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Abstract

We present an ontology consisting of a theory of spatial di-
mension and a theory of dimension-independent mereologi-
cal and topological relations in space. Though both are fairly
weak axiomatizations, their interplay suffices to define var-
ious mereotopological relations and to make any necessary
dimension constraints explicit. We show that models of the
INCH Calculus and the Region-Connection Calculus (RCC)
can be obtained from extensions of the proposed ontology.

1 Introduction

It has long been argued that commonsensical theories of
space must include qualitative spatial descriptions using
topological, e.g. contact, and mereological, e.g. parthood,
relations. Actual theories of space axiomatizing these topo-
logical and mereological relations, however, have often been
restricted to one class of ‘foundational’ entities of uniform
dimension: usually either points or regions.

A dimension-independent approach should favour neither
the bottom-up approach (defining higher-dimensional enti-
ties in terms of points) of classical geometry nor the top-
down approach (taking higher-dimensional regions as foun-
dational and reconstructing dependent lower-dimensional
entities) employed in standard mereotopology. Instead, our
objective is to axiomatize topological and mereological re-
lations in a theory where entities of various dimensions co-
exist as first-class domain objects, e.g. for qualitatively de-
scribing sketch maps (Fig. 1). The challenge is to sepa-
rate the relations that can hold between entities regardless
of their dimension from the relations that constrain the di-
mensions of the involved entities. Needless to say that these
relations shall align with common intuitions of space. The
need for such a dimension-independent theory of space has
been reiterated recently by (Frank 2010). Here, we axioma-
tize such a theory from first principles in a modular matter.
The following guidelines frame our endeavour:

1. Separating the notion of dimension from an axiomatiza-
tion of dimension-independent spatial relations;
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Figure 1: Two sketches of a map depicting an island (i) in a
river (r) and a street (s) across a bridge (b) over a river arm
to the island. The street intersects (x) a highway (h). There
are regions east (e) and west (w) of the river. Roads as well
as rivers can be treated as (complex) lines or as regions.

2. Expressing dimension constraints (if any exist) explicitly
for the defined mereotopological relations;

3. Identifying metalogical relationships between the mod-
ules of the axiomatization (definitional, conservative, and
non-conservative extensions; cf. Grüninger et al. 2010);

4. Verifying the consistency and basic properties of the spa-
tial relations automatically.

We show that many commonsensical refinements of con-
tact are definable in our ontology consisting of a theory of di-
mension and a theory of dimension-independent mereotopo-
logy based on a single mereological or topological primitive
(‘containment’ or ‘contact’). Subsequently, we will show
how models of two mereotopologies can be obtained from
extensions to our proposed ontology.

1.1 Background and related work

A wealth of theories capturing the mereotopological rela-
tions between equi-dimensional spatial regions, such as sur-
faces in a 2D space or intervals in a 1D space, are known
but few capture the relations between regions of mixed di-
mensions. Rare exceptions focus on capturing boundaries as
lower-dimensional entities (Galton 1996; 2004), or on area-
line and line-line relations in two-dimensional space, e.g.
(Egenhofer & Herring 1991; Clementini, Di Felice, & Oos-
terom 1993). (Galton 2004) contains a more comprehensive
and still up-to-date survey of dimension in spatial relations.
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Two main approaches towards a theory of topological and
mereological relations are known, namely the logical ap-
proach (e.g. the RCC: Cohn et al. 1997) and the intersec-
tion approach (Egenhofer 1991; Egenhofer & Herring 1991)
classifying topological relations by the intersection of interi-
ors, boundaries and exteriors. Egenhofer & Herring (1991),
Clementini, Di Felice, & Oosterom (1993), and McKenney
et al. (2005) refined those to a total of 68, 52, and 128,
respectively, topological relations that account for the di-
mension of the overlap/contact between any combinations of
simple points, lines, and areas. Amongst these relations, the
authors of those three proposals distinguish alone 33 (18, 61)
relations amongst simple lines in a two-dimensional space.
While these approaches are precise in distinguishing a va-
riety of mereotopological configurations, humans are inca-
pable of dealing with such a large set of relations. Moreover,
these relations only apply to spatial entities in 2D space, i.e.
only points, lines and surfaces are considered. The alter-
native calculus-based approach in Clementini et al. (1993)
on the other hand deals with a small set of commonsensical
relations, but is very ad-hoc and relies on an involved topo-
logical apparatus. Moreover, neither of those approaches
enables us to explicitly reason about dimension.

