
A Temporal Extension of the Hayes and ter Horst
Entailment Rules for RDFS and OWL∗

Hans-Ulrich Krieger
German Research Center for Artificial Intelligence (DFKI GmbH)

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
krieger@dfki.de

Abstract

Temporal encoding schemes using RDF and OWL are often
plagued by a massive proliferation of useless “container” ob-
jects. Reasoning and querying with such representations is
extremely complex, expensive, and error-prone. We present
a temporal extension of the Hayes and ter Horst entailment
rules for RDFS/OWL. The extension is realized by extend-
ing RDF triples with further temporal arguments and requires
only some lightweight forms of reasoning. The approach has
been implemented in the forward chaining engine HFC.

Introduction

This paper first and foremost presents a temporal extension
of the Hayes and ter Horst entailment rules (Hayes 2004;
ter Horst 2005) for RDFS and OWL which is able to derive
new safe facts, persisting over time. To achieve this intu-
itively and efficiently, we argue that the extension of rela-
tion instances with time needs to abandon the concept of an
RDF triple in favor of general tuples, in our case quintuples.
We show that the extension of RDFS and parts of OWL (the
so-called OWL Horst dialect) only requires lightweight rea-
soning capabilities. The extension has been implemented in
the forward chaining engine HFC which is comparable to
OWLIM and Jena, but also supports arbitrary tuples, user-
defined tests and actions, and a special kind of “aggregation”
rules. More information on HFC can be found in (Krieger
and Kruijff 2011).

Motivation

The decision of the Semantic Web/Web 2.0 community to
favor RDF and OWL as standards has proved to be use-
ful. Given this decision, we have experienced several advan-
tages. Firstly, OWL upper ontologies have been made avail-
able that are relatively easy to interface with domain ontolo-
gies developed for projects. Secondly, tableaux-based DL
reasoners can be used to check the consistency of a knowl-
edge base on a regular basis or to query its information.

∗The research described here has been financed by the Euro-
pean Integrated projects CogX (cogx.eu), NIFTi (nifti.eu), and
Monnet (monnet-project.eu) under contract numbers FP7 ICT
215181, 247870, and 248458. I would like to thank the reviewers
for their comments.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Unfortunately many projects have found that the descrip-
tive power of OWL is too weak to formulate (rule-based)
knowledge that is able to discover new and important in-
formation. This, in part, explains the popularity of forward
chaining reasoners, such as OWLIM or Jena, which capture
important parts of OWL together with the possibility to en-
code domain-specific knowledge within the same rule for-
malism.

Furthermore, and very importantly, today’s projects are
more and more dealing with temporally changing informa-
tion, but encounter difficulties when trying to represent this
information in (existing) ontologies. At the same time, rea-
soning support for this kind of emerging information is also
not provided in existing DL reasoners.

Summing up, these experiences have led to the insight
that we actually want to directly extend a RDF relation in-
stance with time and to make the original entailment rules
for RDFS and OWL (Hayes 2004; ter Horst 2005) sensitive
to temporal information. This means, however, that an RDF
triple has to be replaced by a more general tuple represen-
tation. This, together with the fact that the computation of a
proper temporal extent needs aggregates such as minimum
and maximum, has resulted in the development of the afore-
mentioned forward chainer HFC.

Related Approaches

We relate our approach here to already existing frame-
works. For a much broader overall picture that is couched
in terms of first-order predicate calculus and which includes
incomplete and defeasible reasoning through temporal rea-
son maintenance, we let the reader refer to (Dean and Mc-
Dermott 1987).

Temporal Databases

With the development and practical application of SQL,
many people realized the need to add temporal informa-
tion to entries in database tables (Snodgrass 2000). Tempo-
ral databases distinguish between valid time (the interval in
which a fact is true) and transaction time (the time when the
database transaction happens). Valid time admits right-open
intervals, and in principle, a left bound is also not required.
Our approach to follow is much in the spirit of valid time,
except that it comes with rules operating over tuples of the

143

Logical Formalizations of Commonsense Reasoning — Papers from the AAAI 2011 Spring Symposium (SS-11-06)



database (ABox) in order to support RDFS- and OWL-based
reasoning as well as providing domain-dependent rules.

