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Abstract

A subject independent computational framework is one
which does not require to be calibrated by the spe-
cific subject data to be ready to be used on the subject.
The greatest challenge in developing such a framework
is the variation in parameters across subjects which is
termed as subject based variability. Spectral and ampli-
tude variations in surface myoelectric signals (SEMG)
are analyzed to determine the fatigue state of a muscle.
But variations in the spectrum and magnitude of myo-
electric signals across subjects cause variations in both
marginal and conditional probability distributions in the
features extracted across subjects, making it difficult to
model the signal for any automated signal classification.
However we observe that the manifold of the multidi-
mensional SEMG data have an inherent similarity as
the physiological state moves from no fatigue to fatigue
state. In this paper we exploit this specific feature of the
SEMG data and propose a domain adaptation technique
that is based on intrinsic manifold of the data preserved
in a low dimensional space, thus reducing the marginal
probability differences between the subjects, followed
by an instance selection methodology, based on simi-
lar conditional probabilities in the mapped domain. The
proposed method provides significant improvement in
subject independent accuracies compared to cases with-
out any domain adaptation methods and also compared
to other state-of-the-art domain adaptation methodolo-
gies.

Introduction

Characterization and quantification of muscle fatigue
through noninvasive sensing mechanism such as sur-
face electromyography (SEMG), is a challenging problem.
While changes in the properties (shift in the power spec-
tral density, root mean square, instantaneous frequency, etc)
of SEMG signals with respect to muscle fatigue have been
reported in the literature (Kumar, Pah, and Bradley 2003),
(Georgakis, Stergioulas, and Giakas 2003), (Gerdle, Lars-
son, and Karlsson 2000), the large variation in these mea-
sures across different individuals makes the task of model-
ing SEMG difficult, and automating the process of signal
classification as a generalized tool, complex. The variation
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in SEMG parameters from subject to subject creates a dif-
ference in the data distribution (both in marginal and condi-
tional probabilities) making it difficult to base any general-
ized framework directly on the traditional machine learning
algorithms. In the quest to address this challenge and de-
velop a generalized framework for detecting different stages
of fatigue from SEMG signals, we propose a transfer learn-
ing framework based on a domain adaptation methodology,
that addresses both marginal and conditional probability dif-
ferences between the distributions.

We observe that the SEMG data collected continuously
over time from a non-fatigue to a fatigue state forms a man-
ifold with a well-defined topology that is consistent across
different subjects. Traditional dimensionality reduction
based domain adaptation techniques (PCA, or KPCA/KDA)
ignore the topology of the data distribution, while adapt-
ing data from one domain (subject) to another. In the
proposed approach we learn a new low dimensional fea-
ture space using a nonlinear dimensionality reduction tech-
nique (ISOMAP) which preserves the distribution topology
(Joshua B. Tenenbaum 2000). In our approach, the low di-
mensional feature space maps marginal distribution of data
corresponding to source and target subjects into a common
kernel space and a sample selection strategy in the mapped
domain draws conditional probabilities between the differ-
ent subjects closer. Thus the proposed approach addresses
both marginal and conditional probability differences.

We have validated our framework on SEMG signals col-
lected from 10 people during a repetitive gripping activity.
We extracted 12 amplitude and frequency domain features
from the SEMG signal. Comprehensive experiments on the
SEMG data set demonstrate that the proposed method im-
proves the subject independent classification accuracy by
20% over the techniques that do not employ transfer learn-
ing methodologies and by 16% over other transfer learning
methodologies.