With respect to the calculus-based (or ‘logical’) ap-
proaches, our work is most closely related to the INCH Cal-
culus (Gotts 1996) which uses a primitive INCH(x,y) with
the intended meaning ‘x includes a chunk of y’ (a chunk
being an equi-dimensional part). This theory is capable of
describing strong contact (what we call partial overlap and
incidence) but is incapable of capturing superficial contact,
e.g. when two equi-dimensional regions share a boundary or
touch in a point. Nevertheless our axiomatization has been
inspired by that of (Gotts 1996) – we generalize and orga-
nize it into a modular set of ontologies. However, we start
with a dimension-independent mereological primitive, con-
tainment, and the definition of its dimension-independent
topological counterpart, contact, and then show how other
dimension-dependent mereotopological predicates, such as
INCH, are definable. Thereby, we make the dimension con-
straints of various mereotopological relations explicit.

Other related calculus-based approaches include the ex-
tension of classical mereotopology with dimensions by (Gal-
ton 1996) and (Galton 2004). Both are chiefly concerned
with the definability of dependent lower-dimensional enti-
ties, in particular boundaries, in a top-down approach to
mereotopology. Galton (1996) shows how such lower-di-
mensional entities can be accommodated through a set of
equivalence classes that only contain entities of the same di-
mension while restricting parthood to members of the same
equivalence class. Similarly, (Galton 2004) defines depen-
dent lower-dimensional entities as regular closed subsets of
the boundaries of higher-dimensional entities.

1.2 Preliminaries

Our axiomatization uses standard unsorted first-order logic
with equality where ¬,∧,∨,→,↔ denote the connectives of
negation, and, or, implication, and ‘if and only if’, respec-
tively. Variables appearing free in sentences are assumed to
be universally quantified unless otherwise stated. All vari-

ables range over ‘spatial entities’, also called ‘regions’ and
referred to as ‘extents’ by (Gotts 1996). We assume that each
spatial entity can be assigned a unique dimension which is
uniform across all parts1. In particular, a region and the set
of all points contained in the region differ.

Sentences are labelled according to the schema ‘[theory]-
[type][number]’; the type distinguishes axioms (A), defini-
tions (D), theorems (T), extensions (E), and mappings (M).

The consistency of the various theories has been checked
with Mace4 and all theorems have been verified using the
automated theorem prover (ATP) Prover9 (McCune 2010)2.

2 A naïve theory of dimension

Various notions of dimension have been employed within
theories of qualitative space. We want to axiomatize dimen-
sion in the weakest possible way which is still suitable for
defining spatial relations that are limited to entities of certain
(relative) dimensions. For example we want to be able to ex-
press that region A has a higher dimension than region B or
the intersection of regions A and B has a lower dimension
than either one. Thereby it is unnecessarily restrictive to e.g.
require that dimensions can be added or subtracted or restrict
the total number of distinct dimensions. In other words, the
sought axiomatization should be just strong enough to allow
us to compare the dimensions of spatial entities.

A brief look at the various definitions of dimension in
topology can be of help. There we find the small and large
inductive dimensions, the Lebesgue covering dimension (cf.
McKenney et al. 2005), the Haussdorff dimension, and the
notion of dimension in the theory of manifolds. (Engelking
1995) gives a good overview of dimension from the topo-
logical perspective. Other notions of dimensions, e.g. those
used for vector spaces or Hilbert spaces, are difficult to in-
clude in a qualitative theory of space.

A theory of dimension that suits our needs can be con-
structed reusing core ideas from inductive definitions of di-
mension. However, the relevant topological definitions are
either still overly restrictive or rely on a heavy topological
apparatus of which we would like to rid ourselves. We con-
struct our basic theory of dimension, Tdim, as weak axioma-
tizations of the binary primitive relations < and =dim. Their
intended interpretations are ‘x has a lower dimension than
y’ (x < y) and ‘x and y have the same dimension’ (x =dim y).
< is irreflexive, asymmetric, and transitive (strict partial or-
der). =dim meanwhile is reflexive, symmetric, and transitive
(equivalence relation). Though in many settings one would
define =dim in terms of < as x =dim y ↔ x ≮ y∧y ≮ x, this is
not required in Tdim. We thereby permit incomplete informa-
tion regarding the dimension of entities, i.e. models in which
neither x =dim y, nor, x < y, nor y < x hold. D-A7 to D-A9
govern the relationship between < and =dim while D-A11,
D-A12 ensure that a potential zero region (we use ZEX from
(Gotts 1996)) is unique and of lowest dimension. D-A10 de-
mands a lowest-dimensional entity (apart from ZEX) with-
out preventing infinite-dimensional models. As this paper

1Containment is the dimension-independent version of ‘part-
hood’ that can express that, e.g., an object contains a crack.