Temporal Description Logic

Temporal aspects in description logics have been addressed
in the past by various forms of Temporal description log-
ics (TDLs). Very often, TDLs are constructed as a combina-
tion of a standard description logic (e.g., ALC) with a stan-
dard temporal logic (e.g., LTL); see (Lutz, Wolter, and Za-
kharyashev 2008). The usual interpretation I for concepts,
roles, and individuals is replaced by a temporal interpre-
tation � that extends the denotation by a further temporal
argument (usually a natural number), interpreted as a time
point. For instance, (n, john�,mary�) ∈ marriedWith�

means that at time n, (john,mary) is an instance of the
marriedWith relation. An important variant of TDLs then
extends ABox formulae by adding the standard LTL modal
operators. For instance, FScrap(mycar) means that there
will be a time n, where my car is scrapped, and for m ≥ n,
(m,mycar�) ∈ Scrap� is the case.

Unfortunately, we have experienced in many projects that
an instant-based approach is not what people want: infor-
mation extraction from natural language texts, for instance,
is best couched in an interval-based approach using (poten-
tially underspecified) calendar time or through topological
temporal interval relations (Allen 1983), but not through
modal operators and a hidden temporal dimension. To the
best of our knowledge, we are not aware of any implemented
TDL-based reasoner (for temporal ABoxes).

Annotation Properties in OWL

Many OWL ontologies define temporal concepts like Tem-
poralInterval, but are not able to temporally annotate rela-
tion instances (e.g., represented as RDF triples or binary re-
lations) directly with instances from these classes. Indeed,
OWL defines the concept of an annotation property, but
these properties can only be associated with classes, prop-
erties, or individuals, but not with relation instances. Thus,
an ABox instance such as (john, mary) : marriedWith can
not be equipped with temporal starting and ending values.

OWL Time

OWL Time is first and foremost a first-order axiomatiza-
tion of time. The original document (Hobbs and Pan 2004)
does not formulate axioms in terms of OWL, but requires
the full expressive power of first-order predicate logic, in-
cluding universal and existential quantification, disjunction,
functions, and relations with more than two arguments. The
good thing with OWL Time is that an ontology of time writ-
ten in OWL can take advantage of the concepts and proper-
ties defined in OWL Time. Thus, parts of OWL Time can be
encoded and reformulated in OWL.

OWL Time as such, however, does not give an answer to
the following question (and it is not intended so): how do
we extend OWL relation instances with time, or more gen-
eral, how do we equip “tenseless” OWL ontologies with a
concept of time (hopefully without “rewriting” the original
ontology). Answers to this question are summarized below.

Approaches Staying inside RDF/OWL

Several proposals have been presented in the literature to
equip (binary) relation instances with time:

1. use further temporal arguments
2. use a “meta-logical” predicate
3. reify original relations
4. wrap range arguments (W3C: N-ary relations)
5. encode a perdurantist/4D view (Welty and Fikes 2006)
6. interpret individuals as time slices (Krieger, Kiefer, and

Declerck 2008)

(1.) is clearly the silver bullet of representation, as it is the
most natural and intuitive approach, requiring the least over-
head in terms of time (during reasoning/querying) and space
(for the representation). (2.), as used, e.g., in the situation
calculus, requires the original relation (relational fluent) to
be reformulated as a function (functional fluent). However,
(1.) and (2.) are outside the expressive means of OWL, a
function-free two-variable variant of first-order logic.

The proposals (3.)–(6.) have already been implemented
in OWL. It is worth noting that (3.)–(5.) enforce a knowl-
edge engineer to rewrite an ontology, whereas (6.) marries
arbitrary ontologies with time by introducing perdurants that
possess time slices (the original individuals) onto which a
temporal extent is defined. As a consequence of using RDF
triples, or equivalently, by sticking to binary relation in-
stances, (3.)–(6.) end up in a massive proliferation of use-
less “container” objects. Reasoning and querying with such
representations is extremely complex, expensive, and error-
prone.

