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Abstract

Humans naturally use multiple modes of instruction while
teaching one another. We would like our robots and artifi-
cial agents to be instructed in the same way, rather than pro-
grammed. In this paper, we review prior work on human
instruction of autonomous agents and present observations
from two exploratory pilot studies and the results of a full
study investigating how multiple instruction modes are used
by humans. We describe our Bootstrapped Learning User In-
terface, a prototype multi-instruction interface informed by
our human-user studies.

Introduction

Humans are remarkably facile at imparting knowledge to
one another. Through the lens of the various kinds of state of
the art machine learning algorithms we can identify multiple
modes of natural human instruction: we define concepts, we
describe and provide demonstrations of procedures, we give
examples of rules and conditions, and we provide various
kinds of feedback to student behavior. These methods are
used depending on the kind of concept that is being taught
(concept definitions, conditions, rules, procedures) and the
conditions under which the teacher and student find them-
selves. Just as important, the student is an equal participant
in the lesson, able to learn and recognize conventions, and
actively observes and constructs a model of the situation the
teacher is presenting in the lesson.

The familiar and readily available systems of instruction
that are used in human-to-human teaching stand in sharp
contrast with how we currently get computers to do what we
want, despite the fact that computers appear to share with
humans a kind of universal flexibility: we have been able
to make computers perform an enormous variety of com-
plex tasks. These capabilities are currently only achieved as
the result of often costly and labor intensive programming
by human engineers—we get computers to do what we want
through a process that is closer to brain surgery than instruc-
tion. This is true even for state of the art machine learning,
where algorithms are capable of extracting patterns, classi-
fying noisy instances, and learning complex procedures. But
human engineers must provide data in just the right form,
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with the correct training data, and even then must often ex-
plore through trial and error to get the agent to learn what is
desired.

The goal of human-instructable computing is to build
an “electronic student” that can be taught using the
same natural instruction methods humans (specifically non-
programmers) use. An electronic student architecture will
naturally include a variety of state of the art machine learn-
ing algorithms, but the key challenge is to provide the in-
terface between them and the natural instruction methods
used by humans. There is now a growing body of literature
from researchers studying the intersection between human-
computer interfaces and machine learning. However, to
date, the focus of this work has been on particular individ-
ual modes for human instruction rather than the full gamut.
The next step is to understand how to provide several modes
of instruction in the interface, and to better understand how
humans might use such an interface to teach.

In this paper, we describe three investigations intended
to uncover how humans might naturally instruct a capa-
ble electronic student, using a broad spectrum of instruction
types. We aim to design an interface that can accommodate
the variety of natural instruction modes that humans appear
to use, and understand when and how these modes are used.

Prior Work

Many prior efforts have described agents that interact with
human teachers. However, most of these works used only
one mode of teacher-student interaction (e.g. teaching by
demonstration) over the agent’s lifetime. We can roughly
classify this existing work into three categories based on the
kind of feedback the teacher can pass to the student: teach-
ing by demonstration, teaching concepts by example, and
teaching through reinforcement. We now describe these in-
teractions in more detail and provide examples from the lit-
erature.

In teaching by demonstration, a teacher has the same con-
trol interface to a dynamical system as the student does, and
is able to provide traces of proper behavior. The learning in
this case does not need to be pure mimicry, and instead en-
ables the acquisition of a higher-level policy from the traces,
allowing the student to perform correctly in new situations.
For instance, after seeing the teacher navigate around a crate,
the agent may be able to navigate around similar obstacles in

24

Help Me Help You: Bridging the Gaps in Human-Agent Collaboration — Papers from the AAAI 2011 Spring Symposium (SS-11-05)



different locations. Prior work in learning from demonstra-
tion has appeared in several branches of the reinforcement
learning literature, including using traces in a batch setting
to bootstrap robot behaviors (Smart and Kaelbling 2002;
Argall et al. 2009) and in extended apprenticeship learn-
ing over the agent’s lifetime (Walsh et al. 2010). These
works often espouse the use of autonomous learning in con-
cert with the teacher-provided traces. In our case, we will be
accompanying the demonstration traces by other forms of
teacher interaction that will allow for the same fine grained
tuning of behavior.