2Available at www.cs.toronto.edu/~torsten/DCT
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will show, this theory is sufficiently strong to distinguish
mereotopological relations that depend on dimensions.
(D-A1) x ≮ x (< irreflexive)
(D-A2) x < y → y ≮ x (< asymmetric)
(D-A3) x < y∧ y < z → x < z (< transitive)
(D-A4) x =dim x (=dim reflexive)
(D-A5) x =dim y → y =dim x (=dim symmetric)
(D-A6) x =dim y∧ y =dim z → x =dim z (=dim transitive)
(D-A7) x < y →¬x =dim y (=dim and < incompatible)
(D-A8) x =dim y∧ z < x → z < y (=dim renders < transitive)
(D-A9) x =dim y∧ x < z → y < z (=dim renders < transitive)
(D-A10) ∃x(¬ZEX(x)∧∀y(y < x → ZEX(y))) (lowest dim.)
(D-A11) ZEX(x)∧ZEX(y)→ x = y (unique ZEX)
(D-A12) ZEX(x)∧¬ZEX(y)→ x < y (ZEX has minimal dim.)

While Tdim = {D-A1–D-A12} is agnostic about the exis-
tence of a zero region to accommodate extensions in which
such region is either desirable or convenient, its extensions
by Z-A1 to T 0

dim and by NZ-A1 force/prevent a zero region.

(Z-A1) ∃xZEX(x) (existence of a ZEX)
(NZ-A1) ¬ZEX(x) (no ZEX exists)

Now we introduce additional useful definitions for dimen-
sion. The module Tdim−de f s = Tdim∪ {D-D1–D-D6} is a
(conservative) definitional extension of Tdim. D-D6 requires
some explanation: it makes the distinction between x =dim y
and x ≮ y∧ y ≮ x explicit. We allow models in which di-
mensionally incomparable regions have ‘possibly the same
dimension’. This can be useful when the dimension of an
entity differs depending on the relation to other entities. A
building, e.g., can be 2D in relation to the street it is lo-
cated on, but 3D when related to its floors which themselves
might be 2D on a floor plan, but 3D when talking about stor-
age space. Entities of minimal or maximal dimension as
defined by D-D4 and D-D5 are thus not necessarily of min-
imum or maximum dimension because e.g. two maximal-
dimensional entities might be incomparable with respect to
their dimensions. In Tdim−de f s basic properties of 
≷ and of
its interaction with < and =dim are provable (D-T1 to D-T5).
(D-D1) x > y ↔ x < y (greater dim.)
(D-D2) x ≤ y ↔ x < y∨ x =dim y (lesser or equal dim.)
(D-D3) x ≥ y ↔ x > y∨ x =dim y (greater or equal dim.)
(D-D4) MaxDim(x)↔∀y(x ≮ y) (maximal-dimensional entity)
(D-D5) Atom(x)↔¬ZEX(x)∧∀y(y < x → ZEX(y))

(atom = minimal-dimensional entity apart from ZEX)
(D-D6) x 
≷ y ↔ x ≮ y∧ y ≮ x (possibly equal dimension)
(D-T1) x 
≷ x (
≷ reflexive)
(D-T2) x 
≷ y → y 
≷ x (
≷ symmetric)
(D-T3) x =dim y∧ y 
≷ z → x 
≷ z (
≷ transitive under =dim)
(D-T4) x =dim y → x 
≷ y (=dim implies 
≷)
(D-T5) x < y → x 
=dim z∨ y 
=dim z

Two further extensions are of practical importance. First,
the theory of bounded dimension Tdim−bounded , which non-
conservatively extends Tdim by D-E1 to D-E3 ensuring that
unique minimum and maximum dimensions exist while
coincidence of maximum and minimum dimension forces
equi-dimensionality of a model. Independently thereof, we

���������	
���	��� �	�����	
���	���

	
�����

������������	���
������	��

�����	
� �������	
� ���

	
�����������������	���������	��

�����	
�

	
����� ������������	���
������	��

��	���	�
������	
���	��

��������	�����	��� �����������	��

������������	���
������	��

������������	���
������	��

Figure 2: Modules of the theory of dimension.

can require regions to be dimensionally comparable (D-E4).
Such theory of linear dimension Tdim−linear extends Tdim
non-conservatively; it entails x =dim y ↔ x 
≷ y and D-E3.
(D-E1) ∃x(Atom(x)∧∀y(Atom(y)→ x =dim y))
(D-E2) ∃x(MaxDim(x)∧∀y(MaxDim(y)↔ x =dim y))

(unique minimum and maximum dimensions)
(D-E3) ¬ZEX(x)∧MaxDim(y)∧Atom(y)→ y =dim x

(equi-dimensionality if maximum = minimum dimension)
(D-E4) x < y∨ y < x∨ x =dim y (comparability required)

Further extensions can limit the number of distinct dimen-
sions to any other particular number (cf. Fig. 2) as necessary
for e.g. k-partite incidence geometry.