Background and Related work

There are number of techniques that can be used to ob-
jectively determine the level of fatigue in a subject. The
most reliable of these is the direct measurement of chemi-
cal properties in the muscle of the subject. Since this is an
invasive technique it is inappropriate for routine utilization,
away from the clinical environment. The electromyography
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(EMG) is a biosignal recording of the skeletal muscle activ-
ity of the body. It is routinely used by clinicians for anal-
ysis of the skeletal muscle activity. EMG may be recorded
from the surface of the skin without any invasion of the body
known as surface EMG (SEMG). SEMG provides a non in-
vasive way to identify fatigue. Indication of localized mus-
cle fatigue has been frequently based on the observed shift of
the power spectral density of the SEMG (Kumar, Pah, and
Bradley 2003), (Contessa, Adam, and Luca 2009), (Geor-
gakis, Stergioulas, and Giakas 2003), (Lowery et al. 2000),
(Koumantakis et al. 2001), (Sung, Zurcher, and Kaufman
2008). Several parametric measures of SEMG signal have
been used as a relative indicator of the muscle fatigue phe-
nomenon for an individual subject. These include the root
mean square (rms), instantaneous frequency, zero crossing
rate, mean-frequency, and median-frequency. In general
there is a large variation in these measures due to variance in
SEMG power spectrum and it’s shift for different subjects.
Hence most of the work done in past towards quantification
of fatigue from SEMG has been very subject specific. Con-
tessa et al (Contessa, Adam, and Luca 2009) collected data
from 4 subjects - once each at the beginning and conclusion
of a fatiguing exercise and observed a significant difference
between the data patterns collected from different subjects.
Gerdle et al (Gerdle, Larsson, and Karlsson 2000) observed
variations in the root mean square (RMS) of the EMG signal
across different subjects even when the subjects performed
the same activity under similar experimental conditions. In-
vestigations into the use of physiological data for recogniz-
ing the different emotional states of a person have reported
a subject independent classification accuracies of the order
of 70% (Leon et al. 2007), (Kim and Andre 2008). To the
best of our knowledge we propose the first systematic ap-
proach to address subject based variability in SEMG signals
considering the sample distribution differences arising due
to subject based variability.

The variation in SEMG parameters from subject to sub-
ject creates differences in the data distribution. This differ-
ence negatively affects the performance of traditional ma-
chine learning algorithms as it leads to differences in train
and test data which are drawn from different subjects. In
such cases domain adaptation methods have to be applied
to reduce the differences in both conditional and marginal
probabilities between the training and test data distributions.
Many existing methods perform domain adaptation based
on only marginal probability differences between the two
data distributions. Shimodaira et al (Shimodaira 2000) bi-
ased the training samples by a test-to-training ratio to match
the marginal distribution of the test data. Sugiyama et al
(Sugiyama et al. 2008) tried to reduce the gap in marginal
probabilities by minimizing the KL-divergence between test
and weighted training data and Bickel et al (Bickel, Brück-
ner, and Scheffer 2009) by discriminating training against
test data with a probabilistic classifier. Huang et al (Huang
et al. 2007) re-weight the instances in source domain so as
to minimize the marginal probability difference, referred as
Kernel Mean Matching (KMM), using Maximum Mean Dis-
crepancy (MMD) (Borgwardt et al. 2006) as the distance
measure. Method suggested by Pan et al (Pan et al. 2009) is

based on feature mapping for reducing the marginal proba-
bility differences between the source and target distribution
based on minimizing MMD, referred as Transfer Compo-
nent Analysis (TCA). The details of some of these techniques
that have been implemented in this work are discussed under
Comparison with related work.

There are also methods in the literature that address the
differences in the conditional probability distributions. Gao
et al (Gao et al. 2008) reduce this difference by propos-
ing an approach which compares the clustering manifold
of the test or target domain data around an instance with
the manifold formed by the labels generated by the train-
ing or source domain data. This is restricted by the as-
sumption that the test data follows a ’‘clustering‘’ manifold.
Zhong et al (Zhong et al. 2009) propose an approach that
addresses both marginal and conditional probability differ-
ences (KMapEnsemble (KE)), based on domain mapping us-
ing Kernel Discriminant Analysis(KDA), followed by clus-
tering based instance selection. KDA removes any topolog-
ical properties of the data distribution that might aid in the
classification process. Thus this technique is not suited for
SEMG data that displays some topological properties that is
explained earlier in Introduction.

This paper presents a methodology of domain adaptation
that preserves the topology of the original data distributions
while mapping both the source and target data into a com-
mon domain. This is followed by an effective methodology
to select the training data having the same conditional proba-
bility without any assumption about any particular manifold
of either the original or the mapped data distributions. To
the best of our knowledge, manifold learning has been used
in applications with large number of features such as image
analysis, text analysis etc and this is the first application of
this methodology for addressing differences across distribu-
tions for purposes of domain adaptation.

