
A Framework for Teaching
and Executing Verb Phrases

Daniel Hewlett and Thomas J. Walsh and Paul Cohen
Department of Computer Science, University of Arizona, Tucson, AZ

{dhewlett,twalsh,cohen}@cs.arizona.edu

Abstract

This paper describes a framework for an agent to learn verb-
phrase meanings from human teachers and combine these
models with environmental dynamics so the agent can en-
act verb commands from the human teacher. This style of
human/agent interaction allows the human teacher to issue
natural-language commands and demonstrate ground actions,
thereby alleviating the need for advanced teaching interfaces
or difficult goal encodings. The framework extends prior
work in apprenticeship learning and builds off of recent ad-
vancements in learning to recognize activities and modeling
domains with multiple objects. In our studies, we show how
to both learn a verb model and turn it into reward and heuris-
tic functions that can then be composed with a dynamics
model. The resulting “combined model” can then be effi-
ciently searched by a sample-based planner which determines
a policy for enacting a verb command in a given environment.
Our experiments with a simulated robot domain show this
framework can be used to quickly teach verb commands that
the agent can then enact in new environments.

Introduction

Verb phrases (like “walk over the hill”) are the method hu-
mans most naturally use to communicate about actions with
other human agents. However, the capability of artificial
agents to learn and understand verbs is underdeveloped. In-
stead, agents designed in the Artificial Intelligence commu-
nity often encode objectives in terms of goals (traditional
planning) or reward functions (reinforcement learning, or
RL). The difference is more than just diction. When judg-
ing whether an agent has performed a verb phrase such as
“walk over”, one must consider not just whether it reached
a goal location, but how the agent got there. In addition,
verbs have many desirable properties not shared by standard
objective encodings, including the ability to inherit meaning
from, or compose new meanings with, other verbs. Criti-
cally, verb meanings should also be executable by an agent
in a given environment. The problem we consider in this
work is that of learning verb models that support all of these
properties with the help of a human teacher. Our solution
to this problem provides a natural teacher-student interac-
tion between a human and an agent where the human can

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

communicate commands and label demonstrations via natu-
ral language and make use of the properties of verbs.

Our verb-learning and execution protocol extends work in
apprenticeship learning (Abbeel and Ng 2005), where agents
learn low-level dynamics from human teachers for a single
domain class and task. Instead, our agents learn verb mean-
ings that can be used to define completely new tasks. It also
contrasts with work on verb-phrase recognition or classifica-
tion (Tellex et al. 2010) because our system not only learns
a model of the verb-phrase, but is able to plan and execute
policies to enact it.

The specific contributions of this work are the following.
We describe a method for representing and learning (from
a teacher) verb-phrase meanings based on work in activity
recognition (Kerr 2010), but unlike that line of research, we
link the learned models to actual verbs in a way that main-
tains several desirable properties of verbs. We then compose
these models with an environment’s dynamics model in a
manner that allows a planner to build a policy that will enact
the verb in a given environment. This gives us an end-to-end
system for learning verb meanings from human teachers and
executing verb commands. As a proof of concept, we de-
scribe a specific instance of this combination using object-
oriented MDPs to model environments, finite state machines
to model verbs, and a sample-based planner (LRTDP) to do
the planning. We empirically demonstrate the success of our
verb learning/executing system in some simple test cases,
including problems where a human teaches verbs that help
bootstrap other verb meanings through composition.

Problem Overview

Formally, we will be considering a set of environments E at
two levels: low-level object dynamics and abstract verb de-
scriptions. We will discuss the complete data structures used
to capture each of these in subsequent sections, but for now
it suffices to consider the following components. The low-
level object dynamics capture the changing physical state of
an environment e ∈ E, specifically the configuration of a set
of objects O. Each object has a set of attributes (for instance
its x and y coordinates). There is also a set of relational flu-
ents F (such as Above(X,Y)) that are either true or false at
each step for given object parameters. Together, these ob-
ject attributes and fluents make up the state of the environ-
ment at every step. While the individual environments may

18

Help Me Help You: Bridging the Gaps in Human-Agent Collaboration — Papers from the AAAI 2011 Spring Symposium (SS-11-05)

Teacher Creates
Scenario

Student Plans to
Perform Verb

Student’s Trace

Teacher
Demonstration

Update Verb
Model (Positive)

Update Verb
Model (Negative)

Teacher’s Trace

Update Verb
Model (Positive)

Teacher Picks Verb
from Set

Teacher Labels
Student’s Trace:

Successful Incomplete Violation

Plan Execution

Figure 1: Our verb-teaching and execution protocol.

contain different numbers of objects with different attributes
(different obstacles in different places), the fluents in each
environment are considered to be consistent. Thus, each e
is a specific instantiation of the domain class E. Algorithms
exist for learning the dynamics of similar models (Diuk, Co-
hen, and Littman 2008), but they are always used in concert
with a reward function or goal specification.

