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Abstract

It has been argued that causal rules are necessary for repre-
senting both implicit side-effects of actions and action quali-
fications, and there have been a number different approaches
for representing causal rules in the area of formal theories of
actions. These different approaches in general agree on rules
without cycles. However, they differ on causal rules with mu-
tual cyclic dependencies, both in terms of how these rules are
supposed to be represented and their semantics. In this paper
we show that by adding one more minimization to Lin’s cir-
cumscriptive causal theory in the situation calculus, we can
have a uniform representation of causal rules including those
with cyclic dependencies. We also demonstrate that some-
times causal rules can be compiled into logically equivalent
(under a proposed semantics) successor state axioms even in
the presence of cyclical dependencies between fluents.

Introduction

Reiter (2001) argues that to solve many reasoning problems
about actions, it is convenient to work with the precondi-
tion axioms and the successor state axioms. For each action
function A(�x), a precondition axiom (PA) has a syntactic
form

Poss(A(�x), s) ≡ ΠA(�x, s).

(An action A(�x) is possible in situation s if and only if
ΠA(�x, s) holds in s, where ΠA(�x, s) is a formula with
free variables among �x and s.1) Situations are first order
(FO) terms which denote possible world histories. A
distinguished constant S0 is used to denote the initial
situation, and function do(a, s) denotes the situation that
results from performing action a in situation s. Every
situation corresponds uniquely to a sequence of actions.
Moreover, notation s′ � s means that either situation s′ is
a subsequence of situation s or s = s′. There are axioms
Σ for situations which characterize situations as a single
finitely branching infinite tree starting from S0 such that
at each node S, each branch corresponds to new situation
do(A,S) arising from execution of A, one of finitely many
actions, at S (Reiter 2001). These foundational axioms

1Here and subsequently, all free variables (typically written in
lower case letters) including object variable �x, situation variable s,
and a variable of sort action a are implicitly ∀-quantified at front
of formulas.

for situations are domain independent. Objects are FO
terms other than actions and situations that depend on
the domain of application. Above, ΠA(�x, s) is a formula
uniform in situation argument s: it does not mention the
predicates Poss, ≺ or Caused (introduced below), it does
not quantify over variables of sort situation, it does not
mention equality on situations, and it has no occurrences of
situation terms other than the variable s (see (Reiter 2001)).
We also call a formula, that is uniform in situation argument
s, a state formula, interchangeably. For each fluent F (�x, s),
a successor state axiom (SSA) has a syntactic form

F (�x, do(a, s)) ≡ [∃�yi](a=PosActi(�ti) ∧ φ+
i (�x, �yi, s))∨

F (�x, s) ∧ ¬[∃�zj ](a=NegActj(�t′j) ∧ φ−
j (�x, �zj , s)),

where each φ+
i (�x, �yi, s) (φ−

j (�x, �zj , s), respectively) is a
formula uniform in s, and each PosAct(�ti) (NegAct(�t′j),
respectively) is an action term that makes F (�x, do(a, s))
true (false, respectively) if the context condition φ+

i (�x, �yi, s)
(φ−

j (�x, �zj , s), respectively) is satisfied. In this axiom, each
�ti (�t′j , respectively) is vector of terms including variables
among �x and quantified new variables �yi (�zj , respectively),
if there are any. In a general case, there might be at most a
finite number of positive or negative effects on each fluent.
In addition to Σ, PAs and SSAs, Reiter (2001) includes also
into his Basic Action Theories (BATs), a finite set of FO
formulas whose only situation term is S0 (initial theory).
This set of formulas specifies the values of all fluents in
the initial state. It also describes all the facts that are not
changeable by any actions in the domain. Finally, BATs
include unique name axioms (UNA) for actions specifying
that two actions are different if their names are different,
and identical actions have identical arguments.