Proposed Approach
It is observed that SEMG data collected over a fatiguing
exercise from different individuals shows variations in both
conditional and marginal distributions. In spite of these dif-
ferences, the SEMG data shows specific topological patterns
that is consistent across different individuals. This pattern is
illustrated in Figure 1.

In our proposed approach we exploit this similarity across
subjects and use a domain adaptation methodology that pre-
serves the topology of the input data distribution, to map the
data from multiple subjects into a common domain. This
process minimizes the differences in the marginal probabil-
ity distributions across the subjects. We also observe that the
SEMG data as shown in Figure 1 has significant differences
in conditional probabilities across subjects, having conflict-
ing conditional probabilities in several cases. The second
part of the framework reduces this difference through an
instance selection technique. To summarize the proposed
framework is dividd into two parts. The first part learns
a new low dimensional feature space using a nonlinear di-
mensionality reduction technique called ISOMAP (Joshua
B. Tenenbaum 2000), which preserves the topology of the
input data distribution and the second part performs instance
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Figure 1: Three sample subjects (subjects 3, 4, 7) with four classes (four physiological stages) in our SEMG data set: Projected
using Isomap based topology preserving methodology

selection in the mapped domain, based on conditional prob-
ability similarities between the distributions. Thus the pro-
posed approach tries to reduce both marginal and condi-
tional probability differences between the distributions.

Isomap based Domain Adaptation

Isomap (Joshua B. Tenenbaum 2000) is a manifold learn-
ing technique that extends the traditional multi-dimensional
scaling by incorporating the geodesic distances imposed by
a weighted graph. The Isomap algorithm takes as input the
distances d(i, j) between all pairs xi, xj from N data points
in the high-dimensional input space X , measured in the stan-
dard Euclidean metrics and outputs coordinate vectors in a
D -dimensional Euclidean space Y that best represents the
intrinsic geometry of the data. The algorithm has three main
steps. The first step constructs the neighborhood graph G
over all the N data points by connecting points xi and xj .
The weights associated with the edges connecting two points
xi and xj is set to the Euclidean distance between these
points dx(i, j). The second step computes the shortest paths
between any two points by initializing dG(i, j) = dx(i, j) if
xi, xj are linked by an edge, dG(i, j = inf otherwise. Then
for each value of k = 1, 2, · · · , N in turn, replace all en-
tries dG(i, j) by min{dG(i, j), dG(i, k) + dG(k, j)}. The
final matrix DG = {dG(i, j)} would contain all the shortest
path distances between all pairs of points in G. Finally, the
third step applies classical MDS (multi dimensional scaling)
to the graph matrix DG and constructs an embedding of the
data in a D-dimensional Euclidean space Y that best pre-
serves the manifold’s estimated intrinsic geometry. The co-
ordinate vectors yi for points in Y or the mapped features in
the new domain are obtained by minimizing the cost func-
tion:

φ(Y ) =
∑

ij

(‖xi − xj‖ − ‖yi − yj‖)2 (1)

where ‖xi − xj‖ is the Euclidean distance between the
high-dimensional datapoints xi and xj and ‖yi − yj‖ is
the Euclidean distance between the corresponding low di-
mensional datapoints yi and yj . Thus the low dimensional
representation of the data in isomap preserves the geodesic
distances in the input data. Other classical dimensionality
reduction algorithms such as PCA or MDS do not detect

the inherent manifold in the data. PCA finds a low dimen-
sional representation that best preserves the variance of the
data in the high dimensional input space and MDS finds an
embedding that preserves the interpoint Euclidean distances.
Isomap algorithm uses the MDS framework to preserve the
geodesic distances as per the manifold of the high dimen-
sional input data.

The proposed algorithm uses isomap to project the train-
ing and test data from multiple subjects to a common do-
main and then utilizes a K nearest neighbor based method-
ology to select instances from the training data which have
similar conditional probability as the test data. Since in the
proposed domain adaptation algorithm we address condi-
tional probability as well, we require a few labeled samples
from the target domain data DT . The training data DS con-
sists of data from multiple subjects and the test or target do-
main data (data from a subject under test) consists of some
labeled data DT

l and lots of unlabeled data DT
u such that

DT = DT
l +DT

u . The main steps of the proposed approach
are as follows:
• Step 1: Compute the low dimensional projection of the

available labeled test data DT
l using Isomap methodology.