Another general form of teacher-student interaction is
teaching by examples of concepts. This protocol shadows
standard supervised-learning interaction in that the teacher
is responsible for providing labeled examples of a concept
to be learned. However, the teacher may also provide ex-
planations or hints as to why a specific example was clas-
sified a certain way. An example of this framework is the
WILL system (Natarajan et al. 2010) for inductive logic
programming, which combines traditional concept learning
machinery with users’ indications of relevant and important
definitional components. Other systems for more traditional
classification problems, such as training support vector ma-
chines (Chernova and Veloso 2009) and email classification
(Stumpf et al. 2009) have used this paradigm, with the lat-
ter focussing explicitly on natural ways that humans provide
reasons for categorization decisions. Similar techniques can
be helpful in learning conditional dynamics (e.g. you cannot
walk through walls), as was the case in work on learning ob-
ject categories and affordances (Thomaz and Cakmak 2009).

While learning concepts is often an essential component
of a task, this framework does not allow for specific actions
(other than labeling) to be designated as good or bad, and
while demonstration provides an indirect channel for such
guidance (by only showing good behavior), we now con-
sider a third channel of teacher interaction for more fine-
grained behavioral refinement. In teaching through rein-
forcement, the teacher is able to give a feedback signal in-
dicating a degree of happiness (or unhappiness) with the
agent’s behavior, either at specific timesteps or when an
episode has ended. This form of feedback has been shown
to be moderately successful in complex tasks such as a sim-
ulated cooking scenario (Thomaz, Hoffman, and Breazeal
2006) and tactical battles in a real-time strategy game (Judah
et al. 2010). However, recent work (Knox and Stone 2010;
Thomaz and Breazeal 2008) has indicated that many “natu-
ral” ways of incorporating numeric or ordinal feedback from
humans into a reinforcement learning problem can be per-
ilous, as humans often provide incompatible feedback or do
not follow “standard” definitions of reward and value. As
such, this channel is usually best suited for fine-grained re-
finements that are not easily teachable through the protocols
discussed above.

Methodology

In contrast to these works, the interface we are designing is
built around allowing the human teacher to use instantiations
of all of these instruction types during learning. This allows

for both the teaching of high-level concepts and for fine-
grained adjustments of undesired behavior based on direct
reinforcement or demonstrations of specific situations.

However, the design of such an interface poses a method-
ological challenge: we do not yet understand how humans
might naturally teach an automated agent using a multi-
modal instruction interface. The ideal situation would be
to take an existing electronic student and see how humans
instruct it. However, such a student does not yet exist. Fur-
thermore, prior work (Perry 2008), in which transcripts were
collected of the interaction between a human teacher and
a human serving as the interface between the teacher and
an early version of the Mable electronic student (Mailler et
al. 2009), found that as soon as the teacher recognized that
Mable is limited in the kind of interaction it can accommo-
date, the participant tended to reduce instruction to a style
more like direct programming than natural instruction. To
avoid this, in the following studies we employed a Wizard
of OZ (WOZ) protocol in which the student is actually con-
trolled by a human without the teacher’s knowledge. This
allowed us to provide human teachers a high degree of free-
dom in how they choose to instruct the student while be-
lieving they are interacting with a capable student. We be-
gin by reviewing two pilot studies aimed at exploring differ-
ent interface configurations for eliciting multiple instruction
methods during a teaching episode.

Pilot Study 1 - Wubble World:

Free Text Interaction

In our first exploratory pilot study, we wanted to elicit as
close to fully natural instruction behavior as possible with-
out constraining how the Teacher might teach, but also under
the condition that the Teacher believed they were interacting
with a capable automated agent. We used Wubble World
(hereafter, WW) (Hewlett et al. 2007), a three dimensional
simulated environment in which agents called wubbles can
move around and manipulate objects. We adapted WW so
that humans can control the wubbles and communicate with
one another directly using a peer-to-peer chat facility. Fig-
ure 1 shows the the WW interface view.