It has been observed that sometimes, an axiomatizer has
to start not with PAs and SSAs, but with a different set of ax-
ioms representing (domain) state constraints (Finger 1986).
For example, (McIlraith 2000) argues that it is more conve-
nient for an axiomatizer to start with state constraints that
characterize a complex technical or software system. She
also demonstrates when a syntactically restricted set of situ-
ation calculus constraints and effect axioms can be compiled
into a set of SSAs. From another perspective, (Baader et al.
2005b; 2005a) investigate how reasoning about actions can
be carried out in description logics. The authors embed rea-
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soning problems from the general situation calculus into a
description logic setting. For the sake of simplicity, they
consider only a special case of domain constraints that cor-
respond to a set of acyclic definitions between concept-like
fluents. In description logics, this set of axioms is called an
acyclic TBox. Axioms in a TBox express general knowl-
edge about a domain and may include both terminological
definitions and constraints that should hold after execution
of arbitrary actions. A recent paper (Baader, Lippmann, and
Liu 2010) proposes a generalization to a TBox that consists
of general concept inclusion (GCI) axioms. It is important
to observe that in description logics, it is the set of state con-
straints in TBox that is a primary concern of an axiomatizer.

State (or domain) constraints are traditionally facts that
are true in every possible state. In the situation calculus,
they are normally represented as first-order sentences with
universal quantifiers over situations. For instance, the fact
that no object x can be at two different locations l, l′ in the
same situation s can be represented as:

at(x, l, s) ∧ at(x, l′, s) ⊃ l = l′. (1)

However, surprisingly, not all state constraints are cre-
ated equal. (Ginsberg and Smith 1988) (see also (Lin and
Reiter 1994)) first point out that while some of them con-
tribute to indirect effects of actions (called ramification state
constraints in (Lin and Reiter 1994)), others serve as im-
plicit qualifications on actions (called qualification state
constraints in (Lin and Reiter 1994)). For instance, consider
the action move(x,l) that moves the object x to the location l

Poss(move(x, l), s) ⊃ at(x, l, do(move(x, l), s)).

(If the action move(x, l) is possible (executable), then after
it is performed the object x will be at location l.) Then the
above state constraint about uniqueness of a location is a
ramification one, for it should be used to imply the following
indirect effect of move(x, l):

Poss(move(x, l), s) ⊃
l′ 	= l ⊃ ¬at(x, l′, do(move(x, l), s)).

Now suppose that each location can have just one object:

at(x, l, s) ∧ at(y, l, s) ⊃ x = y. (2)

Then this constraint about uniqueness of an object occupy-
ing l should be a qualification one, for it should be used to
derive the following qualification on the action:

Poss(move(x, l), s) ⊃ ¬(∃y)y 	= x ∧ at(y, l, s).

(One cannot move an object to a location which is already
occupied by another object, for otherwise, the last state con-
straint will be violated.)

What is disturbing here is that although our intuitions
about how the two state constraints should be used are dif-
ferent, they are represented in the same way. It seems clear
that these two kind of state constraints are fundamentally
different, and should be represented in fundamentally dif-
ferent ways.

Moreover, several researchers argued that the indirect ef-
fects of actions should be represented differently (e.g. (Baral

1995; Lin 1995; McCain and Turner 1995; Sandewall 1994;
Thielscher 1995)). In particular, Lin (1995) argued that the
indirect effects of actions cannot be faithfully described us-
ing ramification state constraints alone, and proposed to use
causal rules to specify the constraints. The method pro-
posed in (Lin 1995) is illustrated with several examples of
how causal rules together with direct effect axioms can be
successfully compiled into PAs and SSAs, and later imple-
mented (Lin 2003). Once this compilation step has been
completed, the resulting BAT can be subsequently used for
reasoning about actions. However, the general results about
applicability of this approach are stated only for acyclic
(stratified) sets of causal rules. As soon as there are fluents
with mutual causal dependencies, the approach proposed in
(Lin 1995) is no longer applicable. The goal of this paper
is to elaborate the approach proposed in (Lin 1995), so that
an arbitrary finite set of causal rules can be handled as well.
Ultimately, we are looking for computational mechanisms
that can take an arbitrary finite set of causal rules and a fi-
nite set of direct effect axioms on the input and can compile
them into a set of PAs and a set of SSAs. This paper can
be considered a first step in this direction. Subsequently, we
concentrate on solving the ramification problem only, and
do not consider explicit action qualification axioms.