• Step 2: Use the mapping to project the training data DS

and unseen unlabeled test data DT
u as well, into the same

mapped space.
• Step 3: In the mapped domain, compute the Euclidean

distance from each labeled test data in DT
l to each of the

data points in the training data DS belonging to the same
class.

• Step 4: In the mapped domain, sort the distances in in-
creasing order of the value and select k nearest points
from the training data DS for each of the data samples
in DT

l to form DS
selected.

• Step 5: Learn a classifier on the mapped selected training
data DS

selected and mapped labeled target domain data DT
l

and compute the labels of the mapped test data DT
u .

• Step 6: Compute new low dimensional projection again,
using the selected data from training domain i.e.DS

selected

and labeled test data DT
l in the original space, and obtain

the new mapping.
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• Step 7: Go back to Step 2, for N number of iterations.
• Step 8: Compute the class declared majority number of

times in N iterations for each of the DT
u and assign the

same to the data instance.
• Compute classification accuracy of the DT

u .

Comparison with related work
We compare the proposed methodology with three recently
published domain adaptation methods. One of the methods
we compared our work with is based on marginal probabil-
ity differences only (Pan et al. 2009), the second method
with which we compare our work is based on conditional
probability differences between the distributions (Gao et al.
2008) and the third domain adaptation method with which
we compared our method addresses both marginal and con-
ditional probability differences (Zhong et al. 2009) but does
not use a topology preserving feature mapping methodology.
We present here a short overview of each of these methods.

Transfer Component Analysis (TCA)

This method learns a kernel in the mapped domain such
that the marginal distribution differences between the source
(training) and target (test) domains is reduced using Max-
imum Mean Descrepancy defined as follows: As per this
measure the difference between the two distributions XS =
{xS1

· · ·xSn1
} and XT = {xT1

· · · · · ·xTn2
} with distribu-

tions P and Q is given by

Dist(XS , XT ) =

∥∥∥∥∥
1

n1

n1∑

i=1

φ(xSi)−
1

n2

n2∑

i=1

φ(xTi)

∥∥∥∥∥
H
(2)

where xSi
, xTi

are data from XS and XT , and H is a uni-
versal reproducible kernel Hilbert space(RKHS) (Steinwart
2002) and φ is the feature map induced by a universal kernel
such that φ : X → H and φ(xSi

) and φ(xTi
) are the cor-

responding mapped features into the RKHS. Pan et al pro-
posed learning a feature map such that the Dist(XS , XT ) is
minimized.

Locally Weighted Ensemble (LWE)

The LWE framework computes the label y of an unlabeled
target domain data x, having k source models using the en-
semble local weighing scheme as follows:

P (y|x) =
k∑

i=1

wMi,xP (y|Mi, x) (3)

where P (y|Mi, x) is the prediction made by one of the k
models Mi for target data point x and wMi,x is the weight
of the model Mi at point x obtained as follows:

wMi,x =
s(GMi

, GMT : x)
∑k

i=1 s(GMi , GMT : x)
(4)

where GMi and GT are the graphs around point x. GT is
build by connecting points belonging to the same cluster
manifold as x is, in the test data and GMi

is built by con-
necting points belonging to the same class as x is assigned
to, by the Mi model. s(GMi

, GMT : x) is the measure of
similarity between these two graphs at point x in test data.

Figure 2: SEMG data collection during a repetitive gripping
activity.

Kernel Ensemble (KE)

This method suggested by Zhong et al (Zhong et al. 2009)
obtains the common domain between the training and test
data by performing Kernel discriminant analysis (KDA)
on the few sampled test data available and uses this fea-
ture mapping to map the training (source) and unseen test
data (target) into the common domain, thus addressing the
marginal probability difference between the source and tar-
get domain. It then applies a cluster based instance selection
method to select training or source instances with similar
conditional probability. There are two main draw backs with
this method, one is it does not preserve the topology of the
input high dimensional data in the new mapped domain and
second it expects the mapped data to have a clustering man-
ifold, where as in the proposed approach we preserve the
original topology of the data, we do not assume the mapped
data to be of any specific manifold.

