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Abstract 
The concept of modeling multiple complex adaptive 
systems (CAS) as if they were voting processes proposes 
that an Error Resilient Data Fusion (ERDF) method can 
help to mitigate the effects of emergent properties in CAS 
system-of-systems (SoS). The property of emergence in a 
CAS composed of multiple, multi-modal sensors poses 
specific problems for fusion processes due to the difficulty 
in predicting and accounting for sensor performance under 
disparate environmental conditions. This paper compares 
the voting and Choquet integral fusion methods in the 
context of a multi-modal sensor ERDF SoS.  

 Background of ERCO Needs    

One characteristic of a Complex Adaptive System (CAS) is 
the property of emergence. Emergence, from a system-of-
systems (SoS) perspective, is the characteristic that 
interactions between systems result in properties and 
behaviors that are not characteristic of either system 
independently. One application is the fusion of information 
from disparate sensor systems that contribute to military 
situational awareness (SA) capabilities for tactical 
decision-making purposes (Schuck and Blasch 2010). 
Other examples include managing error in wireless sensor 
fusion systems (Urken 2005) and detecting the stability of 
a shared feeder line via a series of cooperative, 
interconnected power microgrids (Urken 2010).  
 In these types of distributed SoS, information fusion is 
often desired in order to optimize decision-making with 
incomplete and imperfect information. Error-resilient 
collective outcome (ERCO) methods are also desired due 
to the need to minimize the effects of invalid and corrupted 
data from diverse sensors and sources. This is especially 
true for data and information that may be intentionally 
modified or denied due to hostile agents. In tactical 
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military systems, this is assumed as part of the underlying 
basis of operations. 
 Two error-resilient data fusion (ERDF) methods that can 
support ERCO SoS are described in this paper. The first is 
a voting methodology described by Urken (2005). The 
second is a methodology based on a Choquet Integral 
method described by Warren (1999) and extended by 
Schuck and Blasch (2010).  

Description of ERCO Systems-of-Systems  

Referencing the wireless ERCO work by Urken (2005), the 
author develops the concept of an ERCO voting method 
for complex decision tasks in realistic networked systems 
where information may be unreported or distorted. 
 As an example, the US Army might distribute hundreds 
of unattended ground sensors (UGS) in a small region that 
are multi-modal (seismic, acoustic, magnetic, etc.)1. These 
could be damaged in the course of their operational life, 
placed in various soil conditions that may not allow 
realization of full sensor capabilities, or be located too 
close to a source of interference, such as a gasoline 
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Figure 1 – Mobile Fusion Scout BallTM and Monitor 
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powered generator. Indoor monitoring harbors similar 
types of problems as might be encountered by a network of 
MobileFusion Scout BallsTM as seen in figure 12. 
Monitoring of National Park resources also has similar 
types of problems (Shepherd and Kumar 2005; Xu no 
date).  

Voting Fusion and ERCOs 
Urken (2005) sets up a scenario where two types of sensors 
(AC – acoustic and IR – infrared) independently report 
their “best guess” hypotheses of the number of vehicles in 
a convoy (0 – 4) with probabilities scaled from 0 (not 
possible) to 10 (certain probability). These can be 
distributed across the hypothesis space and each sensor 
must completely distribute all its votes. Table 1 is captured 
from Urken (2005) and it shows the sensor outputs from 
this hypothetical system for one moment in time. 
 

Table 1 – Convoy Vehicle Assessment Sensor Ratings 

No. of Vehicles 0 1 2 3 4 

Sensors and Ratings 

AC1 0 5 4 1 0 

AC2 0 10 0 0 0 

AC3 0 5 3 1 1 

AC4 0 1 6 3 0 

AC5 0 3 5 2 0 

AC6 0 1 8 1 0 

IR1 0 0 0 4 6 

IR2 0 0 0 2 8 

IR3 0 0 1 3 6 

IR4 0 0 1 2 7 

 
 From table 1, it can be seen that each sensor distributed 
its votes in different ways to communicate its judgments 
about the attributes of the convoy. Sensor AC2 placed all 
of its votes that one vehicle comprises the convoy, while 
the rest of the acoustic sensors had various distributions 
between one and four vehicles. The IR sensors provided a 
much different distribution of votes. These differences 
could reflect real-world problems such as geometry 
limitations, blind spots, and sensor limitations with respect 
to target classes (such as vehicles with IR coverings and 
hidden heat sources).  
 Following a one person-one vote (OPOV) rule, for every 
majority winner (minimum 5 out of 10 votes), the 
following results are shown in table 2 (Urken 2005). 
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Table 2 – OPOV Allocations for Convoy Assessment 