The paper is organized as follows. Section 2 discusses
our approach in more details. In Section 3, we illustrate our
approach on several simple examples. In Section 4, we con-
sider a special syntactic case of causal rules and show that
under a stated syntactic restriction, the causal rules can be
compiled into SSAs, even if there are cyclic dependencies.
Section 5 includes discussion and comparison with previ-
ously proposed solutions to the ramification problem.

The Method
In this section, it is convenient for us to consider a sort fluent
in addition to sorts action, object, situation. Following (Mc-
Carthy and Hayes 1969), we also use the binary predicate
Holds(f, s) to say that a fluent f holds in s. Notice that in
the introduction, we wrote, for instance, at(x, l, s) instead
of Holds(at(x, l), s). We consider the former to be a short-
hand for the latter. We shall continue to do so in an effort to
improve the readability of our formulas. Formally, if F is a
fluent name of arity objectn → fluent, then we define the
expression F (t1, ..., tn, s) to be a shorthand for the formula
Holds(F (t1, ..., tn), s), where t1, · · · , tn are terms of sort
object, and s is a term of sort situation.

We consider causal theories of the following form:
• Σ, the set of foundational axioms.
• A set of direct action effect axioms of the form:

Φ(s) ⊃ Caused(F (�x), v, do(A(�y), s)), (3)
where Φ is a formula uniform in s, F (�x) is a fluent, A(�y)
is an action, and v is a variable of sort truth value. Com-
pared to (Lin 1995), we omit the predicate Poss(A(�y), s)
as a precondition of a direct effect, following (Reiter
2001) and (Lin 2008).

• Causal rules of the form:
Φ(s) ⊃ Caused(F (�x), v, s), (4)
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where Φ(s) is a formula uniform in s, and F a fluent.
Compared to (Lin 1995), we do not allow the predicate
Caused in the premises, but allow only arbitrary state
formulas. We believe this simplifies the task of a knowl-
edge engineer who is responsible for writing causal rules.
If both arbitrary state formulas and causation statements
would be allowed in premises of causal rules, but there is
no recipe which of them should be used when, then this
permissiveness could create uncertainty for a knowledge
engineer.

As in (Lin 1995), there are general axioms about Caused:
T 	= F ∧ ∀v.v = T ∨ v = F , (5)
Caused(f, T , s) ⊃ Holds(f, s), (6)
Caused(f,F , s) ⊃ ¬Holds(f, s), (7)

where (5) is the domain closure axiom for sort truth-value,
and T and F are two constants of sort truth-value.

For each fluent F (�x), the generic frame axiom, called
pseudo-successor state axiom, is
Holds(F (�x), do(a, s)) ≡ Caused(F (�x), T , do(a, s)) ∨

Holds(F (�x), s) ∧ ¬Caused(F (�x),F , do(a, s)). (8)
From this axiom, we see that to get a real SSA

as in (Reiter 2001) for each fluent, we need to de-
rive some definitions of Caused(F (�x), T , do(a, s)) and
Caused(F (�x),F , do(a, s)) in terms of two state formulas
on s, respectively. To achieve this, Lin (1995) proposed to
circumscribe the Caused predicate in a theory consisting of
the above direct effect axioms (3) and causal rules (4), but
not the pseudo-successor state (8) and general axioms (5)-
(7). While this approach works for acyclic causal rules such
as those in the suitcase example from (Lin 1995), it does not
work when there are cycles as we will see from the examples
in the next section.

We propose here to add a second minimization, and show
that this solves the problem of cyclic causal rules. To present
our approach, we first make precise Lin’s approach.

Given a set T0 of the direct effect axioms and causal rules
of the forms (3) and (4), respectively, Lin’s causal theory,
written Cl(T0) below, consists of foundational axioms Σ,
the general axioms (5) - (7) about Caused, the pseudo-
successor state axioms (8), and CIRC(T0, Caused), the
circumscription of Caused in T0 with all other predi-
cates fixed. (See (McCarthy 1986; Lifschitz 1985; 1994;
Doherty, Łukaszewicz, and Szałas 1997) for details about
circumscription.)