We consider a different paradigm where goals are com-
municated via verb phrases such as “Go around the block.”
While these phrases are not as concrete as goals or rewards,
they are far more amenable to natural human-machine inter-
action. We consider a set of available verb phrases V such
that v ∈ V has a meaning based on a series of configura-
tions of a set of fluents Fv that are either true or false on
each timestep. For instance, Figure 2 illustrates (as a finite
state machine) the verb go.

Since meanings are subjective, human guidance (in some
form) is a necessary component for learning verbs. In our
system, learning is done through incremental refinement of
the verb semantics from interactions with a human teacher.
The role of this teacher is twofold. First, the teacher can pro-
vide positive or negative demonstrations of a verb phrase be-
ing executed in an environment. This demonstration comes
in the form of a sequence of states and actions (taken by the
demonstrator). The second channel for human teaching is
labeling examples, including both the teacher’s own demon-
stration and executions performed by the agent. The full
learning architecture we propose is illustrated in Figure 1.
Formally, the protocol for every episode goes as follows.

1. The teacher can choose an environment e ∈ E, and a verb
v ∈ V and ask the agent to execute v in e.

2. The agent then uses its semantic model of the verb phrase
along with a planner to produce and execute a policy that
enacts this verb phrase. The human teacher can then label
this execution successful, incomplete (for partial perfor-
mance of the verb), or violation (for actions incompatible
with performing the verb).

3. If the agent’s behavior was judged by the teacher to be in-

complete or a violation of the verb phrase, the teacher can
provide a demonstration of the verb in the same environ-
ment.

The overall goal of the teacher is to teach the verb-phrase
semantics to the agent in a complete enough form that for
any 〈e, v〉 chosen adversarially (in a later testing phase), the
agent will be able to enact v to the teacher’s satisfaction.
In the rest of this work, we provide details of the design
choices, data structures, and algorithms we have used to im-
plement this system and present some experimental results.

Learning Verb Meanings from Teachers

We begin by describing our representation and learning al-
gorithm for verb phrases, starting with the properties of
verbs we would like to maintain. Humans communicate
a variety of content with verbs, including descriptions of
events, and conditions that should not occur, such as “avoid
the painted area” (see, e.g., (Levin 1993) for a discussion).
Thus, an ideal verb representation should, at a minimum,
support both recognition and execution, as well as the speci-
fication of constraints on execution, such as undesirable out-
comes. It should also be specified at a qualitative level,
since the same verb can be applied to different physical (or
even metaphorical) events. To facilitate teaching verbs, a
verb representation should support the sorts of operations
on verbs that humans intuitively understand. For exam-
ple, many verbs may be described in terms of other verbs,
whether by specialization (e.g., “run” vs. “go”) or compo-
sition (e.g., “fetch” is a sequence of simpler actions). There
are likely several combinations of representations and learn-
ing algorithms that can accomplish this task. Here, we pro-
pose a representation of verb meanings based on finite-state
machines that we argue possesses many of these character-
istics.

Representation

Our representation for verb meanings is a type of finite-state
machine we will refer to as a Verb FSM (VFSM). A VFSM
differs from standard DFAs in two respects: each edge is la-
beled with a set of propositions, rather than a single symbol,
and accepting states are partitioned into positive and neg-
ative states. Each intermediate (non-start and non-terminal)
state contains a loop back to itself, allowing parts of the verb
to take varying amounts of time. An example VFSM with
abbreviated proposition names is shown in Figure 2. The
utility of similar FSMs for recognition of activities, as well
as a method for generalizing such FSMs, has been previ-
ously established (Kerr 2010), so we will not explore these
issues here.