No. of Vehicles 0 1 2 3 4 

Allocation of Votes 

AC1 0 1 0 0 0 

AC2 0 1 0 0 0 

AC3 0 1 0 0 0 

AC4 0 0 1 0 0 

AC5 0 0 1 0 0 

AC6 0 0 1 0 0 

IR1 0 0 0 0 1 

IR2 0 0 0 0 1 

IR3 0 0 0 0 1 

IR4 0 0 0 0 1 

 
 The results of table 2 are intuitive, but do not help in 
decision-making. What is needed is the set of sensor 
confidence values to include in the calculations. Again 
referencing Urken (2005), if the probability of correct 
choice p is assessed as 0.2 for AC1-AC3, 0.5 for AC4-
AC6, and 0.8 for IR1-IR4 and these values are transformed 
into weights via the Shapley-Grofman theorem, the data in 
tables 1 and 2 provide the results shown in table 3. 
 

Table 3 – Sensor Allocations after Shapley-Grofman 
Weighting 

No. of Vehicles 0 1 2 3 4 

Sensors and Ratings 

AC1 (0.2) 0 -1.39 0 0 0 

AC2 (0.2) 0 -1.39 0 0 0 

AC3 (0.2) 0 -1.39 0 0 0 

AC4 (0.5) 0 0 0 0 0 

AC5 (0.5) 0 0 0 0 0 

AC6 (0.5) 0 0 0 0 0 

IR1 (0.8) 0 0 0 0 1.39 

IR2 (0.8) 0 0 0 0 1.39 

IR3 (0.8) 0 0 0 0 1.39 

IR4 (0.8) 0 0 0 0 1.39 

Vote Totals 0 -4.17 0 0 5.56 

18



 

 

 
Additionally, Urken (2005) provides the following ERCO 
example for missing data from AC2 and AC6 in table 4. 
Based on the sensor confidence values and the Shapley-
Grofman weights, the result of “4 vehicles” will be an 
ERCO. By inspection, this would be the same result even if 
additional sensors cease reporting. 
  

Table 4 – ERCO Voting Results from Missing Sensor Data 

No. of Vehicles 0 1 2 3 4 

Sensors and Ratings 

AC1 (0.2) 0 -1.39 0 0 0 

AC2 (0.2) Missing Data 

AC3 (0.2) 0 -1.39 0 0 0 

AC4 (0.5) 0 0 0 0 0 

AC5 (0.5) 0 0 0 0 0 

AC6 (0.5) Missing Data 

IR1 (0.8) 0 0 0 0 1.39 

IR2 (0.8) 0 0 0 0 1.39 

IR3 (0.8) 0 0 0 0 1.39 

IR4 (0.8) 0 0 0 0 1.39 

Vote Totals 0 -2.78 0 0 5.56 

Choquet Fusion and ERCO 
From Schuck and Blasch (2010), there is an approach to 
mimic human cognition and decision-making using the 
Choquet integral for the purpose of knowledge generation 
– i.e. higher order fusion. The Choquet integral is a non-
additive, fuzzy-like integral where subsets of information 
are aggregated, which enables inter-element associations 
and non-linearities to be captured. For the purpose of 
establishing an ERCO, the results of the Choquet integral 
process will be used in the analysis in this paper without an 
automated risk-based assessment. For automated decision-
making using the Choquet integral, Schuck and Blasch 
(2010) propose that the statistics of the Choquet integral 
can be used to establish a human decision-maker’s 
certainty equivalent (CE), based on utility theory, where a 
risk tolerance is provided and an equivalent human 
decision based on a Bayesian risk assessment can be 
calculated. 
 The Choquet-based data relationship is built upon by 
Sugeno (1974) where for the subsets A and B with A  B 
= φ: 
 

g(A  B) = g(A)  + g(B)  + λ g(A) g(B)              (1) 

Where g is the Sugeno measure (also referred to as a 
density) and  is a constant on the interval [-1, ] that 

defines the additivity of the subsets, and is a probability 
measure when equal to 0 (Gader et al. 2004).  
 According to Klir (2006), the Choquet integral is a kind 
of monotone measure, , on the ordered pair [X, C] where 
X is the universal set and C is the nonempty family of 
subsets X. The Choquet integral is denoted as μ: C → [0, 
∞] and satisfies for all A, B ∈ C, if A ⊆ B, then μ(A)  
μ(B)   (monotonicity). 
 If μ(A  B) is either ≥ or ≤ μ(A) + μ(B) ∀ A  B ∈ C 
such that A  B = φ, then the monotone measure is called 
superadditive or subadditive respectively and its 
characteristics are expanded in the following way (Klir 
2006 and Grabisch 2000).  
 