Figure 1: Student interface for Wubble World.

In each instruction session, one human participant was
given the role of the Teacher, the other was the Student. Both
Teacher and Student did not know ahead of time what the
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teaching/learning task was, and the Teacher was led to be-
lieve that they were interacting with a computer agent rather
than a human Student. The two participants were placed
in separate rooms. Both the Teacher and Student were
trained to use the WW interface and given a short amount
of practice. The interface included controls for moving the
wubbles, highlighting objects, and picking up, carrying and
putting down objects. The Teacher and Student were not
constrained in what they could write to one another.

The teaching task that was presented to each participant
required multiple concepts to be taught, some depending on
first mastering others. Specifically, the WW environment
has two kinds of blocks: cube-shaped red blocks and elon-
gated blue blocks (see Fig. 1). The task was to have 5 smaller
red boxes placed in a row at the base of a wall, and an elon-
gated blue block placed on top. This required the Teacher
to teach the difference between the blocks, how they were
to be positioned, as well as the concept of line of sight; in
this way, the teaching task involved concept definitions (line
of sight, distinguishing the different block types), rules and
conditions (the red blocks must form the base, what line of
sight means), and a procedure (how to construct the wall).
The Teacher was also asked to verify that the Student had
learned each of the concepts taught.

We collected transcripts from six participant pairs.1 The
following enumerates a set of observations based on the tran-
scripts:

1. Modes of instruction are tightly interleaved: while step-
ping through the procedure for building the wall, telling
the Student what to do at each step, the Teacher also de-
fined new concepts (“this is a red block”) and rules sur-
rounding their use (“put red boxes first”), all the while
providing feedback (“that was good”). One reason for
the interleaving is that the teaching environment allows
for both teacher and student to engage in interaction to-
gether within the environment. In general, Teacher’s did
not explicitly denote the beginning or end of a procedure,
instead relying on other contextual cues, such as asking
questions, or asking the Student to try again.

2. Teachers sometimes demonstrated the action themselves,
instructing the Student to watch. Other times they told the
student what to do, step by step, with the assumption that
the student understood this.

3. Teacher feedback ranged from “good” or “no” to more
elaborated explanation: “No, the blocks need to be on the
ground, not the top”

4. It was common for Teachers using free text to use multi-
ple terms for the same object without explicitly noting the
different terms. E.g., “block” versus “box” versus “cube”.

1Additional details and transcripts are available here (Morri-
son, Fasel, and Cohen 2010). Our volunteer participants did not
have background knowledge about the state of the art in machine
learning or artificial agents, so they did not have advanced knowl-
edge about whether an electronic student is currently possible—
this made it possible to maintain the illusion that the Teacher was
interacting with an intelligent computer agent.

5. Students asked questions of clarification, and Teachers
gave definitions and reasons for actions or for labeling
conditions. This helped both Teacher and Student estab-
lish a shared frame of reference.

• T: “the blocks should be placed close to each other”
• S: “all the red blocks?”
• T: “yes”
• T: “The line of sight is blocked because the blocks are

between you and the tree.”

6. In some cases, Teachers provided background summaries
of what they were going to teach before providing demon-
strations or examples, e.g., “Let’s imagine that the sign
post is an observer to hide from.”

Pilot Study 2 - Charlie the Pirate:

Constrained Text Interaction

The lessons from WW achieved the goal of providing in-
sight into how to get the Teacher to be expressive, but free
text entry from both Student and Teacher sometimes led to
quite complex linguistic constructions. Also, we anticipate
that in most cases interaction with an electronic student will
either be with a physical robot, or with a system in which the
Teacher will not be represented in a simulated world as an
avatar along with the Student. For this reason, we changed
the Teaching domain and interaction protocol. In this pilot,
we had Teachers interact with a small physical robot, and
limited what the Student could say, in the hopes of finding
a balance between expressivity for the Teacher but closer
to interactions that might be handled by current artificial
agents.