3 Dimension-independent spatial relations

We proceed by examining the mereological and topologi-
cal relations that can hold between spatial entities indepen-
dent of their dimension. On the mereological side this is
spatial containment, denoted by Cont(x,y), and on the topo-
logical side it is contact, denoted by C(x,y). Though we
choose Cont as spatial primitive, C would serve equally well
as primitive which can define Cont. This interchangeabil-
ity of a topological and mereological primitive has first been
observed in (Hahmann, Winter, & Grüninger 2009) for the
equi-dimensional mereotopology of (Asher & Vieu 1995).

3.1 Containment as mereological relation

What parthood is to equi-dimensional mereotopology, con-
tainment is to dimension-independent mereotopology. In its
point-set interpretation, we say ‘y contains x’, i.e. Cont(x,y),
if every point in space occupied by x is also occupied by y.
A region can contain not only a (smaller) region of the same
dimension (equi-dimensional parthood), but also a lower-di-
mensional entity. E.g. a 2D-surface can contain another 2D-
surface, a line, or a point. Containment is a non-strict partial
order. We again use ZEX to denote a zero region which
neither contains nor is contained in any other region. For
the basic theory of containment, Tcont = {C-A1–C-A4} we
make no assumption about the (non-)existence of a zero re-
gion. Two extensions are feasible: T 0

cont = Tcont∪ {Z-A1}
and T¬0

cont = Tcont∪ {NZ-A1}.
(C-A1) ¬ZEX(x)→Cont(x,x) (Cont reflexive)
(C-A2) Cont(x,y)∧Cont(y,x)→ x = y (Cont antisymmetric)
(C-A3) Cont(x,y)∧Cont(y,z)→Cont(x,z) (Cont transitive)
(C-A4) ZEX(x)→∀y(¬Cont(x,y)∧¬Cont(y,x))

(no entity contains or is contained in ZEX)
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Figure 3: Modules of the theory of containment.

3.2 Contact as a definable topological relation

Now contact C is definable in terms of containment (C-D).
Those familiar with equi-dimensional mereotopology might
notice the close resemblance to the common mereotopolo-
gical definition of overlap as O(x,y)↔∃z(P(z,x)∧P(z,y)).
We can subsequently prove that C is reflexive and symmet-
ric and does not hold for the zero-region. We can also show
monotonicity of C (C-T4) in case of containment. The in-
verse of C-T4 is not entailed and thus posited as axiom
C-A5. Hence Tcont−c = Tcont∪ {C-D, C-A5} is a non-con-
servative extension of Tcont . C-T4 and C-A5 imply that Cont
is also definable by contact C as primitive relation.
(C-D) C(x,y)↔∃z(Cont(z,x)∧Cont(z,y)) (contact)
(C-T1) ¬ZEX(x)→C(x,x) (C reflexive)
(C-T2) C(x,y)→C(y,x) (C symmetric)
(C-T3) ZEX(x)→∀y(¬C(x,y)) (nothing in contact with ZEX)
(C-T4) Cont(x,y)→∀z(C(z,x)→C(z,y))

(Cont implies C monotone)
(C-A5) ¬ZEX(x)∧¬ZEX(y)∧∀z(C(z,x)→C(z,y))→Cont(x,y)

(C monotone implies Cont)

As side-effect, C-D forces a mereological closure. Con-
tact between two entities requires the existence of a common
contained entity – interpretable as intersection. A useful and
common assumption is extensionality of C.
(C-E1) x = y ↔∀z(C(z,x)↔C(z,y)) (C extensional)

4 Interaction of dimension and containment

The basic theory of containment, Tcont , can be combined
with Tdim by axiomatizing the direct relation between con-
tainment and dimension: if x is contained in y, then x must
have a dimension that is the same as or lower than that of y.
We obtain Tcont−dim = Tcont−c ∪Tdim∪ {CD-A1}.
(CD-A1) Cont(x,y)→ x < y∨ x =dim y

Surprisingly, all theorems in this section, with the excep-
tion of exhaustiveness of the contact relations (CD-T4), can
be proved without using CD-A1.

Another common assumption is indivisibility of atoms
(cf. CD-E1), the non-zero entities of lowest dimension. In-
divisibility is justified as long as atoms represent points. If
the entities of the lowest dimension represent lines or sur-
faces it is too strong an assumption. Though a necessary
extension e.g. for incidence geometry, we do not include
CD-E1 in our general theory of containment and dimension.
(CD-E1) Atom(x)→∀y(Cont(y,x)→ x = y) (indivisible atoms)

We use Tcont−dim to define three types of contact that de-
pend on the dimension of the entities in contact and/or the
dimension of the common entity. We distinguish two types
of strong contact, namely partial overlap and incidence, and

weak (or superficial) contact. We show that the three form
an exhaustive and pairwise disjoint set of contact relations.