Since the formulas (3) and (4) in T0 are Horn in the
Caused predicate, CIRC(T0;Caused) can be computed
by a simple Clark predicate completion (Clark 1978; Reiter
1982) to yield the following formulas, two for each fluent F :

Caused(F (�x), v, S0) ≡ Φ0(S0), (9)
Caused(F (�x), v, do(a, s)) ≡ Φ1(do(a, s)), (10)

where Φ0 and Φ1 are computed as follows. Let the following
be the list of direct effect axioms about F :

φ1(s) ⊃ Caused(F (�x), v, do(A1(�y1), s)),

· · ·
φk(s) ⊃ Caused(F (�x), v, do(Ak( �yk), s))

and the following the list of causal rules about F :

ψ1(s) ⊃ Caused(F (�x), v, s),

· · ·
ψm(s) ⊃ Caused(F (�x), v, s).

Then Φ0(S0) is

ψ1(S0) ∨ · · · ∨ ψm(S0),

and Φ1(do(a, s)) is

[φ1(s) ∧ a = A1(�y1)] ∨ · · · ∨ [φk(s) ∧ a = Ak( �yk)] ∨
ψ1(do(a, s)) ∨ · · · ∨ ψm(do(a, s)).

Notice that if m = 0 (meaning no causal rules about F ),
then Φ0 is ⊥ (false). If both m = 0 and k = 0, then Φ1 is
⊥.

In the following, given a set T0 of direct effect axioms and
causal rules of the forms (3) and (4), respectively, we denote
by T1 the set of equivalences (9) and (10).

We can now state our method as below:

1. Let T ′
1 be the result of replacing each atom of the form

Holds(F (�t), do(a, s)) in T1 by the right hand side of (8),
i.e., with
Caused(F (�t), T , do(a, s))∨
Holds(F (�t), s) ∧ ¬Caused(F (�t),F , do(a, s)).

2. Our second minimization is then to circumscribe
Caused in T ′

1 with all the other predicates fixed,
CIRC(T ′

1, Caused).

3. Our final causal action theory CAT (T0) will then con-
sist of foundational axioms Σ, the general axioms (5) -
(7) about Caused, the pseudo-successor state axioms (8),
and CIRC(T ′

1, Caused).

The following result says that our new causal theory is
stronger than the one in (Lin 1995).

Theorem 1 CAT (T0) |= Cl(T0)

Proof: This follows from the following entailments:

CIRC(T ′
1;Caused) |= T ′

1,

{(8) | F a fluent} |= T1 ≡ T ′
1,

|= CIRC(T0;Caused) ≡ T1.

Thus if the method of (Lin 1995) yields a successor state
axiom for each fluent, as when there are no cycles in causal
rules, so will our new method. In this sense, our new ap-
proach indeed extends the one in (Lin 1995).

Examples

In this section, we would like to consider a few examples
explaining our proposal. First of all, as mentioned above,
for the suitcase example from (Lin 1995), our method yields
exactly the same SSAs as in (Lin 1995).
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Similarly, one can verify that for the complex electric cir-
cuit2 from Figure 2.2 in (Thielscher 2000), our method also
yields a SSA for each fluent.

Subsequently, we concentrate on examples of CAT where
our new approach can produce SSAs, but the method from
(Lin 1995) is not strong enough to do that.

A Chain Reaction

A chain reaction is any self-sustaining physical or chemical
process such that its by-products cause the process to
continue (with or without acceleration). There are many
examples, but one of the simplest is an example of a fire
started in a large pile of matches. Once a match inside a pile
has been lit, it causes other surrounding matches to burn,
and so on. To reason about fire in a pile, let x vary over the
whole piles of matches, and let fire(x, s) be a fluent that
can become true after executing an action ignite(x), but if
it is true, then it becomes false after doing extinguish(x)
action. For the purposes of this example, we do not quantify
over individual matches. In this example, a theory T0

includes two direct effect axioms
¬fire(x, s) ⊃ Caused(fire(x), T , do(ignite(x), s)) ,
fire(x, s) ⊃ Caused(fire(x),F , do(extinguish(x), s)),
a single causal rule with a cycle (fluent depends on itself):
fire(x, s) ⊃ Caused(fire(x), T , s).