Our Approach

As outlined above, we will extend Hayes-/ter Horst-style en-
tailment rules by a temporal dimension. Thus, in our case,
we replace a RDF triple by a quintuple, since the starting and
ending time of a “temporalized” fact are encoded as separate
arguments.

In a certain sense, we are still dealing with RDF triples
in case we are not interested in the temporal extent of a fact
or in case the temporal information is underspecified or even
unspecified. So, speaking in terms of RDF, the first argument
of a quintuple must come from the domain of the predicate
(second argument), and the third argument is required to fall
into the range.

In addition, certain RDF triples still remain triples, since
we only extend information from the ABox of an ontology—
we will not equip TBox information with a temporal exten-
sion, say, that the subtype relationship between two classes
only holds for some period of time, or that a URI reference
should be regarded as a property at a specific time period
and as a class at a different time.

From a common sense viewpoint, we also exclude identi-
fication statements between individuals (owl:sameAs) to be
extended by a temporal dimension—once individuals have
been identified, it is assumed that they are identical for their
whole lifetime. However, typing information (rdf:type) is
usually assigned a temporal duration, due to the fact that

144



people often encode binary relation instances through class
membership. For instance, (car, red) : hasColor might
equally be represented as car : Red, whereas Red refers to
the class of objects having color red.

What this Paper is NOT About

Several points are worth mentioning here. Firstly, we are not
dealing with duration time in order to resolve expressions
like Monday or 20 days against valid time, when further in-
formation comes in. This needs to be handled by a richer
temporal ontology and temporal arithmetic. Secondly, tem-
poral quantification, such as in four hours every week, is be-
yond the expressive means of our approach. Thirdly, even
though underspecified time is handled by our implementa-
tion through wildcards in the XSD dateTime format (e.g.,
year missing in Over New Year’s Eve, I have visited the Eiffel
Tower), we do not focus on this here. The solution requires
to make certain rule tests sensitive towards the fact that time
is now only partially ordered. These tests then return true,
false, or don’t-know, whereas only true indicates that the
test succeeds, leading to the instantiation of the RHS of the
rule. Fourthly, coalescing temporal information (i.e., build-
ing larger intervals) should be addressed in custom rules and
should not be regarded as part of the RDFS/OWL rule set,
since this functionality depends on the (semantic) nature
of predicates. Finally, certain temporal inferences such as
p(�x, s, t) entails p(�x, s′, t′) in case s ≤ s′ ≤ t′ ≤ t should
not be handled in the below rules, since termination of the
computation of the deductive closure is no longer guaran-
teed. Such information can only be obtained on the query
level. It is worth noting that such entailments assume (as
we do) that temporal intervals are convex, i.e., contain no
“holes”.

Metric Linear Time

The rules below assume that the temporal measuring system
is based on a one-dimensional metric linear time, so that we
can compare starting/ending points, using operators, such as
<, or pick out input arguments in aggregates, using min or
max. We are neutral as to whether time is dense or discrete,
or whether the metric uses real, rational, or natural numbers.
These decisions do not change the effects of rules, since the
predicates and aggregates that are used in the rules are inde-
pendent of the underlying metric. In the implementation of
HFC, long integers are used to encode milli or even nano
seconds w.r.t. a fixed starting point. Alternatively, the XSD
dateTime format can be used which provides an arbitrarily
fine precision, if needed.

Extended Entailment Rules

In the following, we describe a temporal extension of the
entailment rules from (Hayes 2004) and (ter Horst 2005).
The rules are written in the concrete syntax of HFC, so they
slightly differ from (Hayes 2004) and (ter Horst 2005) (who
also use slightly different notations). We will not talk here
about literals, resources, and container membership proper-
ties, thus omitting rules dealing with this information.

Due to space limitations, we are only able to display four
extended entailment rules. We further note that some of the

original rules have not been extended by temporal argu-
ments (e.g., rdfs5), since they only deal with TBox axiom
schemes. The below notation can be seen as an extension of
N-Triples with two further temporal arguments. The rules
make use of further tests (@test) which need to be ful-
filled to successfully instantiate the RHS. Rules might also
be equipped with an action section (@action) that binds
RHS-only variables to values returned by functions.

rdf1 This is the only type statement that is not assigned
a temporal extent, since once ?p has been recognized as a
property, it is assumed that this is always the case.