The VFSM is a qualitative representation in that it repre-
sents only propositional information, and only information
about the ordering of states rather than their duration. It is
also underspecified because each transition specifies only a
subset of the propositions comprising the environment state
se. Also, all of the propositions in the VSFM are expressed
as relations over the arguments of the verb rather than spe-
cific objects (e.g., InFrontOf (Agent,Obstacle) rather than
InFrontOf (robot1,bluebox2)). The full verb representation,

19

D(A,P)
DC(P,A)
DC(A,P)
M(A)
R(A)
T(A)

DC(P,A)
DC(A,P)
F(A)
LO(A,P)
M(A)

DC(P,A)
DC(A,P)
IFO(A,P)
L(A)
M(A)
T(A)

DC(P,A)
DC(A,P)
LO(A,P)

DC(P,A)
DC(A,P)
IFO(A,P)

C(P,A)
C(A,P)
DD(P,A)
DD(A,P)
F(A)
M(A)

C(P,A)
C(A,P)
DD(P,A)
DD(A,P)
F(A)
M(A)

D(A,P)
DI(P,A)
DI(A,P)
F(A)
M(A)

D(A,P)
DC(P,A)
DC(A,P)
M(A)
R(A)
T(A)

DD(P,A)
DD(A,P)
F(A)
IFO(A,P)
M(A)

>

Figure 2: Example VFSM for the verb go(Agent,Place). The
two paths ending in positive (green) terminals represent dif-
ferent ways to perform the verb, depending on the initial
configuration. The upper path is incompatible with the verb.

then, is composed of the lexical form of the verb and its argu-
ment structure (e.g., pick-up(Agent,Object)), together with
the VFSM.

Formally, the VFSM can be defined by a tuple (S, Σ,
s0, δ, Ap, An), where S is the set of propositional states,
δ : S,Σ �→ S is the transition function , s0 is the start state
and Ap and An are the sets of positive and negative accept-
ing states, respectively. Σ, the “alphabet” of the VFSM, is
theoretically all the possible sets of true fluents, though we
do not have to enumerate all of these to define the transition
function. Because the transitions in the VFSM are labeled
with sets rather than individual symbols, non-determinism
can result because a given set of fluents may be compatible
with more than one outgoing transition. To ensure that the
VFSM operates deterministically, we define a function δ′ to
select a unique transition given an input set of fluents F . Let
Σs denote the set of outgoing transitions from s, and σ0 de-
note a transition back to the start state. Then, we can define
a function δ′ for the VFSM as:

δ′(s, F) =

{
argmaxσ∈Σs

|σ|, such that σ ⊆ F

σ0 if no such s′ exists.
(1)

Ties are broken in a consistent manner. By always taking
the most specific transition matching F , we ensure that the
VFSM operates deterministically. The agent will progress
through the VFSM until it reaches one of two kinds of ter-
minal states: Positive accepting states indicate that the agent
has successfully completed the verb, while negative accept-
ing states indicate that the agent’s actions were incompatible
with performing the verb.

Learning Algorithm

The student constructs the VFSM from stored compressed
traces of previous performances of the verb and teacher
demonstrations. At the level of propositions, an episode can
be viewed as a multivariate time series: each proposition is
a variable and its value is either true or false. Such a time
series is referred to as a propositional multi-variate time se-
ries, or PMTS. A PMTS can be compressed by collapsing
together sequences of states that are identical to one another;
this process is analogous to dynamic time-warping of real-
valued time series. For brevity, we defer to Kerr (2010) for
a detailed discussion of this compressed PMTS representa-

tion. To create the VFSM, we first build a DFA (specifi-
cally, a trie) out of these compressed sequences, where each
leaf/terminal is an accepting state. Then, we minimize this
DFA. In addition to reducing the number of states, mini-
mization of a trie-like DFA ensures that the resulting DFA
has precisely one accepting state, since the algorithm merges
states with the same set of outgoing transitions. Thus, in a
VFSM, which has two types of accepting states, minimiza-
tion results in one positive accepting state and one negative
accepting state. This property will prove useful for compo-
sition.

Each teaching episode is structured so as to provide the
student with multiple opportunities to update the VFSM.
First, the student’s attempt to perform the verb in the envi-
ronment the teacher has configured will result in a trace for
the teacher to label. If the teacher labels the trace successful
or violation, the compressed sequence of the student’s per-
formance will be added as a new (positive or negative) path
to the VFSM. Next, the teacher may perform a demonstra-
tion, which will be added to the VFSM as a positive instance.
Thus, the student will elaborate the VFSM throughout each
teaching episode.