First, notice that the traditional notion of parthood, i.e.
containment between two equi-dimensional entities, is eas-
ily defined in Tcont−dim. We verify that parthood is a non-
strict partial order (P-T1 to P-T3) which implies contact
(P-T8) and we prove simple transitivity properties in inter-
action with dimension constraints (P-T4 to P-T7).
(P-D) P(x,y)↔Cont(x,y)∧ x =dim y (parthood)
(P-T1) ¬ZEX(x)→ P(x,x) (P reflexive)
(P-T2) P(x,y)∧P(y,x)→ x = y (P antisymmetric)
(P-T3) P(x,y)∧P(y,z)→ P(x,z) (P transitive)
(P-T4) P(x,y)∧ z < x → z < y
(P-T5) P(x,y)∧ y < z → x < z
(P-T6) P(x,y)∧ z =dim x → z =dim y
(P-T7) P(x,y)∧ z =dim y → x =dim z
(P-T8) P(x,y)→C(x,y) (parthood requires contact)

4.1 Strong contact

Equi-dimensional: Partial overlap Parthood allows us to
define partial overlap as the strongest contact holding when
two regions share a part. Partial overlap is a reflexive and
symmetric relation requiring equi-dimensionality.
(PO-D) PO(x,y)↔∃z(P(z,x)∧P(z,y)) (partial overlap)
(PO-T1) ¬ZEX(x)→ PO(x,x) (PO reflexive)
(PO-T2) PO(x,y)→ PO(x,y) (PO symmetric)
(PO-T3) PO(x,y)→ x =dim y (PO requires equi-dimensionality)

Non-equi-dimensional: Incidence Two entities of differ-
ent dimension can also be in strong contact. We generalize
partial overlap to incidence by requiring that they share a re-
gion that is part of one (instead of both) of them, but do not
share a region that is part of both. The theorems INC-T1 to
INC-T6 become provable.
(INC-D) Inc(x,y)↔ ∃z[Cont(z,x)∧P(z,y)∧ z < x]∨∃z[P(z,x)∧

Cont(z,y)∧ z < y] (incidence)
(INC-T1) ¬Inc(x,x) (Inc irreflexive)
(INC-T2) Inc(x,y)→ Inc(y,x) (Inc symmetric)
(INC-T3) x =dim y →¬Inc(x,y)

(equi-dimensionality prevents incidence)
(INC-T4) Inc(x,y)→ x < y∨ y < x

(incidence requires comparability of entities)
(INC-T5) Cont(x,y)∧ x < y → Inc(x,y)

(containment of a lower-dimensional entity requires incidence)
(INC-T6) Inc(x,y)∧P(y,z)→ Inc(x,z)

(incidence transitive with respect to parthood)

Boundaries (and parts thereof) are special kinds of en-
tities incident with the bounded entity. A naïve definition
(INC-E1) defining boundary parts as lower-dimensional en-
tities that arise when two non-overlapping, non-incident en-
tities meet is far from ideal: e.g. the intersection point of two
crossing lines is part of the boundary of either line. We can
prevent this by excluding from the boundary those ‘parts of
the boundary’ (BP) that are contained in two non-overlap-
ping parts of the bounded entity. We refrain from exploring
these issues further and refer to the abundant literature on
boundaries, e.g. (Fleck 1996; Smith & Varzi 1997).
(INC-E1) BP(x,y)↔Cont(x,y)∧ Inc(x,y)∧∃z[Cont(x,z)∧ x < z

∧¬PO(z,y)∧¬Inc(z,y)] (x is part of the boundary of y)
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Figure 4: The mereotopological concepts parthood (and
partial overlap), incidence, and superficial contact are def-
initional extensions of the theories Tcont−dim and T 0

cont−dim
which combine containment with dimension.

4.2 Weak contact: Superficial contact

While partial overlap and incidence are strong contacts in
the sense that the shared entity is at least an equi-dimen-
sional part of one region, superficial contact is a weak con-
tact. We say two entities are in superficial contact, SC, if the
shared spatial entity has a dimension lower than both enti-
ties in contact. SC-T1 proves that this is equivalent to saying
that two entities are in superficial contact if they are in con-
tact but the shared entity is not a part of either. Superficial
contact is an irreflexive and symmetric relation.
(SC-D) SC(x,y)↔ ∃z[Cont(z,x)∧Cont(z,y)]∧¬∃z[(Cont(z,x)∧

Cont(z,y)∧ (x =dim z∨ y =dim z] (superficial contact)
(SC-T1) SC(x,y) ↔ C(x,y) ∧ ¬∃z[(Cont(z,x) ∧ P(z,y)] ∧

¬∃z[(P(z,x)∧Cont(z,y)]
(SC-T2) ¬SC(x,x) (SC irreflexive)
(SC-T3) SC(x,y)→ SC(y,x) (SC symmetric)
(SC-T4) SC(x,y)→∃z(z < x∧ z < y∧Cont(z,x)∧Cont(z,y))