The robot, named Charlie, was built from a Bioloids
robotics kit2 and consists of a 4-wheeled, independent drive
chassis, an arm with a simple two-fingered (pincer) grip-
per, and an arm with an RFID sensor attached at the end
(see Fig. 2, right). While each arm has multiple degrees of
freedom, the arm controllers were simplified to discrete ac-
tions to deploy and retract, open and close, rotate the gripper,
and scan with the RFID sensor (this would sweep the sensor
back and forth after it was deployed).

Figure 2: Left: A sample arrangement of blocks of different
shapes and colors used in the robot experiment; numbered
blocks contain RFID tags, where the number indicates the
value of a scan. Right: A picture of Charlie the Robot.

2
http://www.trossenrobotics.com/bioloid-robot-kits.aspx
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The robot was placed on a table along with small foam
blocks of various shapes and colors (see Fig. 2, left). The
Teacher stood at one end of the table and used a terminal
to enter text to communicate directly with the Student. The
Student was located in a partitioned region of the lab; the
Teacher could not see the Student and did not know there
was an additional person in the room, however the Student
could view the table workspace and the Teacher via two web
cams. The Student’s workstation included a keyboard, and
a monitor displaying two windows with the web cam video
feed, a peer-to-peer chat terminal, and another terminal indi-
cating the robot’s RFID sensor status. Rather than allowing
the Student to type free text, we employed two conditions:
one in which the Student was not able to respond, and a sec-
ond condition in which the student can respond by selecting
from a set of canned responses: e.g., “Hello!”, “I didn’t un-
derstand”, “Yes”, “No”, and “I’m finished”.

The teaching task asked the Teacher to instruct Charlie to
“find treasure” amongst the blocks on the table. The rules
were that treasure could only be in one of the purple ob-
jects on the table. Charlie could see the color and shape
of the blocks. For the Teacher’s benefit, all of the purple
blocks had numbers indicating whether they had treasure or
not: 2 indicated a block with treasure. Charlie could not see
the numbers on the blocks and instead had to use the RFID
scanner to scan the blocks. Charlie’s RFID scanner would
display a “1” on the Student’s sensor if the block was la-
beled 1, or “2” for blocks with treasure, otherwise it would
display nothing. Once Charlie found the block with the trea-
sure, the Student had to direct him to turn the block upside
down in order to “bury” it. This task required that Charlie
scan all purple blocks until finding the treasure.

We collected transcripts of 5 Teacher/Student pairs, 2 in
the “no Student response” condition, and 3 where the Stu-
dent could use the canned phrases. The participants were
again selected from graduate students and staff of the UA
Computer Science Department, but all participants had lit-
tle experience with robots or autonomous agents. The main
findings from analysis of the transcripts were the following:

1. Similar to the WW findings, all of the different teaching
modes were observed and they were tightly interleaved.

2. In the condition where the Student was not able to re-
spond to the Teacher, we saw the same kind of Teacher
expressivity observed in the prior study with Mable (Perry
2008): Teachers reverted to a style that was more like
programming than instruction, simply walking Charlie
through the task and only occasionally indicating condi-
tions. In the canned response condition, however, while
the Teacher’s expressions tended to be simpler than in the
WW free-text condition, the Teacher tended to ask more
questions or conduct small tests of the Student’s state of
knowledge.

3. Under both conditions, there was a pattern in the com-
plexity of instructions provided by the Teacher: When
Charlie followed instructions with no mistakes, the com-
plexity of the instructions increased, whereas the com-
plexity decreased when Charlie failed to follow directions
correctly.

Main Study - BLUI: Bootstrapped Learning

User Interface

From the prior two pilots we have learned that indeed mul-
tiple instruction modes are used when expressable, that they
are interleaved during instruction, and that allowing the Stu-
dent to respond to the Teacher with at least a limited set of
response types has a positive affect on Teacher expressive-
ness. Given this experience, we constructed a prototype in-
terface, the Bootstrapped Learning User Interface (BLUI),
to make these instruction types available through a GUI in-
terface. We then conducted a WOZ experiment to see how
human users with little prior experience might use BLUI.