Composition of VFSMs

Since each VFSM has one start state and one positive accept-
ing state, concatenation of VFSMs is simple, which allows
for sequential verb composition. Concatenation is achieved
simply by merging the positive accepting state of the first
VFSM with the start state of the second VFSM. Note that,
while at a formal level this combined VFSM accepts a lan-
guage that is simply the concatenation of the languages ac-
cepted by each VFSM, planning with the combined VFSM
is not equivalent to planning with the two VFSMs indepen-
dently. This is because there are multiple paths through the
VFSM and also because transitions in the VFSM are under-
specified, meaning that some of the ways of executing the
first verb may be incompatible with executing the second
verb. Planning with the combined VFSM will ensure that no
such paths are taken, while planning with the two VFSMs
independently does not.

Object Oriented MDPs

In order to plan and execute a verb phrase in an environment,
we need to model the environment’s dynamics. In this work,
we will employ a representation called an object-oriented
MDP (OOMDP), which has been used previously to model
video games (Diuk, Cohen, and Littman 2008) and robot dy-
namics as taught by human teachers (Walsh et al. 2010). We
have chosen OOMDPs because their object-attribute dynam-
ics mesh well with our domains of interest, but any relational
fluent language, including STRIPS (Fikes and Nilsson 1971)
could be used in our architecture.

In a standard (not OO) MDP formalism (Puterman
1994), a model M = 〈S,A, T, R, γ〉 is comprised of
states, actions, a transition function, rewards, and a dis-
count factor. The long-term value of a state can be de-
scribed by the optimal value function: V ∗(s) = R(s) +
γmaxa

∑
s′ T (s, a, s

′)V (s′). The policy corresponding to

20

these values is π∗ : S �→ A. An OOMDP model compactly
describes MDP-style dynamics for environments with many
objects, each with attributes as described earlier. The set
of relational fluents F are deterministically defined (such as
On(X, Y) := X.yCoord = Y.yCoord +1) in terms of formulas
over the object attributes. OOMDPs model the dynamics of
actions (T (s, a, s′)) using a special form of action schemas
(templates for parameterized actions like pick-up(A, X)).
OOMDP action schemas have conditional effects based on
conjunctions ci over the relational fluents (e.g. Clear(X) ∧
EmptyHand(A)). Each ci is associated with a set of possi-
ble stochastic effects (an object might be picked up or the
arm might miss). These effects describe changes to the ob-
ject attributes (e.g., a changing x coordinate). Thus at each
time step, the state changes conditionally based on the cur-
rent fluent configuration and action, which affect the object
attributes, which in turn changes the currently true fluents.

While efficient algorithms have been developed for learn-
ing OOMDP dynamics with or without teachers (Walsh et
al. 2010; Diuk, Cohen, and Littman 2008), our current work
focuses on learning verbs and using the learned meanings to
execute commands. Therefore, in this work we will assume
that the full OOMDP model is provided with the environ-
ment chosen by the teacher.

Algorithm 1 Planning, Executing, and Updating with an
OOMDP and VFSM

1: Input: An OOMDP Me, a VFSM Mv , Environment e
with initial state se0, and horizon H

2: Create combined MDP MC with SC = (Se × Sv) and
TC from (2) and RC from (3)

3: Create the heuristic function Φ(〈se, sv〉) = −ρ(sv)
4: st = 〈se0, sv0〉
5: while the sv component of st is not terminal and t < H

do
6: at = Planner.recommend(MC , Φ, sT)
7: Execute at in e, observe s′e
8: Query Mv(sv , at, s′e) for s′v
9: st+1 = 〈s′e, s′v〉

10: t = t+ 1
11: Use the teacher’s label l of τ to update Mv.update(τ ,l)
12: If the teacher provides a demonstration trace and label

〈τ ′, l′〉, Mv.update(τ ′,l′)