(SC requires a shared entity of a lower dimension)

Superficial contact is dimension-independent. An equi-
dimensional version can only be defined if at least one region
has codimension 0 such as in traditional equi-dimensional
mereotopology where all regions are of the same dimension.
(SC-E1) SC(x,y)∧MaxDim(x)→ EC(x,y) (external connection)

4.3 Exhaustiveness and disjointness

In the theory Tf ull = Tcont−dim∪ {P-D,PO-D,Inc-D,SC-D},
PO, SC, and Inc are pairwise disjoint (CD-5 to CD-10) and
are an exhaustive set of contact relations (CD-1 to CD-4).
(CD-T1) PO(x,y)→C(x,y)
(CD-T2) SC(x,y)→C(x,y)
(CD-T3) Inc(x,y)→C(x,y)
(CD-T4) C(x,y)→ PO(x,y)∨SC(x,y)∨ Inc(x,y)
(CD-T5) PO(x,y)→¬SC(x,y)
(CD-T6) PO(x,y)→¬Inc(x,y)
(CD-T7) SC(x,y)→¬PO(x,y)
(CD-T8) SC(x,y)→¬Inc(x,y)
(CD-T9) Inc(x,y)→¬PO(x,y)
(CD-T10) Inc(x,y)→¬SC(x,y)

5 Relationship to other spatial theories

Now we show how to extend the ontology Tf ull so that the
models of the extension are models of (a) the INCH Calcu-
lus (Gotts 1996) or (b) the RCC (Cohn et al. 1997). More
precisely, the INCH Calculus and the RCC faithfully and de-
finably interpret (Grüninger et al. 2010), respectively, ex-
tensions of T 0

f ull−linear = Tf ull ∪ T 0
dim ∪ Tdim−linear. Recall

that this extended theory requires a zero entity and dimen-
sional comparability of all entities. Our extensions explicitly
formalize previously implicit dimension constraints for var-
ious spatial relations such as external contact (EC), includes
an equi-dimensional chunk of (INCH), or lower-dimensional
element (EL).

5.1 INCH Calculus

We first define the intended (or ‘primary’) interpretation, ‘x
includes a chunk (a part) of y’, of the relation INCH(x,y)
in terms of dimension and containment (I-D). The axioms
(I-PA3)–(I-PA7) of the INCH Calculus are immediately
provable in the presence of the definitions I-D1 to I-D5.
Moreover, the defined relations ZEX , GED, ED, and GD in
(Gotts 1996) correspond to our dimension predicates ZEX ,
≥, =dim, and >, respectively (I-D6 to I-D9). We define
Tinch−basic = T 0

f ull−linear∪ {I-D, I-D1 – I-D9}.

(I-D) INCH(x,y)↔∃z(Cont(z,x)∧P(z,y)) (includes a chunk)

(I-D1) CS(x,y)↔∀z(INCH(x,z)→ INCH(y,z))
(‘x is a constituent of y’)

(I-D2) OV (x,y)↔ INCH(x,y)∧ INCH(y,x) (overlap)

(I-D3) CO(x,y)↔∃z(¬ZEX(z)∧CS(z,x)∧CS(z,y))
(connection)

(I-D4) CH(x,y)↔ INCH(x,y)∧∀z(OV (x,z)→ OV (y,z))
(‘x is a chunk (equi-dimensional part) of y’)

(I-D5) EL(x,y)↔CS(x,y)∧¬INCH(x,y)
(’x is a (lower-dimensional) element of y’)

(I-D6) ZEX(x,y)↔¬INCH(x,y)

(I-D7) GED(x,y)↔ y < x∨ x =dim y (greater or equal dim.)

(I-D8) ED(x,y)↔ x =dim y (equal dimension)

(I-D9) GD(x,y)↔ y < x (greater dimension)

(I-PA3) INCH(x,y)→ INCH(x,x)

(I-PA4) GED(x,y)∨GED(y,x)

(I-PA5) GED(x,y)∧GED(y,z)→ GED(x,z)

(I-PA6) INCH(x,y)∧ INCH(y,z)∧ INCH(z,x)→ INCH(y,x)

(I-PA7) INCH(x,y)→∃z(CS(z,x)∧OV (z,y))

Next, we verify that in Tinch−basic, PO is equivalent to OV
and under the premise of y < x, Inc is equivalent to INCH.
Moreover, Cont, C, P, and SC are interpretable using the
defined relations CS, CO, and CH from the INCH Calculus.
(I-M1) Cont(x,y)∨ZEX(x)→CS(x,y)

(I-M2) OV (x,y)↔ PO(x,y)

(I-M3) CO(x,y)→C(x,y)

(I-M4) P(x,y)→CH(x,y)

(I-M5) (Cont(x,y)∧ x < y)∨ZEX(x)→ EL(x,y)
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(I-M6) y < x → (Inc(x,y)↔ INCH(x,y))

(I-M7) SC(x,y)→CO(x,y)∧¬INCH(x,y)∧¬INCH(y,x)

Extensionality of INCH (I-PA1, I-PA2) and the Boolean
operations sum and diff (I-PA9, I-PA10) are proper exten-
sions of Tinch−basic, i.e. they are not entailed. Also I-PA8
does not follow, it is e.g. violated by entities of mixed di-
mensions such as a disk with a spike and needs to be added
to restrict Tinch−basic to the models of the INCH Calculus.