Experiments

SEMG data

The SEMG data was collected during a repetitive gripping
action performed by the forearm. Figure 2 shows the sub-
ject with surface EMG differential electrodes on the exten-
sor carpi radialis muscle to record the SEMG signal. The
subject performs a cycle of flexion-extension of forearm as
shown in Figure 2 at two different speeds i.e. low speed(1
cycles/sec) and high speed (2 cycles/sec) repetitively for
about 4 minutes. The cycles of low and high speed are alter-
nated after every minute to form four phases or classes i.e.
(l) low intensity of activity and low fatigue, (2) high intensity
of activity and moderate fatigue, (3) low intensity of activity
and moderate fatigue and (4) high intensity of activity and
high fatigue. Figure 3 shows the raw SEMG signal obtained
during the repetitive gripping for a representative subject.

0 0.5 1 1.5 2 2.5

x 10
5

−2

0

2

Time Sequence (1000 Hz)

V

Phase 1
(Low Speed)

Phase 3
(Low Speed)

Phase 4
(High Speed)

Phase 2
(High Speed)

Figure 3: The raw continuous SEMG data of subject 4 per-
forming repetitive movement for 4 minutes.
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The raw SEMG activity was recorded by Grass Model 8-
16C at 1000Hz and passed through a band pass filter of 20Hz
to 500Hz. The data was collected and saved by the LabView
software(from National Instruments)running on a PC. Data
of the order of 1.92 Million samples (1000*4*60*8), was
collected from 8 subjects including male and female of the
age group of 25 years to 45 years. A set of twelve ampli-
tude and frequency domain features are extracted from ev-
ery burst localized by identifying the intersection between
a linear envelope of 3 Hz and the mean line (mean + 2 ×
standard_deviation) to identify the four phases of inten-
sity and fatigue levels as mentioned by the class/phase def-
inition. Each subject data consists of around 450 to 350
samples of 12 dimensional feature vectors, belonging to four
classes with around 80 to 100 feature vectors per class.

Experimental Procedure

In order to evaluate the effectiveness of the proposed Topol-
ogy Preserving Domain Adaptation (TPDA) methodology
we compared the results with four baseline method SVM-C,
SVM-M, SMA, TSVM (Transductive SVM) and with three
recently published domain adaptation methods; namely
Transfer Component Analysis (TCA), Locally Weighted En-
semble (LWE), and Kernel Ensemble (KE). The details of
each of these techniques are provided under section heading
Comparison with related work. We also compared our re-
sults with PCA based domain mapping followed by instance
selection methodology as performed in TPDA, referred as
PCA-DA. The definition of other methodologies are as fol-
lows: SVM-C refers to all but one method where in the train-
ing data comprises of data from all seven subjects and the
test data is the data from the eighth subject. SVM-M, refers
to majority voting based ensemble framework. The class
y assigned to each unlabeled test data x is maxy NV (y|x)
where NV (y|x) is the number of votes given for class y for a
particular test sample x by the seven auxiliary sources. SMA
refers to Simple Model Averaging, which provides equal
weight to all the classifiers learned on each auxiliary source
domain in an weighted ensemble framework used to gener-
ate the label for the target domain data. SVM from LibSVM
package was used as basic classifier for all these methods.
TSVM is semisupervised method called Transductive SVM
implemented using svmlight package.

For TCA, KE and the proposed method TPDA, 10% of the
test data which is 6 to 7 samples per class, is made available
for training purpose. Rest of the 90% of the test data was un-
seen test data. All the methods are tested on the same pool
of unseen unlabeled test data. The accuracies are computed
in a subject independent manner. In a particular experiment
a subject data is considered as test data and the training data
comprises of the data from the rest of the seven subjects.
TCA was performed using linear kernel. The neighburhood
parameter used in K-Isomap and also in the KNN based in-
stance selection algorithm was set to 12. The reduced di-
mension was kept as 6 for TCA, KE, TPDA and PCA-DA.
These parameter values were selected on the basis of best
performance as a result of 5 fold cross validation over the
test training data. All the results presented are average over
10 rounds of execution with different sets of random data

selected as labeled test data for each test subject.