a) μ(A  B) > μ(A) + μ(B) synergy/cooperation between 
A and B where the importance of A and B together 
is greater than the sum of the individual 
importances – this is superadditivity) 

b) μ(A  B) = μ(A) + μ(B)  (A and B are non-interactive 
and thus independent) 

c) μ(A  B) < μ(A) + μ(B)  (incompatibility between A 
and B where the importance of A and B together is 
less than the sum of the individual importances – 
this is subadditivity) 

 
Klir (2006) further states that classical probability theory 
can only capture (b);   otherwise, the axiom of additivity is 
violated. Thus the theory of monotone measures like the 
Choquet integral provides a rich framework for capturing 
and formalizing uncertainty. The discrete Choquet integral 
(C(•)) is defined by Warren (1999) as: 

( ) ( ) ( )( ) ( )i

n

i
ii xfAAC

=
−−=•

1
1μμ     (2) 

Where, 

( )∏
=

+=+
n

i
iw

1

11 λλ        (3) 

 

( ) ( ) ( )11 −− ++= iiiii AwwAA μλμμ     (4) 

 
With wi = the individual information weights, (Ai) = the 
monotone subset weight (where (A0) = 0), λ = the non-
additive parameter in the Sugeno equation, and f(x) is the 
global value estimate (provided by the sensor votes). 
 

Mapping the Choquet Integral to ERCO 
Example 

 
The Choquet integral approach can be mapped to the 
example ERCO by Urken (2005). For this example, the 
votes from each sensor are scaled from 0 to 100 (instead of 
0 to 10), are averaged for each sensor group and are 
assigned to each (Ai), applied to the sensor confidence 
weights of 0.2, 0.5, and 0.8 respectively and assigned to wi. 
The table 1 equivalent assignments and table 3 equivalent 
results are shown in table 5.
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Table 5 – Choquet Convoy Assessment Results 

No. of Vehicles-u(Ai) 0 1 2 3 4 

Sensors and Ratings 

AC1-3 (w=0.2) 0 66.7 23.3 6.7 3.3 

AC4-6 (w=0.5) 0 16.7 63.3 20 0 

IR1-4 (w=0.8) 0 0 10 27.5 67.5 
Results  

Choquet Value 0 20.3 38.2 25.5 54.2 

Weight Ave of u(Ai) 0 27.8 32.2 18.1 23.6 

Omega  0 -7.5 5.9 7.4 30.6 
 
The Omega value (Warren 1999) is simply the Choquet 
calculations minus the weighted average of each (Ai). The 
Choquet integral has been described as a “distorted 
average”, so the Omega value provides a glimpse of the 
effects of the resultant sub/superadditivity. 
 The Choquet results are very similar to the voting results 
in table 3. For the ERCO case in table 4, the following 
results are obtained in table 6 for the Choquet case. Here 
missing data is not considered an output, so the “non-data” 
from sensors AC2 and AC6 are not included. 
 
Table 6 – Choquet ERCO with Missing Data for AC2 & AC6 

No. of Vehicles-u(Ai) 0 1 2 3 4 

Sensors and Ratings 

AC1-3 (w=0.2) 0 50 35 10 5 

AC4-6 (w=0.5) 0 20 55 25 0 

IR1-4 (w=0.8) 0 0 10 27.5 67.5 
Results  

Choquet Value 0 18.3 35.4 26.4 54.3 

Weight Ave of u(Ai) 0 23.3 33.3 20.8 24.2 

Omega  0 -5.0 2.1 5.6 30.2 
 
Again, the results of the Choquet ERCO in table 6 are 
similar to those for the voting ERCO in table 4. 
 Looking again at the original work by Urken (2005), one 
can also see other possible scenarios. For example, if the 
missing data from sensors AC2 and AC6 were instead 
actual responses of “zero” due to a specific type of failure 
mode, then the results in table 7 are obtained, which 
compare favorably to those in table 6. 

 
Table 7 – Choquet ERCO with Zero Values for AC2 & AC6 

No. of Vehicles-u(Ai) 0 1 2 3 4 

Sensors and Ratings 

AC1-3 (w=0.2) 0 33.3 23.3 6.7 3.3 

AC4-6 (w=0.5) 0 13.3 36.7 16.7 0 

IR1-4 (w=0.8) 0 0 10 27.5 67.5 
Results  

Choquet Value 0 12.2 24.9 25 54.2 

Weight Ave of u(Ai) 0 15.5 23.3 16.9 23.6 

Omega  0 -3.3 1.54 8.01 30.6 
 
In these examples, the sensor confidences for AC1-3 and 
AC4-6 could result in highly unreliable responses. AC1-3 
provides very unreliable data (0.2), and AC4-6 responses 
are only as good as a coin flip (0.5), which is why their 
results were zeroed by the Shapley-Grofman conditioning. 
Better acoustic sensors might provide more meaningful 
results. If the inputs from the IR sensors are weighted less 
(0.6), and a weight of 0.8 for AC1-3 is established, the 
following results in table 8 are obtained. 
 

