, C.; Portway, C.; Tambe, M.; Or-
donez, F.; Kraus, S.; and Parachuri, P. 2008. Deployed
ARMOR protection: The application of a game-theoretic
model for security at the Los Angeles International Airport.
In AAMAS-08 (Industry Track).
Rich, C., and Sidner, C. L. 2007. Diamondhelp: A generic
collaborative task guidance system. AI Magazine 28(2):33–
46.
Scerri, P.; Pynadath, D. V.; and Tambe, M. 2002. Towards
adjustable autonomy for the real world. Journal of Artificial
Intelligence Research 17(1):171–228.
Schurr, N.; Patil, P.; Pighin, F.; and Tambe, M. 2006. Us-
ing multiagent teams to improve the training of incident
commanders. In Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems,
1490–1497.
Schurr, N.; Marecki, J.; and Tambe, M. 2009. Improv-
ing adjustable autonomy strategies for time-critical domains.
In Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems, 353–360.
Tecuci, G.; Boicu, M.; and Cox, M. T. 2007. Seven aspects
of mixed-initiative reasoning: An introduction to this special
issue on mixed-initiative assistants. AI Magazine 28(2):11–
18.
Tsai, J.; Rathi, S.; Kiekintveld, C.; Ordonez, F.; and Tambe,
M. 2009. IRIS: a tool for strategic security allocation in
transportation networks. In AAMAS (Industry Track), 37–
44.

11