Combining the Representations

Now that we have representations for the low-level object
dynamics and the high-level meanings of verbs, we need to
combine the models in a way that facilitates efficient plan-
ning of a policy to execute the verb phrase in a given envi-
ronment. An outline of the algorithm for the construction
of the combined model and the planning and execution of
the verb phrase is given in Algorithm 1, which we will refer
to throughout this section. The first step in this process is
to combine the state spaces of the two models (line 2). In
the OOMDP representation of an environment e, a state se
is fully determined (because of the derivable fluents) by the
attribute values of each of the objects. In the VFSM repre-

sentation, a state is simply the current node in the VFSM,
sv . To cover the full set of contingencies, we can construct a
combined state sC = 〈se, sv〉 for all possible combinations
of the two state components. The transition dynamics are
then describable as:

TC(sC , a, s
′
C) = T (s′e|a, s′e)I(δ(sv, f [s′e]) = s′v) (2)

where f [s] denotes the fluents that are true in s and I is an
indicator function. While this state space is potentially quite
large, it is unlikely that all or even most of the naive states
are reachable because a combined state can only be valid if
the fluents for the transition to s′v are true in se. We now
show how to construct reward and heuristic functions that
will facilitate efficient planning in this combined state space.

Using the VFSM for Reward and Heuristic
Functions

As mentioned earlier, executing a verb is different from
goal-based planning tasks in that a sequence of stages must
be completed to perform as the human teacher has requested.
To that end, we have constructed a state space above that en-
codes the state of the verb execution, so we can define the
reward function as:

RC(sC) = −I(sv /∈ Ap) (3)

That is, the reward for a step is 0 if the agent is in an accept-
ing terminal state in the VFSM, otherwise −1. Note that
the reward function here depends solely on the VFSM, not
the ground environment. Incorporating the environment’s
reward function Re is possible, but potentially complicated,
as we discuss in the Future Work section. Unfortunately,
because of the size of the combined state space and the spar-
sity of reward, planners may have difficulty finding a policy
to perform the verb in a reasonable amount of time. Instead,
we would like to leave some “breadcrumbs” throughout the
state space so that small rewards are given for completing
each stage of a verb, without hindering the completion of
the verb itself.

A simple mechanism for encoding such subgoals is to
initialize the values of each state (V (sC)) using a heuris-
tic function Φ(sC), which is equivalent to the reward shap-
ing described above (Wiewiora 2003). We use (line 3) the
heuristic function Φ(sC) = −ρ(sv), where ρ(sv) is the
shortest distance in the VFSM from sv to an accepting termi-
nal state. This is the minimum number of stages remaining
in the VFSM to complete the verb activity. This heuristic is
admissible because it always takes at least one step (reward
of −1) to transition between stages.

Using this heuristic will draw the planner towards areas
of the state space where it is able to progress through stages
of the verb, but will not stop it from backtracking if the cur-
rently explored branch does not allow for the verb’s comple-
tion in this specific environment. For instance, if the verb
“go around” is to be performed and an obstacle has a short
way around and a long way (in terms of the VFSM states),
the planner will search the short way first, but if there is no
actual path to complete the verb (say because of a pit in this
specific environment), the planner will be able to backtrack
and find a (longer) way to complete the verb.

21

Planning in the Combined Space

We now have a fully specified combined MDP MC =
〈SC ,A, TC , RC , γ〉, where the actions A and discount fac-
tor γ come from the original environment MDP Me (in our
case an OOMDP). However, to actually perform the behav-
ior consistent with the verb, we need to use a planner that
can map MC to a policy. In this work, we will be employing
a sample-based planner, which plans by simulating trajec-
tories through its learned model to determine the values of
states and then chooses actions to maximize the discounted
return. We chose such a planner over “all state” planners
like Value Iteration (VI) (Puterman 1994) for two reasons.
First, the combined state space may be very large and con-
tain many states that are either not reachable from the ini-
tial state, or that do not need to be considered because they
are far away. Planners like VI have a computational depen-
dence on |S|, and therefore can become essentially unus-
able in such state spaces. Sample-based planners sidestep
this difficulty by only guaranteeing to produce a policy for
the start state s0 (hence they may need to be called at ev-
ery timestep, as in line 6). Second, sample-based planners
tend to see a considerable performance boost from heuris-
tic functions (Bonet and Geffner 2003), such as the one we
constructed above.

A number of sample-based planners have been suggested
in the literature including several variants of Real Time Dy-
namic Programming (RTDP) (Barto et al. 1995). In our ex-
periments we used the LRTDP algorithm (Bonet and Geffner
2003), which is designed specifically for minimum-cost path
planning problems, which is exactly the type of problem we
have because the cost function we have specified (Equation
3) has only negative rewards for steps and terminal states.
Using a more complex reward function (for instance one that
takes into account a general Re) may require more advanced
sample-based planners.

