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Abstract 
We examine the performance of Total Variation (TV) 
smoothing for processing of noisy Electrocardiogram 
(ECG) recorded by an ambulatory device. The TV 
smoothing is compared with traditionally-used band-
pass filtering using ECG with artificially added noise, 
as well as with real-world noise obtained during 
physiological monitoring. The fundamental difference 
between TV smoothing and traditional band-pass 
filtering is that TV smoothing allow preserving sharp 
slopes in the ECG, while traditional smoothing 
dampens them. Since the QRS complex represents a 
feature with steep slopes, the TV smoothing is a better 
choice ECG filtering. We found that TV smoothing 
outperforms traditional filtering on ECG signals 
recorded under different conditions and can be used 
as effective filtering tool in popular QRS detection 
algorithms. 

Introduction   
Modern ambulatory physiologic monitoring devices 
are capable of collecting a large number of vital signs 
with high sampling rates. However, such data, 
obtained in the field, contain significant amount of 
noise mostly due to movement artifacts. One of the 
most important vital signs collected by practically all 
wearable physiologic monitoring systems is heart 
rate, derived from ECG waveform. The problem of 
ECG filtering has been a subject of numerous studies 
and has been tackled with a wide range of signal 
processing techniques which vary from linear 
bandpass filtering to neural networks (Arzeno et al. 
2008, Friesen et al. 1990, Hamilton, and Tompkins, 
1986). The linear bandpass filtering is, however, the 
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most widely used technique due to its simplicity, 
efficiency, and speed. Nevertheless, it is not without 
faults. The shortcomings of the linear band pass 
filtering comes from its very nature of being a 
smoothing technique. As a smoothing technique, the 
bandpass filter does not preserve ECG features with 
the highest rate of change or the steepest slope. 
Ironically, the QRS complex is the feature with the 
highest rate of change and hence part of its energy is 
filtered out by a bandpass filter.  

Total Variation Smoothing 
Recently, some slope-preserving methods were put 
forward, mostly for image processing tasks (Rudin et 
al. 1992, Hansen 2010). The most prominent slope-
preserving smoothing technique is Total Variation 
(TV) smoothing which seeks to minimize the 
following functional (Rudin et al. 1992): 
� � � � ���� �

� �� �����    (1) 
where y is the measured noisy ECG waveform, f(x) – 
filtered ECG, D is the first-order derivative operator, 
and α is the regularization parameter. Notice that 
equation (1) uses two different norms in its first and 
second terms. The first term uses the Euclidean least 
squares norm and the second one uses the Manhattan 
norm of the first derivative of the filtered waveform. 
It is this second term which gives the TV smoothing 
its slope-preserving properties. 
 The second term in equation (1) is measuring 
function’s total variation, which is usually defined as: 
���� � � � ����� ��
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 The main advantage of using the TV smoothing is 
that it penalizes the nonsmoothness of the solution in 
quite different manner than traditional smoothing 
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techniques. Specifically, the TV penalty does not 
depend on the steepness of the slope, thus allowing 
sharp edges into the filtered signal. On the other 
hand, the TV smoothing is still a low pass filter, 
which effectively filters out high-frequency noise.  

Results 
We compared the performance of the TV filtering 
with a commonly used Butterworth bandpass filter 
with the pass band between 5 and 15 Hz. Figure 1 
shows an example of applying TV and Butterworth 
filtering to a triangular impulse contaminated with 
noise.  
 As can be seen in Fig.1, the Butterworth filter 
significantly attenuated the peak of the impulse and 
also introduced sidelobe artifacts, which are not 
present in the original signal. These undesirable 
effects can significantly complicated peak detection 
and leak to missed or spurious peaks.  

 
Figure 1 Comparison of TV and Butterworth filtering 

for a triangular impulse 
 

 In contrast, the TV filtering preserved most of the 
peak’s energy and also showed no sidelobe artifacts, 
thus leading to a filtered signal with better signal-to-
noise-ratio.  

 The same observation can be made while using the 
TV smoothing for a real ECG recoding. Figure 2 
shows a small portion of an ECG recording obtained 
in ambulatory conditions using Equivital physiologic 
monitoring system (Hidalgo Limited, UK). The 
monitor is an FDA-approved complete human 
physiological monitoring platform, allowing 
measurements of human physiology in both 
laboratory based and field research. The chest worn 
ambulatory monitor device provides real time 
measurements of core temperature, skin temperature, 
heart rate, respiratory rate, and physical activity. On 
these data, as well, the TV smoothing demonstrates 
its superior edge-preserving properties in comparison 
with Butterworth filtering.  

 
Figure 2 Application of Butterworth band-pass 
filtering (top panel) and TV (bottom panel) 
smoothing  to a real ECG signal. 

 
However, the ECG filtering is usually only the 

initial step in the ECG processing, which is aimed at 
QRS detection and beat time identification.  