(I-PA1) x = y ↔∀z(INCH(x,z)↔ INCH(y,z))

(I-PA2) x = y ↔∀z(INCH(z,x)↔ INCH(z,y))

(I-PA8) CH(x,y)→CS(x,y)

(I-PA9) x =dim y → ∃z∀w(INCH(z,w) ↔ INCH(x,w) ∨
INCH(y,w)) (z = sum(x,y))

(I-PA10) x =dim y → ∃z∀w(INCH(z,w) ↔ ∃v[INCH(v,w) ∧
CH(v,x)∧¬OV (v,y)]) (z = diff(x,y))

Now we can formalize the relationship between our the-
ory and the original INCH-calculus, denoted by T ′

inch.

Theorem 1. Let Tinch− f ull = T 0
f ull−linear∪ {I-PA1, I-PA2,

I-PA8 – I-PA10} and T ′
inch ={I-PA1 – I-PA10, I-D1 – I-D9}.

Then T ′
inch faithfully interprets Tinch− f ull , i.e. every model M

of Tinch− f ull can be extended to a model M ′ of T ′
inch so that

all sentences consistent with M are consistent with M ′.
The reverse does not hold, i.e. not every model of T ′

inch is
also a model of Tinch− f ull . This is due to the failure of the
sentence (the inverse of the implication in I-M1)
(I-M1R) CS(x,y)∧¬ZEX(x)→Cont(x,y)

indicating that either: (a) we do not capture all intended
interpretations of INCH or (b) that the axiomatization in
(Gotts 1996) has unintended models. This necessitates a
closer investigation beyond the scope of this paper. How-
ever, we do have the following partial result:
Theorem 2. Tinch− f ull∪ I-M1R entails the sentences
(I-M3R) C(x,y)→CO(x,y)
(I-M4R) CH(x,y)→ P(x,y)
(I-M5R) EL(x,y)∧¬ZEX(x)→Cont(x,y)∧ x < y
(I-M7R) CO(x,y)∧¬INCH(x,y)∧¬INCH(y,x)→ SC(x,y)

Observe that I-M2 and I-M6 already contain the bidi-
rectional implication and thus do not require additional in-
verses. Therefore, I-MIR establishes all equivalences be-
tween the relations of the INCH-calculus and the relations
definable in our extension Tinch− f ull .

5.2 Equi-dimensional mereotopology (RCC)

In order to restrict the theory to models of equi-dimen-
sional mereotopology, we cannot, somewhat counterintu-
itively, prohibit entities of lower dimensions. Otherwise,
‘external connection’ in the RCC or ‘meet’ in the Interval
Calculus (Allen 1983), both special cases of SC (cf. SC-E1),
have empty extensions according to SC-T4. This reduces
the mereotopology to a pure mereology with overlap as only
contact relation. Instead, we base the mapping to models of
the RCC on the set of non-zero regions: the entities of max-
imum dimension (RCC-D1) guaranteed to exist by D-E2 in

T 0
f ull−linear∪Tdim−bounded . We do not attempt to directly con-

struct models of the RCC, but instead show how we can ob-
tain connected atomless Boolean contact algebras. The rep-
resentation of RCC models by this class of contact algebras
from (Düntsch & Winter 2005) then allows us to conclude
that equivalent models of the RCC must exist.

(RCC-D1) NZRegion(x)↔ MaxDim(x) (non-zero regions)

(RCC-D2) R(x)↔ NZRegion(x)∨ZEX(x) (regions)

(RCC-D3) RP(x,y)↔ (P(x,y)∧R(x))∨ (ZEX(x)∧R(y))
(parthood amongst regions)

We require binary meets (intersections, RCC-A1) and
joins (sums, RCC-A2) and a universal (RCC-A3) in the set
R resulting in bounded lattices 〈R,RP〉 with RP defining the
partial order. These bounded lattices are Boolean because
of unicomplementation (RCC-A4) and region-extensional-
ity of C (RCC-A5). To obtain connected atomless Boolean
contact algebras it now suffices to ensure connectedness
(complements are in SC; RCC-A6). Then, all non-trivial
models (RCC-A7) are automatically atomless by RCC-T1,
cf. (Düntsch & Winter 2005).