Experiments

We conducted our experiments with a simu-
lated mobile robot in the Gazebo robot simulator
(http://playerstage.sourceforge.net/). The environment
contained three types of objects: the robot, blocks, and
locations. Each of these corresponds to an object type in
the OOMDP. Example OOMDP attributes include x and
y locations for all objects, orientations for the robot and
blocks, and size and shape for blocks. Evaluation followed
a train/test protocol, where the set of test environments
was fixed but we varied the number of teaching episodes
the student was exposed to. To assess the student’s perfor-
mance, we measured the average success rate across the
scenarios, average planning time, and average plan length.
In all experiments, the student’s performance was deemed
successful if it was a valid and complete execution of the
verb, even if it was suboptimal.

Learning Verbs

The first verb we examine is very simple: go(Agent,Place).
The agent was able to perform this verb in all our tests af-
ter essentially two episodes, which is to be expected given

� � �

���

���

���

��	

���
�������
�������

������
��
��������
� �!�"�!

� � �

�

��

��

��

���
�#��
$�����

%�����

&���!��� �"

������
��
��������
� �!�"�!

Figure 3: Average percent correct and average plan length
for the verb phrase “go to X via Y.”

the simplicity of the verb. Even so, the decline in planning
time (1.91 to 0.39 seconds) and average plan length (9.03
to 5.22 steps) after the second episode is illustrative of how
adding new paths through the VFSM improves the reward
and heuristic functions, resulting in better plans and shorter
planning time.

Earlier, we noted that verbs describe the manner in which
an action should be performed rather than simply specifying
a goal state. We chose “go around” as a simple example of
this kind of verb. To perform go-around(Agent,Obstacle),
the agent must move to the other side of the obstacle with-
out touching it. To challenge the agent, we created test sce-
narios where one side of the object was blocked by a wall.
After seeing two examples of this verb, one going around an
object’s right side, and the other its left side, the agent was
able to perform go-around in all of our tests, with an average
planning time of 37.83 seconds.

Combining Verbs

Our final experiment tests the performance of the robot on
a verb phrase corresponding to “go to X via Y” that we
will refer to as go-via. We compare two ways of arriving
at this verb: Teaching the verb directly, and defining go-via
in terms of the simpler verb go. Figure 3 compares the per-
formance of the agent when taught go-via directly and boot-
strapping go-via from go. When taught go-via directly, the
agent requires three examples to perform all four tests reli-
ably. By contrast, the teacher can simply define go-via(X,Y)
as follows: go(Y) then go(X). With go-via defined this way,
the teacher can teach the simpler verb go and the agent’s
ability to perform go-via will improve. The curve labeled
“Bootstrapped” in Figure 3 shows the performance on the
go-via tests after varying numbers of exposures to go. The
agent can perform the tests reliably after only two episodes,
but with higher average planning time (54.16 vs. 26.67 sec-
onds) and plan length (9.75 vs. 7.24 steps) than the direct
version. This example demonstrates how combining smaller
verbs can speed up learning, but also shows how a VFSM
trained directly on the target may better optimize behavior.

Related Work

A number of previous works have considered the problem
of learning classifiers or recognizers for verb phrases from
situated language data. Typically, these are created by min-
ing a parallel corpus of episodes and linguistic utterances
or labels. This approach has been applied to such problems
as answering natural language queries against a video cor-
pus of human activities (Tellex et al. 2010). Our work dif-

22

fers from these approaches because we provide a framework
for executing the verbs, not just learning to recognize them.
There has also been work on humans teaching noun phrases
(like “stapler”) for use in tasks, such as fetching (Saxena et
al. 2007; Hewlett et al. 2007). Our work can be seen as
complementary to theirs in that we are learning models of
activities (like “fetch”) that could be combined with such a
system to handle the full semantics of verb phrases.