?s ?p ?o ?b ?e
->
?p rdf:type rdf:Property

rdfs2 The next rule assigns a type to a URI in domain po-
sition. The starting and ending time is taken over from the
original relation instance, representing the given safe tem-
poral information.

?s ?p ?o ?b ?e
?p rdfs:domain ?dom
->
?s rdf:type ?dom ?b ?e

Now comes the more interesting part. Up to now, RDFS
rules have been extended by only moving around start-
ing/ending information to positions in the consequent of a
rule. The two OWL rules below make use of lightweight
tests and aggregates.

rdfp1a and rdfp1b We have complemented the original
rule rdfp1 dealing with object properties by a new rule that
also addresses datatype properties. Let us start with the as-
sumption that the object is either a URI or a blank node, ex-
actly what the original rule encodes in its where condition.

?p rdf:type owl:FunctionalProperty
?p rdf:type owl:ObjectProperty
?x ?p ?y ?b1 ?e1
?x ?p ?z ?b2 ?e2
->
?y owl:sameAs ?z
@test
IntervalNotEmpty ?b1 ?e1 ?b2 ?e2

The IntervalNotEmpty predicate in the test section
(@test) guarantees that we only identify ?y and ?z if the
temporal extent of p(x, y, b1, e1) and p(x, z, b2, e2) has a
non-empty intersection (we use the relational notation here):

IntervalNotEmpty begin1 end1 begin2 end2 ≡
begin := max(begin1, begin2)
end := min(end1, end2)
return (begin ≤ end)

Thus a single overlapping observation leads to a total iden-
tification of ?y and ?z (at all times!), so the sameAs state-
ment need not be equipped with temporal information. Even
though our (my!) commonsense indicates that this is the
right choice, the decision is, in principle, debatable.
If both observations, however, do talk about different non-
intersecting times, it makes perfect sense that ?y and ?z
need not be equal, even though ?p is a functional property
(example: marriedWith relation).

145



Let us now focus on the second rule rdfp1b, dealing with
functional datatype properties.

?p rdf:type owl:FunctionalProperty
?p rdf:type owl:DatatypeProperty
?x ?p ?y ?b1 ?e1
?x ?p ?z ?b2 ?e2
->
?x rdf:type owl:Nothing ?b ?e
@test
?y != ?z
IntervalNotEmpty ?b1 ?e1 ?b2 ?e2
@action
?b = Max2 ?b1 ?b2
?e = Min2 ?e1 ?e2

If two non-identical atoms are defined on a property, the
above rule signals a problem by assigning the bottom type
owl:Nothing to the URI in the first place of the tuple.
Since p(x, y, b1, e1) and p(x, z, b2, e2) come with a dura-
tion, the type assignment to ?x only holds for the intersec-
tion of the two intervals [b1, e1] and [b2, e2], computed by
Max2 and Min2. In case the intersection is empty, we ob-
tain a triple with duration [b, e], where e < b. This “neg-
ative” duration indicates that bottom type assignment is
not entailed by the premises. This constraint is checked by
IntervalNotEmpty in the last line of the definition.

Complexity, Soundness, and Completeness

Hayes (2004) and ter Horst (2005) have presented a set of
so-called entailment (or inference) rules for RDF/RDFS and
a subset of OWL that does not fully cover OWL Lite, but
implements parts of OWL DL. Given the original rules, ter
Horst has shown that entailment for RDFS is decidable and
NP-complete (and even in P if the RDF target graph does
not contain any blank nodes). ter Horst has also proved that
the incompleteness of the system presented in (Hayes 2004)
can be corrected, and that the addition of OWL rules does
not change the original complexity results.