It is easy to see that in this case CIRC(T0;Caused) yields
the following:
Caused(fire(x), v, S0) ≡ v=T ∧ fire(x, S0),
Caused(fire(x), v, do(a, s)) ≡

a=extinguish(x) ∧ v=F ∧ fire(x, s)∨
a= ignite(x) ∧ v=T ∧ ¬fire(x, s)∨
v=T ∧ fire(x, do(a, s)).

According with Step 2 of our method, we have to replace
fire(x, do(a, s)) in the last formula with

Caused(fire(x), T , do(a, s))∨
fire(x, s) ∧ ¬Caused(fire(x),F , do(a, s)).

But this yields a theory T ′
1 with the predicate Caused

defined in terms of itself. Consequently, the single min-
imization CIRC(T0;Caused) is not strong enough to
produce a SSA for the fluent fire(x). However, the second
minimization CIRC(T ′

1;Caused) yields the formulas
Caused(fire(x), T , do(a, s)) ≡

a= ignite(x) ∧ ¬fire(x, s),
Caused(fire(x),F , do(a, s)) ≡

a=extinguish(x) ∧ fire(x, s).
Using these definitions, we can easily obtain a SSA for the
fluent fire(x) from the pseudo-successor state axiom (8).

Two Gear Wheels

In this well-known example by Denecker et al. (Belleghem,
Denecker, and Dupré 1998), there are two interlocked gear
wheels. We characterize each with a fluent gw(n) meaning

2This circuit consists of a battery connected to a separate switch
sw0 that controls n parallel sub-circuits. Each sub-circuit contains
its own switch swi connected to a light bulb li. If sw0 is not up,
then there is no light in any of the bulbs no matter what are the
positions of their switches, but if sw0 is up, then the fluent li is
true if and only if swi is up.

that the n-th gear wheel is turning. There are actions to
initiate/halt rotation of wheels: turn(n) and block(n),
respectively.
Caused(gw(n), T , do(turn(n), s)) ,
Caused(gw(n),F , do(block(n), s)),

Since the gear wheels are interlocked, rotation of one of the
gear wheels causes another one to rotate too, but if one of
them halts, the second one must halt too.
gw(1, s) ⊃ Caused(gw(2), T , s) ,
gw(2, s) ⊃ Caused(gw(1), T , s) ,
¬gw(1, s) ⊃ Caused(gw(2),F , s) ,
¬gw(2, s) ⊃ Caused(gw(1),F , s).

Let T0 be a conjunction of these six axioms. Then, skipping
axioms (9) related to S0, CIRC(T0;Caused) yields
Caused(gw(1), v, do(a, s)) ≡

a= turn(1) ∧ v=T ∨ gw(2, do(a, s)) ∧ v=T ∨
a=block(1) ∧ v=F ∨ ¬gw(2, do(a, s)) ∧ v=F ,

Caused(gw(2), v, do(a, s)) ≡
a= turn(2) ∧ v=T ∨ gw(1, do(a, s)) ∧ v=T ∨
a=block(2) ∧ v=F ∨ ¬gw(1, do(a, s)) ∧ v=F .

As in the previous example, we observe that the first
minimization does not allow us to compile direct ef-
fects and causal rules into SSAs. In Step 2, we replace
gw(1, do(a, s)) and gw(2, do(a, s)) with the right hand
sides of (8), and do some FO simplifications using general
axioms about Caused. In the result, again skipping axioms
(9) related to S0, we get a theory T ′

1 that includes
Caused(gw(1), v, do(a, s)) ≡
v=T ∧

(
a= turn(1) ∨ a= turn(2)∨
Caused(gw(1), T , do(a, s))∨
gw(1, s) ∧ ¬Caused(gw(1),F , do(a, s))∨
gw(2, s) ∧ ¬Caused(gw(2),F , do(a, s))