The teaching protocol we have used is similar to the
apprenticeship learning framework (Abbeel and Ng 2005;
Walsh et al. 2010). However, where those works focused
on learning the dynamics of particular domains (in the lat-
ter case including an OOMDP representation), here we have
focused on learning general verb phrases that can serve as
human instructions in any number of environments, as long
as the fluents for tracing a verb are the same in each setting.
Our verb learning component and its translation to a reward
function can also be thought of as a form of inverse rein-
forcement learning (Abbeel and Ng 2004), but the structure
of our problems differs greatly from the assumptions usually
employed in such work. Imposing a reward structure on an
environment based on a command also has a history in hier-
archical RL (HRL) (Dietterich 2000). There, upper levels of
the hierarchy impose a reward function on lower levels dur-
ing learning. While there are some similarities between our
composed model and HRL, especially when verbs are being
combined, their approach uses background knowledge (the
hierarchy) to impose a policy bias while learning low-level
controllers to achieve a goal. In contrast, our agents know
how the low-level dynamics work, but attempt to learn a pol-
icy bias itself (the verb).

Conclusions and Future Work

In this work we have shown how to combine a teaching pro-
tocol for learning verbs from humans with dynamics models
to create an interactive system for teaching and executing
verb phrases. We have provided a method that learns a verb
model, uses it to expand an environment’s state space, and
overlays both a cost and heuristic function. We presented
early results demonstrating the success of a sample-based
planner in the resulting model, and showed verb phrases can
be efficiently taught and executed in this manner.

From these initial results, there are a number of avenues
we plan to pursue. First, we assumed throughout this work
that the low-level action dynamics (the OOMDP operators)
were known and that the reward function of the ground envi-
ronment Re could be replaced by a uniform step-cost func-
tion. These decisions were made to highlight the verb learn-
ing and execution portion of our work, but neither of these
is critical to our system. In fact, prior work (Walsh et al.
2010) has established that teaching by demonstration in a
very similar protocol is a powerful tool for efficiently learn-
ing OOMDP operators; so a version of our system that learns
both the verb semantics and low-level dynamics is a nat-
ural next step. In addition, incorporating Re into MC (in
Equation 3) could allow the agent to reason about physi-
cal costs (like walking through dangerous terrain versus a
smooth road) when it has the choice in performing a verb,

though special care has to be taken when combining two
different criteria functions.

Given the rich diversity of verb meanings, a system capa-
ble of representing the semantics of all or even most verbs
remains a long-term research goal. However, characteriz-
ing the subset of verb meanings that VFSMs can represent
is an immediate goal. While VFSMs can naturally repre-
sent verbs with primarily sequential structure (e.g., fetch),
verbs with complex looping/conditional structures (e.g., pa-
trol) may pose a challenge to the current system. A full study
of verb composition is another area of future work.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning via
inverse reinforcement learning. In ICML.
Abbeel, P., and Ng, A. Y. 2005. Exploration and apprentice-
ship learning in reinforcement learning. In ICML.
Barto, A. G.; Bradtke, S. J.; Singh, S. P.; Yee, T. T. R.;
Gullapalli, V.; and Pinette, B. 1995. Learning to act us-
ing real-time dynamic programming. Artificial Intelligence
72:81–138.
Bonet, B., and Geffner, H. 2003. Labeled rtdp: Improv-
ing the convergence of real-time dynamic programming. In
ICAPS, 12–31.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the maxq value function decomposition. Journal of
Artificial Intelligence Research 13(1):227–303.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In ICML.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 5:189–208.
Hewlett, D.; Hoversten, S.; Kerr, W.; and Cohen, P. 2007.
Wubble World. In AIIDE.
Kerr, W. N. 2010. Learning to Recognize Agent Activities
and Intentions. Ph.D. Dissertation, University of Arizona,
Tucson, AZ, USA.
Levin, B. 1993. English Verb Classes and Alternations:
A Preliminary Investigation. Chicago, IL: University of
Chicago Press.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York: Wiley.
Saxena, A.; Wong, L.; Quigley, M.; and Ng, A. Y. 2007. A
vision-based system for grasping novel objects in cluttered
environments. In International Symposium of Robotics Re-
search.
Tellex, S.; Kollar, T.; Shaw, G.; Roy, N.; and Roy, D. 2010.
Grounding spatial language for video search. In Interna-
tional Conference on Multimodal Interfaces.
Walsh, T. J.; Subramanian, K.; Littman, M. L.; and Diuk, C.
2010. Generalizing apprenticeship learning across hypothe-
sis classes. In ICML.
Wiewiora, E. 2003. Potential-based shaping and q-value ini-
tialization are equivalent. Journal of Artificial Intelligence
Research 19:205–208.

23