The two rule sets for RDFS and OWL have been ex-
tended by temporal information, associated with an RDF
triple and implemented through additional arguments. These
arguments (fourth and fifth position in a quintuple) do not
“interfere” with the arguments in first, second, and third po-
sition. Moreover, the temporal arguments are atoms (inte-
gers) which do not have an “internal structure” (unlike URIs)
that needs to be considered or that is shared with other tu-
ples in subject, predicate, or object position. By inspecting
the extended rules, time can only act in four ways:

1. temporal information in a LHS clause is neither taken into
account in other LHS clauses, nor on the RHS; example:
variables ?b and ?e in rule rdf1.

2. temporal information is transported from a LHS clause to
a RHS clause; example: variables ?b and ?e in rule rdfs2.

3. temporal information is compared through the four-place
predicate IntervalNotEmpty, involving a ≤ compari-
son and the min and max aggregates; example: ?b1, ?e1,
?b2, and ?e2 in rule rdfp1a.

4. temporal information on the RHS is conditioned by the
input to the two aggregates Max2 and Min2; example: ?b

and ?e in rule rdfp1b.
The important point now is that all four rule cases do not

produce any new individuals (atoms, URIs, or blank nodes).
Even the two aggregates only “pick out” one of their input
arguments (contrary to SUM in SQL, for instance). Thus the
proposed extension is still function-free and the additional
two arguments do not add a further theoretical complexity.
In a triple-based setting (see below), this is no longer the
case, since new container objects (blank nodes) need to be
generated, bearing the potential of non-termination.

Concerning runtime, the predicate IntervalNotEmpty,
and the two aggregates Min2 and Max2 have a constant
complexity, thus the original complexity results of the “un-
tensed” case do hold here as well. The only difference comes
from the replacement of the RDF triple by a quintuple (two
additional arguments).

As indicated in the beginning, the set of extended rules
is not complete in that p(�x, s′, t′) can not be derived from
p(�x, s, t), assuming s ≤ s′ ≤ t′ ≤ t. If we would allow such
rules, the computation of the deductive closure is no longer
terminating. Such information, however, can (and should) be
obtained through ABox queries.

As rule rdfp1b shows, inconsistency is expressed by as-
signing the bottom type owl:Nothing to individuals. In
order to make the rule system sound, two additional rules
must be added, addressing a combination of owl:sameAs
and owl:differentFrom, as well as owl:disjointWith
together with two rdf:type statements.

References
Allen, J. F. 1983. Maintaining knowledge about temporal intervals.
Communications of the ACM 26(11):832–843.
Dean, T. L., and McDermott, D. V. 1987. Temporal data base
management. Artificial Intelligence 32:1–55.
Hayes, P. 2004. RDF semantics. Technical report, W3C. W3C
Recommendation, http://www.w3.org/TR/rdf-mt/.
Hobbs, J., and Pan, F. 2004. An ontology of time for the Semantic
Web. ACM Transactions on Asian Language Processing (TALIP)
3(1):66–85.
Krieger, H.-U., and Kruijff, G.-J. M. 2011. Combining uncer-
tainty and description logic rule-based reasoning in situation-aware
robots. In AAAI 2011 Spring Symposium on “Logical Formaliza-
tions of Commonsense Reasoning”.
Krieger, H.-U.; Kiefer, B.; and Declerck, T. 2008. A framework for
temporal representation and reasoning in business intelligence ap-
plications. In AAAI 2008 Spring Symposium on AI Meets Business
Rules and Process Management, 59–70. AAAI.
Lutz, C.; Wolter, F.; and Zakharyashev, M. 2008. Temporal
description logics: A survey. In Proceedings of the 15th Inter-
national Symposium on Temporal Representation and Reasoning
(TIME’08), 3–14.
Snodgrass, R. T. 2000. Developing Time-Oriented Database Ap-
plications in SQL. San Francisco, CA: Morgan Kaufmann.
ter Horst, H. J. 2005. Completeness, decidability and complexity
of entailment for RDF Schema and a semantic extension involving
the OWL vocabulary. Journal of Web Semantics 3:79–115.
Welty, C., and Fikes, R. 2006. A reusable ontology for fluents
in OWL. In Proceedings of Fourth International Conference on
Formal Ontology in Information Systems (FOIS), 226–236.

146