)
∨

v=F ∧
(
a=block(1) ∨ a=block(2)∨
Caused(gw(1),F , do(a, s))∨
¬gw(1, s) ∧ ¬Caused(gw(1), T , do(a, s))∨
¬gw(2, s) ∧ ¬Caused(gw(2), T , do(a, s))

)
.

and a similar axiom for Caused(gw(2), v, do(a, s)). In
Step 3, we compute CIRC(T ′

1;Caused). This yields
desirable definitions:
Caused(gw(1), T , do(a, s)) ≡

a= turn(1) ∨ a= turn(2) ∨
(gw(1, s)∨ gw(2, s))∧ ¬(a=block(1)∨ a=block(2)),

Caused(gw(1),F , do(a, s)) ≡
a=block(1) ∨ a=block(2) ∨

(¬gw(1, s)∨ ¬gw(2, s))∧ ¬(a= turn(1)∨ a= turn(2)).
Again, to save space, we omit a similar axiom for
Caused(gw(2), v, do(a, s)). Thus, in the two gear wheels
example, we also computed successfully Reiter’s SSAs.

The Firing Squad Example

The firing squad example is discussed in details in (Pearl
1999; 2009) to illustrate structural causal models, and dif-
ferent types of reasoning, including evaluation of counter-
factual scenarios. Using the situation calculus, this exam-
ple is also formulated in (Hopkins and Pearl 2007), where
a new type of causal model is proposed to overcome lim-
ited (propositional) expressiveness of structural causal mod-
els. In (Hopkins and Pearl 2007), the example is formulated
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using SSAs and PAs only, without ramification state con-
straints. However, Pearl (1999; 2009) mentiones that causal
mechanisms (laws) should be stated using sentences simi-
lar to domain constraints. In this section, we would like to
consider a complementary translation of the firing squad ex-
ample into the situation calculus that includes also causal
rules of the form (4).

In a firing squad, there are two rifleman R1 and R2

who are accurate, alert, law abiding, and prepared to
execute a prisoner P . There is an exogenous action
order representing a court order. As soon as it arrives,
the captain C gives a signal (represented as the ground
action signal(C) in axioms), and then both riflemen shoot
the prisoner simultaneously and accurately (represented
as action shoot(x, y), x shoots y). We introduce the
following fluents: signaling(x, s) becomes true after doing
signal(x), both shooting(x, y, s) and dead(y, s) are true in
the situation resulting from doing shoot(x, y). In the initial
theory, people are neither shooting, nor signaling and no
one is dead: ¬∃y(dead(y, S0)), ¬∃x(signaling(x, S0)),
¬∃x, y(shooting(x, y, S0)). The example can be translated
using two direct effect axioms
Caused(signaling(C), T , do(order, s)) ,
Caused(shooting(x, y), T , do(shoot(x, y), s)),

and three cuasal rules
signaling(C, s) ⊃ Caused(shooting(R2, P ), T , s) ,
signaling(C, s) ⊃ Caused(shooting(R1, P ), T , s) ,
shooting(x, y, s) ⊃ Caused(dead(y), T , s).

These rules represent a kind of autonomous mechanisms.
Once an initiating exogenous action has been executed, its
effects propagate through the linked, interacting mecha-
nisms. Let T0 be conjunction of these five axioms. Since T0

is Horn in Caused, the theory T1=CIRC(T0, Caused) in
Step 1 includes the axioms
Caused(signaling(x), v, do(a, s)) ≡

v=T ∧ x=C ∧ a=order
Caused(shooting(x, y), v, do(a, s)) ≡

v=T ∧
(
a=shoot(x, y) ∨

signaling(C, do(a, s)) ∧ y=P ∧ (x=R1∨x=R2)
)

Caused(dead(y), v, do(a, s)) ≡
∃x.shooting(x, y, do(a, s)) ∧ v=T .