The UAV ISR Domain

BLUI has been designed to work in an Intelligence, Surveil-
lance and Reconnaissance (ISR) domain in which the Stu-
dent is the control system of a simulated UAV that will be
taught to carry out ISR missions. We use the X-Plane cus-
tomizable flight simulator environment3 to simulate a realis-
tic operating environment.

In BLUI, the UAV that the wizard/Student controls is a
small airplane with a flight control system that can keep the
plane flying in the direction and at the altitude specified by
the teacher. (Note that the human teacher is not required
to understand flight dynamics; this is the Student’s respon-
sibility). A set of flight waypoints can also be specified to
indicate the flight trajectory the UAV should follow.

A scenario file can be loaded into the X-Plane environ-
ment at any point during the instruction phase. Each sce-
nario generates a version of the world with a given set of
objects such as people, cars, and boats. World objects have
properties that can be sensed using the UAV’s sensors. The
Student knows about general geographical features of the
scenario, such as bodies of water and mountains, but must be
taught to distinguish between different world objects. World
objects, in turn, are used to define teaching tasks.

Three UAV sensors (listed below) were made accessible
to the Teacher and Student to provide information about
world objects. These sensors are the only percepts available
for the Student to observe the environment, but are generally
under the control of the Teacher (unless the Student has been
asked by the Teacher to perform a procedure that uses these
sensors). Therefore, teaching the Student how and when to
use these sensors is an important part of teaching a task.
• Wide-area camera - provides a 360-degree view of the

ground around the UAV. The higher the UAV flies, the
wider the range of view. This camera can see objects on
the ground once they are in range, but can not acquire
detailed information about them.

• High resolution camera - provides detailed information
about objects when it is aimed at and set to track an object
within range. This includes many finer-grained properties
of objects (such as whether an object has a cargo hold).

• Radiation sensor - can detect the level of radiation of ob-
jects in range. The range of this sensor is more limited and
requires the plane to fly down to the area it is scanning.
3Laminar Research: http://www.x-plane.com/
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Figure 3: The BLUI Teaching Interface: (A) Teacher Instruction Interface; (B) Timeline; (C) Map Interface

Teacher Interface

The Teacher is provided with three tools to help teach the
Student (Fig. 3): (A) the Teacher Instruction Interface used
to communicate with Student; (B) a Timeline Display that
shows a history of all Teacher instructions; (C) a Map Dis-
play that provides information about world objects, UAV
sensors and range, and shows the UAV flight path.

The Teacher Instruction Interface (Fig 3-A) was specifi-
cally designed to enable the three types of instruction meth-
ods discussed earlier. Below we discuss the interface fea-
tures that may be classified under each Teacher-Student in-
struction mode:

Teaching by demonstration: The Teacher can group a set
of instruction commands into a procedure and demonstrate
good (positive) and bad (negative) examples of a procedure.
This can be done in one of two ways. The Teacher can either
explicitly state at the beginning of a sequence of commands
that they are about to teach a procedure and later explicitly
end it, or the Teacher can highlight a set of previous com-
mands in the timeline (Fig. 3-B), and label them as a pro-
cedure. Note that this method for teaching procedures has
none of the formal semantics or advanced programming in-
terfaces of other teaching systems. Instead it simply allows
the Teacher to naturally demonstrate grounded commands in
a natural manner and puts the onus on the Student to deter-
mine a general policy for enacting these procedures.

Teaching concepts by examples: The Teacher can define
concepts (such as “cargo boat”) by pointing to and labeling
objects (that are visible in the current sensor range) on the
map (Fig. 3-C). Names can be re-used and again, the elec-
tronic student would need to build a general representation
of the concept being taught based on the sensed features of
the object (e.g. “Cargo boats are boats with cargo holds”).