To validate the TV smoothing, we modified and 
customized a well-known algorithm (Pan, and 
Tompkins 1985) to fit the needs of our perspective 
applications. In the first stage, the algorithm uses a 5- 
to 15-Hz Butterworth band-pass filter to eliminate 
non-QRS-related frequencies, and in the second 
stage, it computes the difference between two 
consecutive points to amplify the sharp slopes of the 
QRS complex. After differencing, it squared the 
resulting signal to make the ECG samples positive 
and to amplify the high-frequency components. 
Finally, in the last stage, it uses a low-pass filter to 
enhance the fiducial marks of the QRS complex and 
implements a self-adaptive thresholding method to 
detect QRS peaks, reject noise, discriminate T-waves, 
and search back for missed QRS complexes if a 
detection was not made within a certain time interval 

Our modification concerned only the first stage of 
the algorithm, namely, we replaced the Butterworth 
filter with TV smoothing leaving the rest of the 
algorithm unchanged. Consequently, we compared 
the performance of the original algorithm with the 
one that uses the TV smoothing. The comparison was 
performed on the ECG waveform collected during 
the study on glycemic control in young adults 
performed at the USDA Beltsville Human Nutrition 
Center. The study has been approved by the IRBs of 
all participating institutions. The first set of tests 
consisted in selecting a very clean ECG segments and 
their subsequent contamination with Gaussian white 
noise of different intensities. By adding Gaussian 
noise with different standard deviations, different 
signal-to-noise (S/N) ratios have been simulated. A 
total number of 100 one-minute long ECG segments 
have been selected and, after adding Gaussian noise, 
was processes by the previously described QRS- 
detection algorithm. The performance of the 
algorithms implementing TV smoothing and 
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Butterworth filtering has been compared in terms of 
Root Mean Squared Error (RMSE) between the 
instantaneous heart rates (HR) obtained from noise-
contaminated ECG and original clean ECG. The 
RMSE was defined as the square root of the mean 
squared difference between the estimated and the 
ground-truth HRs after both HRs had been resampled 
to 1 Hz via linear interpolation. The average RMSE 
for 100 segments was estimated and the results for 
four different S/N ratios are summarized in Table 1. 

As can be seen from Table 1, the TV smoothing 
consistently outperform the Butterworth filtering in 
terms of RMSE.  

 
S/N 10 5 3 1 Real 

World 
RMSE, 
bpm, 
Butterworth 

0.20 0.25 0.29 44.30 2.12 

RMSE, 
bpm 
TV 

0.15 0.20 0.21 17.30 0.51 

 
Table 1 Comparison of Butterworth filtering and TV 
smoothing for different signal-to-noise ratios and for 

the real-world noise contamination. 
  

The second test was performed using the real-
world noise found in the ECG recordings. The 
Hidalgo system uses a two channel ECG recording 
for redundancy and more reliable measurements. In 
some ECG segments, one ECG channel was found to 
be noise-contaminated, while the other one was noise 
free, as demonstrated in Fig. 3. We selected 100 such 
segments and used the noise-free channel to calculate 
the ground truth heart rate while the noisy channel 
was used to test the algorithms.  

 

 
Figure 3 An example of two-channel ECG segment 

with channel one (top panel) contaminated with noise 
and channel two (bottom panel), noise free. Such 

segments were used to compare two algorithms in the 
presence of real-world noise. 

 
 The average RMSE for the 100 segments was 
calculated and the results are presented in the last 
column of Table 1. As we can see, the RMSE 

obtained using the TV smoothing is more than four 
time smaller than the corresponding band-pass filter 
RMSE.  

Discussion and Conclusions 
The TV smoothing provides a powerful edge-
preserving smoothing technique, which compares 
favorably with tradition band-pass filtering used in 
ECG preprocessing. The TV smoothing consistently 
outperformed the Butterworth band-pass filter in our 
test using artificially-generated, as well as, real world 
noise. The power of TV smoothing comes from its 
ability to preserve sharp gradients in the signal, thus 
allowing for the QRS complexes to pass through 
filtering process relatively undistorted. The frequency 
response of the Butterwoth filter and TV smoothing 
is shown in Fig. 4. Notice, while the TV smoothing 
performs as a band-pass filter, it preserves more high-
frequency information, which is evident form the fact 
that the solid black line is higher in every frequency 
range. The TV smoothing has only one parameter to 
select: α in (1). This parameter is equivalent to 
selection of the pass band for the liner filter. The 
higher the parameter, the more high-frequency 
information is removed from the filtered signal. In 
this study, we used the discrepancy principle 
(Morozov, 1993) to select the parameter, since the 
noise level in the ECG could be reasonably-well 
estimated. Also, in contrast to other edge-preserving 
filtering techniques, the TV smoothing does not 
require the knowledge of edge locations, which can 
be impossible to determine in real-life applications. 
Similar to linear filtering, the TV smoothing has 
Bayesian interpretation, it assumes that the sought 
solution has Laplace distribution, in contrast to 
traditional filtering, which assumes Gaussian 
distribution. 

 
Fig. 4 Frequency response of TV smoothing (solid) 

and Butterworth filter (dashed). 
 

 
One of the disadvantages of the TV smoothing is 

that there is no closed-form solution to minimize (1). 
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However, the recent advances in the numerical 
implementation of TV algorithms made them 
computationally competitive with traditional liner 
filters. In this work we used the TV algorithm 
described in (Little, Jones 2010). 

Disclaimer 
The opinions and assertions contained herein are the 
private views of the authors and are not to be 
construed as official or as reflecting the views of the 
U.S. Army or of the U.S. Department of Defense.  
This paper has been approved for public release with 
unlimited distribution. 
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