(RCC-A1) R(x) ∧ R(y) → ∃m[R(m) ∧ RP(m,x) ∧ RP(m,y) ∧
∀z(RP(z,x)∧RP(z,y)↔ RP(z,m))] (m = x · y)

(RCC-A2) R(x) ∧ R(y) → ∃ j[R( j) ∧ RP(x, j) ∧ RP(y, j) ∧
∀z(RP(x,z)∧RP(y,z)↔ RP( j,z))] ( j = x+ y)

(RCC-A3) R(U)∧∀x(R(x)→ RP(x,U)) (universal U)

(RCC-A4) NZRegion(x)∧ZEX(z)→∃x′[NZRegion(x′)∧x+x′ =
U∧x ·x′ = z∧∀v[(NZRegion(v)∧x+v=U∧x ·v= z)→ x′ = v]]

(x′ is the unique complement of x)

(RCC-A5) R(x)∧R(y)→ [x= y↔∀z[R(z)→ (C(z,x)↔C(z,y))]]
(extensionality of C amongst regions)

(RCC-A6) NZRegion(x)∧ x 
=U → SC(x,x′) (connectedness)

(RCC-A7) ∃x(NZRegion(x)∧X 
=U) (non-trivial)

(RCC-T1) NZRegion(x)→∃y(x 
= y∧P(y,x)) (inf. divisibility)

Theorem 3. Suppose T 0
dim−eq = T 0

f ull−linear ∪Tdim−bounded∪
{RCC-D1 – RCC-D3, RCC-A1 – RCC-A7}.

For any model M of T 0
dim−eq there exists a model N of

RCC such that N is definably interpreted in M .

To prove Theorem 3, recall that a structure N with lan-
guage L1 is definable in a structure M with language L2
iff there exists a definable set X ⊆ Mn and we can inter-
pret the symbols of L1 as definable subsets and functions
on X so that the resulting structure is isomorphic to N
(Grüninger et al. 2010). For the proof of Theorem 3
we choose X = {x|〈x〉 ∈ NZRegion} as the definable set.
Since we already ensured that X forms a connected atom-
less Boolean algebra, it remains to show that for all elements
x,y ∈ X , contact C in N is defined as C(x,y)≡¬P(x,y′) (as
in RCC models) exactly when C(x,y) holds in M . This is
guaranteed by the axioms C-D (definition of contact), P-D
(definition of parthood), RCC-A4, RCC-A5, and RCC-A6.
All other relations in the model N are in turn definable in
terms of C (as in RCC). We thus obtain a connected, atom-
less Boolean contact algebra 〈X ,C〉 with the zero element
removed, which is a model of the RCC.
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6 Summary and outlook
We have presented an ontology that clearly separates prop-
erties of dimension from dimension-independent mereoto-
pological primitives (containment and contact). We demon-
strated how mereotopological relations, in particular part-
hood and the various contact relations, become definable
through the rather weak interaction of dimension and con-
tainment. The dimension is only used relatively, that is, part-
hood as well as partial overlap require spatial entities to be
of equal dimension, whereas incidence requires one element
to be of lower dimension and weak contact is only applica-
ble of the shared entity is of a lower dimension. Without
using absolute dimensions (such as a two-dimensional en-
tity), we can provide a jointly exhaustive, pairwise disjoint
categorization of (binary) contact between spatial entities in
terms of partial overlap, incidence, and weak contact.

We verified all discussed modules of the ontology by
proving all theorems mentioned in the paper with an auto-
mated theorem prover and by generating non-trivial mod-
els for Tf ull∪{D-E1 to D-E4} (Tf ull restricted to linear and
bounded dimensions) showing the consistency of the the-
ory. Each non-trivial model ensures that the extensions of
all spatial relations are non-empty. Then all weaker theories
discussed in the paper also have non-trivial models. More-
over, we confirmed that commonsensical descriptions of the
sketches in Fig. 1 are consistent with the ontology. The on-
tology is applicable in any domain dealing with spatial en-
tities of two or more dimensions. We intend to explore the
following application and refinements in the future.
• Interpret incidence geometry as an extension of our ontol-

ogy by limiting the number of distinct dimensions.
• Refine superficial contact to capture intuitive notions such

as ‘touches’, ‘borders’, ‘crosses’, and ‘attachment’.
• Explore the reasoning capabilities and limitations of an

extension capturing sketch maps (Reiter & Mackworth
1989). What inferences are possible and can the necessary
number of distinct dimensions be determined without ex-
plicitly assigning dimensions to all map features, e.g. the
river or the street in Fig. 1?

• Define artifacts in manufacturing such as cracks (cf. Hah-
mann & Grüninger 2009) in the ontology.
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