(Here and subsequently, we omit all axioms related to S0.)
We can then obtain SSA for all fluents:
signaling(x, do(a, s)) ≡ x=C ∧ a=order ∨

signaling(x, s),
shooting(x, y, do(a, s)) ≡ a=shoot(x, y) ∨

y=P ∧ (x=R1∨x=R2) ∧ a=order ∨
signaling(C, s) ∧ y=P ∧ (x=R1∨x=R2)∨
shooting(x, y, s),

dead(y, do(a, s)) ≡ ∃x(a=shoot(x, y)) ∨
y=P ∧

(
a=order ∨ signaling(C, s)

)
∨

dead(y, s).
Now, as a variation of the firing squad example, suppose
that whenever one rifleman is shooting, another is shooting
as well:
shooting(R1, P, s) ⊃ Caused(shooting(R2, P ), T , s) ,
shooting(R2, P, s) ⊃ Caused(shooting(R1, P ), T , s).

In this case, the first minimization will not be strong enough

to obtain intuitively correct SSAs, but the second minimiza-
tion can handle the new cyclic rules without difficulties
(similar to the gear wheels example). It should be easy to
see that the second circumscritpion yields similar SSAs.

Following Pearl (1999; 2009), we can show that the CAT
resulting from our translation of the firing squad example
has reasonable logical consequences.
• Prediction (positive): If R1 shot, then the prisoner is dead.

Formally, CAT |= ∀s.dead(P, do(shoot(R1, P ), s))

• Prediction (negative): If R1 did not shot, then the prisoner
is alive. Formally, CAT |= ∀s.¬shooting(R1, P, s) ⊃
¬dead(P, s).

• Abduction: If the prisoner is alive, then the captain
did not signal. Formally, CAT |= ∀s.¬dead(P, s) ⊃
¬signaling(C, s)

• Transduction: If the rifleman R1 shot, then the rifleman
R2 shot as well. Formally,
CAT |= ∀s.(shooting(R1, P, s) ⊃
shooting(R2, P, s)).

• Deliberate Action: If the captain gave no signal, but the
rifleman R1 still decides to shoot, then the prisoner will
die and the rifleman R2 will not shoot.

CAT |= ∀s.¬signaling(C, s) ⊃(
¬shooting(R2,P,s)∧dead(P, do(shoot(R1,P ),s))

)
.

• Counterfactual: If the prisoner is dead, then the prisoner
would still be dead, even if the rifleman R1 had not shot.
Formally, CAT |= ∀sa. dead(P, sa) ⊃ ∃sp. sp � sa ∧

∀sh.sh 	=sa ⊃
(
sp�sh ∧ ¬∃s′do(shoot(R1, P ), s′) � sh

⊃ dead(P, sh)
)
.

Notice that we can formulate in the situation calculus
queries about counerfactual histories by using the prece-
dence relation from the foundational axioms of Reiter
(2001). Let sa be an actual branch of the situation tree
where P is dead, then there exists a past situation sp (pre-
sumably, court order arrival, or the captain signaling) such
that for all hypothetical situations sh in the future of sp
if the sequence of actions leading to sh does not include
shoot(R1, P ), then the prisoner still would be dead in sh.

Related Work

Much work has been done on incorporating causal rules into
action theories. Virtually every major action formalism has
been extended with causal rules. Some of these previous
works are discussed in details in (Giordano and Schwind
2004). Since our focus in this paper is on cyclic causal rules,
we’ll just consider the work that can deal with cyclic causal
rules.

Recall that under our proposal, a causal rule has the form

Φ(s) ⊃ Caused(F (�x), v, s),

where Φ(s) is a state formula uniform in s, meaning that it
mentions only Holds(f, s) but not the Caused predicate.
Thus, the causal rule that open is caused to be true when the
two switches are up in the suitcase example is represented
as:

up1(s) ∧ up2(s) ⊃ Caused(open, T , s),
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and that the two gears are interlocked and one
turning causes the other to turn is represented as
gw(1, s) ⊃ Caused(gw(2), T , s) ,
gw(2, s) ⊃ Caused(gw(1), T , s) ,
¬gw(1, s) ⊃ Caused(gw(2),F , s) ,
¬gw(2, s) ⊃ Caused(gw(1),F , s).