Table 8 – Sensor Allocations after Shapley-Grofman 
Weighting for Increased Confidence Values (0.8, 0.5, 0.6) 

No. of Vehicles 0 1 2 3 4 

Sensors and Ratings 

AC1 (0.8) 0 1.39 0 0 0 

AC2 (0.8) 0 1.39 0 0 0 

AC3 (0.8) 0 1.39 0 0 0 

AC4 (0.5) 0 0 0 0 0 

AC5 (0.5) 0 0 0 0 0 

AC6 (0.5) 0 0 0 0 0 

IR1 (0.6) 0 0 0 0 0.41 

IR2 (0.6) 0 0 0 0 0.41 

IR3 (0.6) 0 0 0 0 0.41 

IR4 (0.6) 0 0 0 0 0.41 

Vote Totals 0 4.17 0 0 1.64 

 
The equivalent Choquet values are shown in table 9. 
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Table 9 – Choquet Convoy Assessments for Increased 

Confidence Values (0.8, 0.5, 0.6) 

No. of Vehicles-u(Ai) 0 1 2 3 4 

Sensors and Ratings 

AC1-3 (w=0.8) 0 66.7 23.3 6.7 3.3 

AC4-6 (w=0.5) 0 16.7 63.3 20 0 

IR1-4 (w=0.6) 0 0 10 27.5 67.5 
Results  

Choquet Value 0 55.4 42.3 22.1 41.7 

Weight Ave of u(Ai) 0 27.8 32.2 18.1 23.6 

Omega  0 27.6 10.1 3.99 18.1 
 
In table 9, one vehicle is the best choice as was also shown 
in table 8. However, there is strength in the case for two 
and four vehicles too, although the Omega values more 
clearly point to one vehicle. 
 Finally, if the weight for both the IR sensors and AC1-3 
is set to 0.8, then by inspection the voting response would 
be 4.17 for one vehicle and 5.56 for four. This would 
reflect a conflict for a decision-maker and is skewed more 
towards four vehicles due to the additional IR sensor. The 
Choquet responses are shown in table 10. 
 

Table 10 – Choquet Convoy Assessments for Increased 
Confidence Values (0.8, 0.5, 0.8) 

No. of Vehicles- (Ai) 0 1 2 3 4 

Sensors and Ratings 

AC1-3 (w=0.8) 0 66.7 23.3 6.7 3.3 

AC4-6 (w=0.5) 0 16.7 63.3 20 0 

IR1-4 (w=0.8) 0 0 10 27.5 67.5 
Results  

Choquet Value 0 55.3 42.1 24.8 54.6 

Weight Ave of (Ai) 0 27.8 32.2 18.1 23.6 

Omega  0 27.5 9.9 6.73 31 
 
 
For the results in table 10, the Choquet value for four 
vehicles is slightly less than that for one vehicle, but the 
Omega value is shifted towards the four vehicle solution, 
showing a conflict exists in this example case. 
 

Conclusions 
 
This paper explored the ERDF properties of voting and the 
Choquet integral fusion methods. In both cases, it appears 
that they would satisfy the requirements for the CAS SoS 

described in this paper. Some thoughts on the results are 
captured in the following paragraphs. 
 Some sort of averaging of the results from the same 
sensor types with the same confidence values may be the 
best approach with the Shapley-Grofman voting method so 
that apparent redundancies in individual reporting from 
sensor types (AC1-3 vs. AC4-6 vs. IR1-4) don’t skew the 
overall results. What constitutes redundant information is 
important to know for anyone building an ERCO SoS. 
 The Choquet approach maintains values for uncertain 
evidence such as for the two and three vehicle case that are 
zeroed out via voting fusion – only true zero evidence is 
assigned a zero such as for the zero vehicle case. This may 
be important in some applications where fusion is done 
over relatively long periods of time, such as the 
classification of undersea tracks or land vehicles. As such, 
the Choquet approach may be better at detecting more 
subtle data changes and their relationships, such as 
distinguishing between no input and missing inputs and 
small changes in sensor confidence values as well as 
revealing changes in direction of assessments.  
 However, the Choquet approach is restricted for closed-
order solutions of no more than four simultaneous inputs 
(but interpolation can be used with high accuracy for larger 
numbers of inputs). It is also more complex and 
algorithmically demanding, although the  values can be 
pre-computed for a known set of weights. The Choquet 
approach may be best suited for higher-order fusion 
demands such as knowledge generation (Warren 1999), 
especially with an automated decision threshold capability 
based on risk tolerance (Schuck and Blasch 2010).  
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