Teaching by reinforcement: The Teacher can give feed-
back to the Student, in the form of 1-3 “happy” faces or
1-3 “frowny” faces, to indicate how satisfied he/she is with
the Student’s performance. The Teacher could also create
new or use existing labels to indicate when “goals” were
achieved.

Teaching Task

In each of our trials, the human Teacher is presented with
the following task:

Your task is to instruct the Student to identify all cargo
boats in a specified body of water. There are two main
kinds of boats: cargo boats and fishing boats, and you
will need to teach the Student how to tell the differ-
ence. Once a cargo boat has been identified, the Stu-
dent needs to take its radiation sensor reading and gen-
erate a report.

In order to ensure that the Teacher has no doubt about
the correct answer, we provide the Teacher printouts of all
scenario files where each boat has been labeled as cargo or
fishing. Additionally, he/she is informed of the property that
distinguishes a cargo boat from a fishing boat.

As before, the purpose of the Teaching task with the
BLUI is to require that multiple concepts and procedures
are taught, some depending on first mastering others. We
also want the concepts taught to involve teaching of defini-
tions, procedures, conditions, and potentially sub-goals. In
this case, the Teacher would first need to teach the Student
the distinction between cargo and fishing boat using camera
tracking and assigning object labels. Then the Teacher may
instruct the Student to follow a set of actions/procedures
that need to be performed every time a cargo boat has been
identified. However, since we did not want to bias how the
teacher might teach, no description of these possible instruc-
tion patterns was given, and instead it was left up to the
Teacher to decide how to teach these concepts, given the
general task description.

Empirical Results

Thus far, we have run the BLUI WOZ experiments on 12
people. Each participant went through an introductory demo
of the teaching interface before beginning the teaching ses-
sion. On average, the participants spent 30 minutes teach-
ing the Student the assigned task. After the teaching ses-
sion, each participant was asked whether he/she was able to
successfully communicate with the “electronic student”; 7
participants replied “Yes”, 3 replied “No” and “2” replied
“Mostly”. Most participants made use of interface features
to teach by demonstration, although some tried to teach the
task to the Student by teaching concepts (object labels) ex-
clusively through examples (see Figure 4). Two of the par-
ticipants only used procedure definitions through demon-
stration to teach the Student. While we see that the majority
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Mode Phase1 Phase2 Phase3
Demonstration 32.34 34.73 32.93

Concept by Example 33.90 38.81 37.29
Reinforcement 7.50 30.00 62.50

Table 1: Percentage of all commands of a certain mode in
each stage.

of the participants taught with multiple instruction modes,
it is worth noting that the interface has accommodated two
distinct teaching styles. The feedback feature was the least
used of the three instruction modes. We also analyzed each
teaching session in a fixed time window to detect whether
certain instruction modes became more or less popular as
the session continued (see Table 1). Interestingly, we did not
find any change in preference for teaching by demonstration
or teaching by example; however, we did notice a significant
shift in the use of teaching through reinforcement. This ob-
servation indicates that reinforcement feedback is most use-
ful in this task for fine tuning behavior that has been boot-
strapped with other instruction modes.

Figure 4: The percentage of each mode of instruction for
each participant int he BLUI study.

Conclusion

To the best of our knowledge, our BLUI teacher interface is
the first interface to combine all the three common modes of
Teacher-Student interaction over the agent’s lifetime: teach-
ing by demonstration, teaching concepts by example and
teaching through reinforcement. These results are prelim-
inary, and in general there is much more work to be done
to better understand human instruction requirements. Also,
our interface is still quite primitive in terms of the expres-
siveness of concepts and procedures. However, so far it does
look like the BLUI interface accommodates multiple teach-
ing modes, and we have initial evidence that it supports at
least two different teaching styles (mixed demonstration or
concepts by example only). Our next step is to use these
results to inform the design of the backend of the instruc-
tion interface that will package Teacher instructions in an
appropriate form for machine learning. This complements
the efforts already under way in multi-modal learning sys-
tems such as Mable (Mailler et al. 2009).
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