Notice that these formulas all have the same form. Intu-
itively, the one in the suitcase example is acyclic because
there is no rule connecting open to up1 or up2. The ones in
the gears example are cyclic. Formally, we can treat a set of
causal rules of the form

l1(s) ∧ · · · ∧ ln(s) ⊃ Caused(p, v, s) (11)

as a logic program, where p is a fluent atom, and li’s are
fluent literals, and define its dependency graph and loops,
similar to what Lee did for McCain and Turner’s causal the-
ories (Lee 2004).

In McCain and Turner’s causal logic (1997), the rule from
the suitcase example would be represented as

up1 ∧ up2 ⇒ open,

and rules from the two gears example as

� ⇒ gw(1) ≡ gw(2), (12)

where � stands for (L ∨ ¬L) and represents propositional
tautology. Compared to our representation, we see that
cyclic and acyclic causal rules are represented differently
in McCain and Turner’s formalism. The same can be said
about various action languages (Giunchiglia et al. 2004) as
they are all based on McCain and Turner’s causal logic.

Denecker et al. (1998) proposed a approach based on in-
ductive definitions. In their formalism, the causal rule in the
suitcase example is represented as

caus(open) ← init(up1) ∧ holds(up2) ∧ ¬init(¬up2),
caus(open) ← init(up2) ∧ holds(up1) ∧ ¬init(¬up1),
caus(open) ← init(up1) ∧ init(up2),

and for the two gears example, the following rules:

caus(gw(1)) ← caus(gw(2)),

caus(gw(2)) ← caus(gw(1)),

caus(¬gw(1)) ← caus(¬gw(2)),
caus(¬gw(2)) ← caus(¬gw(1)).

Again we see that in this formalism, cyclic and acyclic
causal rules need to be represented differently.

More recently, Strass and Thielscher (2010) considered
a restricted causal language in the style of McCain and
Turner’s causal logic, but provided a different semantics in
the style of Clark’s completion (1978) and loop formulas
(Lin and Zhao 2004). The causal rules from the two gears
example are written as

� : gw(1) � gw(2),

� : gw(2) � gw(1),

� : ¬gw(1) � ¬gw(2),
� : ¬gw(2) � ¬gw(1).

In general, a causal rule in this formalism is of the form

Φ : l1 � l2,

where Φ can be an arbitrary fluent formula, but l1 and l2
must be fluent literals. As mentioned, the semantics of these
rules are defined using Clark completion and loop formulas.
It is interesting to note that Lee (2004) did something simi-
lar by providing a translation from a subset of McCain and
Turner’s causal logic to logic program. When Lee’s transla-
tion is applied to (12), it yields a set of rules very similar to
the rules above.

In comparison, our proposal here allows for more gen-
eral form of causal rules, and uses minimization instead of
Clark’s completion and loop formulas.

Concluding Remarks and Future Work

We have proposed to add a second minimization to the cir-
cumscriptive action theories in (Lin 1995). Intuitively, the
original minimization in (Lin 1995) yields a closed-form
solution for Caused in terms of Holds. However when
Holds(f, do(a, s)) is replaced by its pseudo-successor state
axioms, the closed-form solution for Caused may have
some cycles which will then be eliminated by the proposed
new minimization.

We have shown that our method is stronger than the origi-
nal method in (Lin 1995) so that if the method in (Lin 1995)
produces a set of successor state axioms, so will our new
approach.

The main advantage of our method as compared to others
that can handle cyclic causal rules is that we have used a
uniform representation for both acyclic causal rules such as
those in the suitcase example and cyclic ones such as those
in the two gears example.

We plan to consider the following future work:

1. Show that when a set of causal rules of the form (11) has
cycles, then the result of two minimizations can be cap-
tured by loop formulas as done in (Lee 2004) and (Strass
and Thielscher 2010).

2. While for the two gears example, the various different
approaches outlined above all yield the same results, it
is worthwhile proving a result that formally relate, e.g.
causal theories here and causal theories by McCain and
Turner.

3. Implement a system similar to (Lin 2003) that can com-
pile a causal theory into STRIPS-like systems and succes-
sor state axioms.

4. Define actual cause within our framework to capture
properly concepts of causation and demonstrate that it
conforms to intuition on examples from (Hopkins and
Pearl 2007; Pearl 2009; Halpern and Pearl 2005).
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