Results and Discussion

We use subject independent classification accuracy as met-
rics for performance evaluation. The results shown in Table
1 are obtained by implementing the methods SVM-C, SVM-
M, SMA, TSVM, TCA, LWE, KE and the proposed TPDA
methodologies. The first column of the Table 1 indicates the
subject data under test. The training data consists of the data
from rest of the seven subjects. We observe that the different
weighting schemes for SVM, namely SVM-C, SVM-M and
SMA result in poor performance. All these schemes per-
tain to the case where brute force transfer of knowledge is
done causing negative transfer (Rosenstein, Marx, and Kael-
bling 2005). We also observe that results obtained by im-
plementing TCA which addresses only marginal probability
differences are comparable to TSVM, which does not per-
form any domain adaptation, instead employs a label propa-
gation technique to determine the labels of the target domain
data. We also observe that LWE which addresses conditional
probability differences only between the domains gave bet-
ter results than TCA and KE for test subjects 2,3 and 4. LWE
gave better results than TPDA for subject 2 and comparable
for subject 4. These results show that considering condi-
tional probability difference is paramount for addressing the
distribution difference across subjects in SEMG data. We
also observe that the overall or average classification accura-
cies obtained when both marginal and conditional probabil-
ities are addressed by methodologies KE and TPDA are bet-
ter than any of the other methodologies implemented. How-
ever TPDA outperforms KE for all cases with an average
performance improvement of around 7.6%. We also imple-
mented PCA based domain adaptation followed by instance
selection as per proposed methodology, known as PCA-DA,
for comparison with the proposed methodology, as PCA is
by far the most popular linear technique. The results show
that for SEMG data, preserving input data topology, signif-
icantly improves the average subject independent classifica-
tion accuracies.

Thus we observe that the proposed Topology Preserving
Domain Adaptation method (TPDA) provides a gain of 21%
to 32% over the methods with out any domain adaptation
(SVM-C, SVM-M, SMA and TSVM) and 8% to 22% over
the state-of-the-art domain adaptation methods (TCA, LWE
and KE). We also observe that standard deviation of the re-
sults across the subjects is minimum for TPDA. This also
shows that the proposed method is able to address better the
variations in distributions across the subjects and present a
less variant common representation for the SEMG data.

Conclusion and Future work

We propose a new domain adaptation method to addresses
subject based variability in myoelectric signals so as to de-
velop a generalized framework for measurement of physio-
logical status across subjects. To the best of our knowledge,
this is the first systematic analysis of the SEMG data based
on distribution differences across subjects, also this is the
first application of topology preserving non linear dimen-
sionality reduction technique, Isomap, for domain adapta-
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Table 1: Comparative Performance of Proposed Method (TPDA) on SEMG data - Accuracy (%)
Test Sub SVM-C SVM-M SMA TSVM TCA LWE KE PCA-DA TPDA

1 70.76 33.9 44.96 49.09 45.15 67.44 71.85 66.81 82.12
2 43.69 50.76 44.61 55.68 68.93 77.54 74.62 59.46 75.76
3 50.11 56.85 56.84 65.09 56.78 75.55 74.79 65.79 83.96
4 59.65 47.93 49.67 56.98 52.68 81.22 69.35 78.02 81.75
5 40.37 44.79 50.15 62.5 60.15 52.48 73.44 67.29 83.20
6 59.21 61.45 60.33 71.32 76.92 65.77 73.92 66.08 82.32
7 47.13 46.91 45.76 60.73 55.64 60.32 77.97 72.46 83.33
8 69.85 64.53 74.46 68.55 67.24 72.81 79.48 68.34 84.13

Average 55.09 50.85 53.34 61.24 60.43 69.14 74.42 68.03 82.07
Std_Dev 11.53 9.88 10.24 7.25 10.14 9.56 3.20 5.39 2.69

tion. Here we apply Isomap to obtain the mappings of the
data in a common domain which preserves the topology of
the input data. This feature being reasonably similar across
SEMG data from different subjects, provide the best map-
ping for domain adaptation. The proposed technique is scal-
able to number of subjects and number of classes without af-
fecting the performance. Experimental results show that the
proposed method is very effective in addressing subject in-
dependent classification accuracy of the generalized frame-
work. Success in developing the generalized model for mea-
suring fatigue based on SEMG signals would open doors to
many broader applications of other physiological data such
as EKG, EEG, pulse rate besides SEMG itself in applica-
tions related to health monitoring in every day movement,
industrial work and geriatric care.
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